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ABSTRACT. Materials can be classified as shear or tensile sensitive, depending on the 

main fatigue microcrack initiation process under multiaxial loadings. The nature of the 

initiating microcrack can be evaluated from a stress scale factor (SSF), which usually 

multiplies the hydrostatic or the normal stress term from the adopted multiaxial fatigue 

damage parameter. Low SSF values are associated with a shear-sensitive material, 

while a large SSF indicates that a tensile-based model should be used instead. For 

tension-torsion histories, a recent published approach combines the shear and normal 

stress amplitudes using a SSF polynomial function that depends on the stress amplitude 

ratio (SAR) between the shear and normal components. Alternatively, critical-plane 

models calculate damage on the plane where damage is maximized, adopting a SSF 

value that is assumed constant for a given material, sometimes varying with the fatigue 

life (in cycles), but not with the SAR, the stress amplitude level, or the loading path 

shape. In this work, in-phase proportional tension-torsion tests in 42CrMo4 steel 

specimens for several values of the SAR are presented. The SSF approach is then 

compared with critical-plane models, based on their predicted fatigue lives and the 

observed values for the studied tension-torsion histories.  

 

 

INTRODUCTION  

 

Initiating microcracks under multiaxial loading are usually sub-divided into shear or 

tensile types [1]. The dominant fatigue mechanism in so-called shear-sensitive materials 

is Mode II microcrack nucleation in shear, in directions that maximize the ranges of the 

shear components, with the normal components only playing a secondary role. 

However, other materials may initiate fatigue cracks on planes of maximum tensile 

strain or stress ranges, such as 304 stainless steel under certain load histories, and cast 

irons; in this case, even if the microcrack nucleates in shear, its so-called initiation life 

(which always includes some microcrack propagation) is controlled by its growth in a 

direction perpendicular to the maximum principal stress or strain. Moreover, a material 

can be shear-sensitive for short, but tensile-sensitive for long fatigue lives, a behavior 

that can depend as well on the loading type. 



 

The shear or tensile nature of the initiating microcrack can be evaluated from a stress 

scale factor (SSF), which usually multiplies the hydrostatic or the normal stress term 

from the adopted multiaxial fatigue damage parameter. Low values of the SSF indicate 

a shear-sensitive material, which usually requires shear-based damage models such as 

Findley’s [2] or Fatemi-Socie’s [3]; on the other hand, large SSF values indicate that a 

tensile-based model should be used instead, like Smith-Watson-Topper’s [4].  

The approach proposed by Anes et al [5], for tension-torsion histories, combines the 

shear and normal stress amplitudes applied on the specimen cross section, using a SSF 

polynomial function that depends on the SAR between shear and normal components. 

Alternatively, the critical-plane approach calculates damage on the plane where damage 

is maximized (not on the plane where the load is applied), while adopting a SSF value 

that is assumed constant for a given material, sometimes varying with the fatigue life (in 

cycles), but not with the SAR, stress amplitude level, or loading path shape. 

In this work, in-phase proportional tension-torsion tests are conducted in 42CrMo4 

steel specimens for several values of the SAR. The SSF and critical-plane approaches 

are then compared, based on their predicted fatigue lives and the experimentally 

measured ones. 

 

 

SSF EQUIVALENT SHEAR STRESS APPROACH 

 

The SSF equivalent shear stress approach, proposed in [5], considers that both the SAR 

and the stress loading level significantly influence the material fatigue strength. Such 

effects were accounted for through the SSF function, which transforms an axial damage 

into a shear one. With this equivalent stress, it is also possible to estimate fatigue lives 

Nf, using the uniaxial shear stress SN curve represented as 
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where σa and τa are respectively the amplitude of the axial and shear component of the 

tension-torsion loading, and λ  tan
1

(τa/σa) is the SAR. The constants from “a” to “i" 

are determined through experimental tests, therefore the SSF function is a material 

fatigue property and must be determined from experimental tests. 

 

 

CRITICAL-PLANE APPROACH 

 

The critical-plane approach assumes that fatigue lives can be calculated from the 

damage at the critical plane of the critical point. It also assumes that damage on all other 

planes do not influence the initiation of the microcrack. Here, the main calculation 

challenge is to compute the accumulated damage in many candidate planes at the 



 

critical point, to find the direction of the critical one where it is maximized (and thus 

where the crack is expected to initiate). This search is very much simplified for in-phase 

proportional constant amplitude load histories, such as the ones studied in this work. 

 

Findley’s shear model 

Findley explicitly introduced the critical plane idea [2], proposing a stress-based fatigue 

damage model applicable to multiaxial loads. Such models assume that the fatigue crack 

initiates at the component’s critical point on its critical plane, where a suitable damage 

parameter is maximized. This is physically sensible and considers in a very reasonable 

way how the fatigue cracking process works under multiaxial loads in those materials.  

Findley assumed fatigue damage is caused by the parameter [/2  Fmax], which 

combines the shear stress range /2 acting on the critical plane with the peak of the 

normal stress perpendicular () to that plane max, during the considered load event. In 

this way, fatigue cracking would take place at the critical point in directions where this 

reasonable damage parameter is maximized. 

For a Case A candidate plane, which is perpendicular to the free surface and makes 

an angle θ with the x axis, Findley’s infinite-life criterion (for multiaxial fatigue under 

any type of loading) is given by the maximization problem  
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where Findley’s coefficient F and shear fatigue limit βF must be calibrated from 

measurements in at least two types of fatigue tests, e.g. under rotatory bending and 

cyclic torsion, or else under push-pull tests at R  min/max  0 and R 1. 

Findley’s infinite-life model from Eq. 3 can be extended to finite-life calculations 

using a shear version of Wöhler’s curve, equating Findley’s fatigue limit βF with the 

torsional fatigue limit L, resulting in 
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where τc and bτ are the torsional strength coefficient and exponent, respectively, 

calibrated under pure torsion. For the studied in-phase tension-torsion history, Findley’s 

predicted fatigue life NF (in cycles) becomes after some algebraic manipulation 
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Therefore, NF can be obtained as a function of σa and τa. 

 



 

Smith-Watson-Topper’s tensile model  

Findley’s or Fatemi-Socie’s model are not appropriate for tensile-sensitive materials, 

where Case A tensile cracks initiate. In these materials, the fatigue initiation life N of 

such cracks must be correlated with a damage parameter based on a normal range  

(not on a shear range ), combined with the peak stress max parallel to  to account 

for mean/maximum stress effects. 

The multiaxial version of Smith-Watson-Topper’s (SWT) model [4] is particularly 

useful for calculating the fatigue damage of such materials, especially if the propagation 

phase of the microcracks (still within the so-called crack initiation stage), which is more 

sensitive to the normal stresses, is dominant over its shear-controlled initiation. The 

multiaxial version of SWT’s equation for Case A tensile cracks can be written as 
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where σc, εc, b and c are Coffin-Manson’s material parameters. 

In high-cycle fatigue calculations, an elastic version ESWT of the SWT model can 

be adopted. Under linear-elastic uniaxial conditions, the plastic term b c
c c (2N)    in 

Eq. 6 can be neglected, while Hooke’s law gives ()/2  E()/2, resulting in  
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This equation can be simplified in the studied proportional history (which has zero 

mean stresses), because in this fully-alternate case the peak normal stress max() 

perpendicular to a Case A plane along θ is equal to the normal amplitude ()/2. 

Therefore, the ESWT equation becomes Wöhler’s curve using Basquin’s formulation: 
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Thus, the damage parameter to be maximized in the ESWT model simply becomes 
2

a a( ) / 2 | cos sin 2 |         for a fully-alternate cyclic loading. Deriving this 

expression and equating it to zero, the critical-plane angle θESWT with respect to the x 

axis, represented in the first quadrant 0º ≤ θ ≤ 90º, is obtained from 

 

a
a a ESWT p

a

2
2cos sin 2 cos 2 0   tan 2 tan 2 2 tan


              


       (9) 

 

where λ is the SAR from the SSF model [5], and θp is the principal direction from the 

first quadrant. Not surprisingly, θESWT is one of the fixed principal directions θp of such 



 

proportional tension-torsion loadings. On this principal plane, the damage parameter is 

maximized, resulting in the principal stress equation for the normal and shear 

amplitudes σa and τa:  
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From the definition λ  tan
1

(τa/σa), it follows that τa = σatan(λ), thus this maximized 

damage parameter on the θESWT plane can be expressed as a function of σa and λ: 
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Assuming ESWT’s model is able to predict crack initiation, the above expression 

would explain why the SSF can be represented as a function of σa and λ, however 

requiring a fifth-order polynomial function to approximately reproduce such a non-

linear expression. Finally, from the ESWT equation it follows that the predicted fatigue 

life NESWT (in cycles) is 
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RESULTS AND DISCUSSION 

 

Material and loading paths 

The reasoning derived in the previous sections is applied to the experimental results 

available in Anes et al. [5] for multiaxial fatigue tests carried out in low-alloy steel 

42CrMo4. These metal alloys are heat-treated by austenitizing, quenching, and 

tempering to improve their mechanical properties. The chemical composition and the 

monotonic and cyclic properties of 42CrMo4 are available in [5, 6]. 

Fatigue tests are carried out through a servo-hydraulic tension-torsion machine under 

stress control at room temperature, applying proportional loading paths. In order to 

perform the SSF mapping, five different proportional loading paths are selected with 

different SAR λ. Although the SAR is an important fatigue variable, the stress level also 

has a high influence on the fatigue damage mechanisms. These two variables will be 

used in the SSF mapping. 

 

Life prediction 

The tested 42CrMo4 steel has Young’s modulus, Coffin-Manson’s fatigue strength 

coefficient and exponent, and Coffin-Manson’s fatigue ductility coefficient and 

exponent presented in Freitas et al [6]. But the ESWT model adopts an elastic version of 



 

Coffin-Manson’s equation, which neglects its plastic term. Therefore, the resulting 

purely-elastic calibration requires a better fit of the experimental data to also account for 

lower fatigue lives. From the normal and shear fittings, it is possible to write: 

 
b 0.0934

a c (2N) 1654 (2N)       and  b 0.0623
a c (2N) 911 (2N)        (13) 

 

Then, from Findley’s calibration for Case A cracks, from Eq. 3, its constants can be 

determined: αF = 0.668 and βF = 420.9MPa. 

Figs. 1-3 present a comparison between the observed fatigue lives Nobsv and the NSSF, 

NESWT and NF predicted by the SSF, ESWT and Findley’s methods, respectively, for 

SAR λ = 0º (uniaxial), 30º, 45º, 60º and 90º (pure torsion). As observed in Fig. 1, the 

polynomial fitting of the SSF expression was well performed, allowing a good match 

between Nobsv and NSSF for all cases. 
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Figure 1. Comparison between the observed fatigue lives Nobsv and the fitted NSSF. 

 

As shown in Fig. 2, ESWT’s critical-plane method results in reasonable fatigue life 

predictions, except for the pure torsion (λ = 90º) case. This result suggests that the pure 

torsion history involved significant shear damage, as expected, however ESWT’s model 

only accounts for tensile damage. 

Findley’s critical-plane method also results in reasonable fatigue life predictions, 

except for the λ = 30º and λ = 45º cases, as shown in Fig. 3. This suggests that these 

histories involved significant tensile damage, however Findley’s model only accounts 

for shear damage. The maximum normal stress max influences Findley’s shear damage 

parameter, however no measure of the normal range  perpendicular to the critical 

plane is considered. Nevertheless, Findley’s predictions for the uniaxial case are 

surprisingly good, indicating that at least in this in-phase zero-mean proportional case 

the max term was able to capture the damaging  effects. 
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Figure 2. Comparison between the observed fatigue lives Nobsv and the predicted NESWT. 
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Figure 3. Comparison between the observed fatigue lives Nobsv and the predicted NF. 

 

Figure 4 shows critical-plane predictions based on ESWT’s tensile model applied to 

the predominantly tensile cases λ = 0º (uniaxial), 30º, and 45º; and on Findley’s shear 

model to the shear-dominated cases λ = 60º and 90º (pure torsion). Notice that the 

prediction scatter is similar to the one from the SSF method. However, such critical-

plane method calculations have a greater prediction potential, because they were only 

based on curve fittings of the uniaxial and pure-torsion experiments, while the 

polynomial from the SSF method required data calibration from all five tests.  
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Figure 4. Comparison between the observed lives Nobsv and the NESWT or NF predicted 

by critical-plane methods, according to dominance of normal or shear applied loads. 

 

 

CONCLUSIONS 

 

In this work, it was shown that both critical-plane and SSF approaches have the 

potential to predict multiaxial fatigue lives, at least for in-phase proportional loadings. 

Findley’s model neglects tensile damage, while the ESWT model neglects shear 

damage, which explains why their performance was not very good for all considered 

load histories. In its current form, the SSF method does not include mean/maximum 

stress effects, therefore experiments with zero mean loads were chosen to evaluate its 

performance. The SSF method resulted in a better fit of the experimental data, however 

it requires more calibration tests (to fit its 5
th

-degree polynomial) than the critical plane. 
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