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ABSTRACT. The Moment-Of-Inertia (MOI) method has been proposed by the authors 

to solve some of the shortcomings of convex-enclosure methods, when they are used to 

calculate path-equivalent ranges and mean components of complex non-proportional 

(NP) multiaxial load histories. In the proposed 2D version for use with critical-plane 

models, the MOI method considers the non-proportionality of the projected shear-shear 

history on each candidate plane through the shape of the load path, providing good 

results even for challenging non-convex paths. The MOI-calculated path-equivalent 

shear stress (or strain) ranges from each counted load event can then be used in any 

shear-based critical-plane multiaxial fatigue damage model, such as Findley’s or 

Fatemi-Socie’s. An efficient computer code with the shear-shear version of the MOI 

algorithm is also provided in this work.  

 

 

INTRODUCTION  

 

Most metallic alloys tend to initiate a single dominant microcrack, a behavior that is 

well modeled by critical-plane fatigue-damage models, which search for the material 

plane at the critical point where the corresponding accumulated damage is maximized. 

Under free-surface conditions, Bannantine and Socie [1] narrowed down the search 

space for the critical plane, classifying the most common microcracks into three types, 

which depend on the fatigue damage mechanism: Case A tensile or Case A shear 

microcracks, which grow along planes perpendicular to the free surface; or Case B 

shear microcracks, which grow on planes that make an angle   45
o
 with the free 

surface, see Fig. 1. To compact the notation in this work, Case A tensile is represented 

as A90(T), Case A shear as A90(S), and Case B shear as B45(S), where 90 or 45 come 

from their  angles in degrees with respect to the free surface. 

A90(T) or A90(S) microcracks only involve one normal and one shear stress/strain 

component, so normal or shear ranges are easy to calculate under variable amplitude 

loading (VAL) using uniaxial rainflow procedures. However, B45(S) microcracks 

involve in general two shear components, an in-plane stress A (or strain A) and an out-

of-plane B (or B), see Fig. 1, which must be combined to evaluate fatigue damage.  
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Figure 1. Non-proportional shear strain path B  A (or shear stress path B  A) acting 

on a B45 candidate plane (at 45
o
 from the free surface), for a general loading history. 

 

The combination of both usually non-zero B and A ranges may cause the 

initiation of a combined Mode II-III B45(S) microcrack, with B mainly contributing 

to increase its depth while A is mainly tending to increase its width. The combination 

of B and A into an equivalent range  is not a trivial step under NP loadings, where 

the B and A histories may be out of phase.  

This process requires first a 2D rainflow algorithm such as the Modified Wang 

Brown method [2] to identify every load event from the B  A (or B  A) history. 

Then, for each identified load event, its path path segments are used to calculate a path-

equivalent shear stress  (or strain ) range. The simplest approach for the B  A 

diagram is to assume a path-equivalent 2 2

BA
        for each identified load event, 

as discussed in [3]. But this equivalent range expression would not be able to tell apart 

e.g. a rectangular from a less damaging cross-shaped B  A path with same B and A, 

because both would wrongfully generate the same equivalent . 
Another possible approach is to use convex-enclosure methods, which try to find 

circles, ellipses, or rectangles that circumscribe the load-event path in such 2D B  A 

or B  A diagrams. For instance, Dang Van’s Minimum Ball method [4] searches for 

the circle with minimum radius that circumscribes each identified path; the minimum 

ellipse methods [5-6] search for an ellipse with semi-axes a and b that circumscribes the 

entire path with minimum area ab or minimum “ellipse norm” [a
2
  b

2
]

0.5
; and the 

maximum rectangular hull methods search for a minimum rectangle that circumscribes 

the path with maximum area or maximum diagonal [7]. The value of the path-

equivalent  or  would be assumed as the circle diameter, the ellipse norm, or the 

rectangle diagonal. 

However, such convex-enclosure algorithms do not consider the actual shape of the 

loading path, but only the convex enclosures associated with them. Therefore, an 

infinite number of loading paths associated with different fatigue lives could have the 



 

same convex enclosure, wrongfully predicting the same damage if such simplified path-

equivalent algorithms are used. 

This issue has been solved with the Moment-Of-Inertia (MOI) method, which has 

been proposed in [8-9] to estimate path-equivalent stress and strain ranges, as well as 

their mean components, considering the influence of the shape of the multiaxial loading 

path, not only its convex enclosure. The general 6D version of the MOI is reviewed next, 

followed by its application in critical-plane models, proposed in this work. 

 

 

THE MOMENT-OF-INERTIA (MOI) METHOD 

 

In the MOI method, the stress or strain path is assumed to be represented by a 

homogeneous wire with unit mass, whose center of mass (centroid) is used to estimate 

the location of the mean component of the load path. Then, the mass moment of inertia 

(MOI) of this hypothetical wire with respect to its centroid is calculated, which gives a 

measure of how much the path stretches away from its mean component. The path-

equivalent range of the true stress or strain path is finally calculated as a function of this 

MOI, which is a physically sound approximation, since paths with larger amplitudes 

would be associated with wider wires with increased MOI. 

The MOI method has been applied to tension-torsion [10] and general 6D histories 

[11], following a fatigue damage calculation approach based on invariants. For 6D 

histories, the history must first be represented in a 5D deviatoric stress or strain space, 

using the 5D vectors s   and e  , defined as 

T T
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   (1) 

These deviatoric spaces are used because they have a significant advantage over all 

other choices: their Euclidean norms | s |  and | e | ( 1 )   are equal to the von Mises 

equivalent stresses and strains, where   is an effective Poisson ratio. For 2D tension-

torsion histories with stress paths defined by the normal and shear components sx and 

xy, then sy  sz  xz  yz 0, while y  z   ∙x and  xz  yz  0. In this case,  

1 x 2 3 x y 4 5s ,    s 0 ,   s 3 ,   s 0 ,   s 0s           (2) 

y z y z x y

1 x x 2 3 4 5e ( 1 ) ,   e 3 0 ,   e 3 ,   e e 0
2 2 2

    
  

 
           (3) 

Since only s1, s3, e1, and e3 are not null, the stress or strain paths of such tension-

torsion histories can be represented in the 2D deviatoric diagrams s1  s3 or e1  e3, as 

shown in Fig. 2. The tension-torsion version of the MOI method assumes that the 2D 



 

load path, which is represented by a series of points (s1, s3) or (e1, e3) that describe the 

stress or strain variations along it, is analogous to a homogeneous wire with unit mass. 

The mean component of the path is assumed to be located at the center of gravity of this 

hypothetical homogeneous wire shaped as the load history path. Its center of gravity is 

located at the perimeter centroid (s1m, s3m) or (e1m, e3m) of the stress or strain paths, 

calculated from contour integrals along it 

1 m s 1 3 m s 3 ss ( 1 p ) s | d s |,    s ( 1 p ) s | d s |,    p | d s |                (4) 

1 m e 1 3 m e 3 ee ( 1 p ) e | d e |,    e ( 1 p ) e | d e |,    p | d e |                (5) 

where | d s |  and | d e |  are the lengths of infinitesimal segments of the stress and strain 

paths, while ps and pe are the respective path perimeters, see Fig. 2.  
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Figure 2. Stress path of a 2D tension-torsion load history in the deviatoric s1  s3 diagram 

(left) and its corresponding strain path in the e1  e3 diagram (right), both assumed as 

homogeneous wires with unit mass. 

The MOI method calculates the path-equivalent range of a stress or strain path from 

the mass moment of inertia (MOI) of its corresponding unit-mass homogeneous wire. 

But instead of using the axial MOI of the wire, which is calculated about an axis, the 

Polar MOI (PMOI) is adopted instead, which represents the distribution of the path 

about a single point, its perimeter centroid. The PMOI of the stress or strain path about 

the perimeter centroid is then obtained from the contour integral of the square of the 

distance rm between each point in the path and the path centroid, see Fig. 2, resulting in   

     o r           
2 2

m m

2 2 2 2
p 1 1 m 3 3 m 1 1 m 3 3 m

s e

r r

1 1
I ( s s ) ( s s ) | d s | ( e e ) ( e e ) | d e |

p p
(6) 

The path-equivalent ranges are assumed proportional to the radius of gyration of the 

path, which is equal to the square root of the PMOI of the unit-mass wire. This 



 

hypothesis is physically sound, since history path segments further away from the mean 

component contribute more to the path-equivalent range, in the same way that wire 

segments further away from the perimeter centroid contribute more to the PMOI of an 

imaginary homogeneous wire. The path-equivalent stress and strain ranges become then 

M ises M ises p o r  ( 1 ) 1 2 Is             (7) 

 

THE MOI METHOD FOR THE CRITICAL-PLANE APPROACH 

 

The MOI method has been shown experimentally to effectively estimate path-

equivalent ranges [10-11]. For convex stress or strain paths, it essentially reproduces the 

good predictions from the Maximum Rectangular Hull method [7]. Moreover, for non-

convex paths such as cross or star-shaped paths, the MOI method results in better path-

equivalent ranges than any convex-enclosure method. 

The 6D generalization of the MOI method can be directly used with invariant-based 

multiaxial fatigue damage models like Sines and Crossland. However, models based on 

stress or strain invariants like von Mises should not be used to make multiaxial fatigue 

damage predictions for directional-damage materials, like most metallic alloys, which 

fail due to a single dominant crack. 

According to the critical-plane approach, the MOI method would lead to significant 

errors if directly applied to the original NP deviatoric histories, because the resulting 

ranges would be calculated on different planes at different points in time, not on the 

critical plane where the microcrack is expected to initiate under multiaxial fatigue loads. 

Instead of projecting the original 6D stress or strain history onto 5D deviatoric spaces, it 

should be projected onto the several candidate planes before proceeding with the fatigue 

damage analysis. 

As discussed before, for directional-damage materials, the MOI method would only 

be needed for a B45(S) microcrack subjected to mixed Mode II-III loading, in the 

search for the angle  of a candidate plane (,   45
o
) loaded by a projected NP history 

combining in-plane shear stresses A(, 45
o
) or strains A(, 45

o
) and out-of-plane shear 

stresses B(, 45
o
) or strains B(, 45

o
). To do so, the load history of the two shear 

stresses or strains acting parallel to each B45 candidate plane first needs to be 

represented in a 2D B  A or B  A diagram, see Fig. 3, where a 2D rainflow followed 

by the 2D MOI method can be applied.  

For each rainflow-counted path, the path perimeters p or p, the mean shear 

components (Bm, Am) or (Bm, Am), the associated PMOI Ip, and the resulting path-

equivalent ranges  and  from the MOI method become 

2 2 2 2

B BA A
p d d ,    p d d                  (8) 

2 2 2 2
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( 1 p ) d d ,    ( 1 p ) d d                     (9) 



 

2 2 2 2
B m B A m AB BA A

( 1 p ) d d ,    ( 1 p ) d d                   (10) 

o r
2 2 2 2

p B B m A A m BA

2 2 2 2
p B B m A A m BA

1
I ( ) ( ) d d

p

1
I ( ) ( ) d d

p





     

     

       
 

       
 





    (11) 
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Figure 3. Stress path of a 2D shear-shear load history on a candidate plane (left) and its 

corresponding strain path (right), both assumed as homogeneous wires with unit mass. 

 

For a polygonal path such as the one in Fig. 4, which is usually the case in discrete 

computational implementations of the MOI method, the above equations could be 

applied by changing the integrals into summations, and infinitesimal increments dB, 

dA, dB, or dA into finite Bi, Ai, Bi, or Ai. If each polygon side i has length 

2 2
B A i B iA i

        or 2 2
B A i B iA i

       , centered at (Bmi, Ami) or (Bmi, Ami), 

and associated with a mean normal smi or mi, then  
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which are calculated adding all path-segment contributions of a given cycle (or half-

cycle), whose path-equivalent range is then obtained from Eq. (12). A computer 

implementation of the critical-plane version of the MOI method for polygonal paths is 

shown in the Appendix, based on the Matlab environment [12]. 
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Figure 4. Polygonal shear-shear stress (left) or strain (right) paths on a candidate plane. 

 

 

CONCLUSIONS 

 

In this work, a critical-plane version of the MOI method has been presented to allow the 

calculation of path-equivalent shear ranges for projected shear-shear stress or strain 

histories on candidate planes, in multiaxial fatigue problems that must be treated by 

critical-plane approaches. The combination of both out-of-plane (B or B) and in-plane 

(A or A) shear components into an equivalent range ( or ) is fundamental to 

correctly account for shear damage on B45(S) candidate planes. The MOI method is a 

computationally-inexpensive and robust procedure to calculate the initiation lives of 

microcracks under combined in-plane and out-of-plane shear loads. The MOI method 

can estimate both path-equivalent ranges and mean components with a much better 

coherence than any convex-enclosure method. Moreover, since it accounts for the 

contribution of every single segment of the path, the MOI method can deal with 

arbitrarily shaped multiaxial load histories without losing information about such shapes. 
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APPENDIX 

 

Matlab implementation of the MOI method for a shear-shear stress history. For shear-

shear strain histories, it is enough to replace all shear stress with shear strain data. 
 

%INPUTS: 

tauA = [0 100 100 0  0]; %single event, e.g. rectangular path in MPa 
tauB = [0 0   50  50 0]; 
 

perimeter = 0; tauAm = 0; tauBm = 0; Iorigin = 0; %initialize variable 
for i = 1:(size(tauA,2)-1) %for all elements of load path 
   dtauA = (tauA(i+1)-tauA(i)); %increment of shear A 
   dtauB = (tauB(i+1)-tauB(i)); %increment of shear B 
   dtau = sqrt(dtauA^2+dtauB^2); %length of the shear increment 
   perimeter = perimeter + dtau; %perimeter of the entire shear path 
   tauAc = (tauA(i+1)+tauA(i))/2; %centroid of the shear A segment 
   tauBc = (tauB(i+1)+tauB(i))/2; %centroid of the shear B segment 
   tauAm = tauAm + dtau*tauAc; %mean of the shear A path 
   tauBm = tauBm + dtau*tauBc; %mean of the shear B path      
   Iorigin = Iorigin + dtau*(dtau^2/12 + tauAc^2 + tauBc^2); %PMOI 
end 
Iorigin = Iorigin/perimeter; %polar MOI requires division by perimeter 
tauAm = tauAm/perimeter; %mean component of the shear A path 
tauBm = tauBm/perimeter; %mean component of the shear B path 
I = Iorigin - (tauAm^2 + tauBm^2); %PMOI with respect to path mean 
 

%OUTPUTS: 

mean_component = [tauAm tauBm] %output mean component of 2D shear path 
equivalent_range = sqrt(12*I)  %output equivalent range 


