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Abstract: This paper presents a procedure for the determination of the analytical form of dynamic models for bicycles 
and/or motorcycles through the characterization of the power flow between its components (driver, handlebars and 
frame, suspension and wheels/tires, engine, transmission and brakes) including the influence of gyroscopic effect and 
the interactions between the longitudinal, lateral and vertical dynamics of those vehicles. From the kinematic relations 
associated to the velocities of the degrees of freedom of each part of the vehicle (driver, handlebar, frame, power train, 
suspension mechanisms and tires/wheels) their links are determined. Considering the power flow between the degrees 
of freedom and also between then and the subsystems elements, the equilibrium relations between the forces and 
torques are determined. Finally, taking the inertial, stiffness and damping effects of the various system components 
into consideration, the equations of motion or state equations that characterize the dynamics of the vehicles are 
analytically obtained, represented in any reference frame, local or global. This procedure is modular and can be 
applied to smaller model subsystems (e.g. with fewer components and degrees of freedom). These will later be coupled, 
also through the power flow, to generate the model of a new subsystem representing the dynamic characteristics of the 
former system and their interactions. This approach adopts the same basis, concepts and elements of the Bond Graph 
Technique, without its symbolic notation and graphical representation. As an illustration, the procedure is applied for 
modeling the longitudinal, vertical and lateral coupled dynamics of a motorcycle, with the purpose of analyzing their 
stability in the vertical and lateral plane.  
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1. INTRODUCTION 
 
The development of analytical models for land vehicles with single track (motorcycles and bicycle), unstable by 

nature, has been handled by some few authors, mainly due to the extremely particular characteristics and to its 
complexity, as it involves diverse and different interactions among their subsystems (driver, handlebar and frame, 
suspension and wheels / tires, engine, transmission and brakes), besides a phenomenon of dynamical mechanical nature, 
which is the gyroscopic effect, which in itself is a complicating factor. 

This paper presents the preliminary results of a procedure for the complete representation of such vehicles, starting 
from the analytical models of its subsystems’ modules, simpler and easier to build and analyze, which can be coupled to 
build a system model involving more than one set of components, according to the analyst’s interests, as long as certain 
compatibility constraints are met. 

This procedure is based on the Bond Graph Technique and all its potential for the development of modules’ models. 
However the formalism and the graphical representation of Bond Graphs are no longer needed once the model of one 
module is built, as a function of the power flow and of the causality relations among their internal elements and mainly 
as a function of the elements in the power input and power output ports. Thus the module can be coupled to other 
modules whose models were created observing such restrictions and therefore the analytical model of a system 
constructed from multiple subsystems may be easily established by the consistent combination in terms of power and 
causality, avoiding the necessity of apply the formal treatment of the Bond Graph Technique. 
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Figure 1 shows the various typical subsystems of a ground vehicle of motorcycle/bicycle type, and the variables 

that characterize the interaction between them. The developed modules employ exactly the structure and the input and 
output variables shown. 

 

 
 

Figure 1. Ground Vehicle as a Dynamic System.  
Subsystems Interaction in a Motorcycle. 

 
In the following developed models, the driver’s attitudes will not be considered, however, if necessary, the same 

approach can be applied and, once the representation of typical human movements in driving that vehicle is obtained, its 
inclusion in the appropriate degrees of freedom and its subsequent interaction as an additional subsystem are 
immediately established. The models will be described in the sequence considered as the most natural and easiest to 
understand, and in some subsystems the mathematical representations will be simplified or even omitted, since the 
interest of this article lies precisely in the description of the modules’ determination procedure and in their interactions, 
from which the application of the formal treatment of Bond Graph Technique enables us to easily find the final 
analytical form of the model of each of the modules and of the subsystems formed by its combinations. 

Figures 2 and 3 illustrate the motorcycle/bicycle multibody system with its typical bodies, the references adopted to 
describe their movements, their main angular velocities and geometric parameters, for identification of the notation used 
in the models’ development. The other variables of the various subsystems will be defined in the following items, where 
necessary. 

 

 
 

Figure 2. Motorcycle as a Multibody System. 
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Figure 3. References, Angular Velocities and Geometric Parameters in the Motorcycle System. 
 

2. LONGITUDINAL DYNAMICS 
 
Initially the motorcycle’s longitudinal dynamics model is presented, as it is the simplest, common to any vehicle 

and easy to understand. The Bond Graph (Fig. 4a) highlights the main system elements or components, the power flow 
among them (indicated by the half-arrow direction), and its cause and effect relations (represented by the effort sense 
through the vertical causal bar). The Power Flow Graph (Fig. 4b) is a compact way of representing the same system, in 
which only the components and their input and output variables are shown, such as the commands in the engine and in 
the brakes (δm, δd e δt), the inserted gear transmission ratio (Ni) and the variables of effort (torques and forces) and flow 
(angular and linear velocities) with the respective links of cause and effect in each of them. 

The motor is represented just by its performance curve, obtained, for example, from experimental testing on a 
dynamometer, linking the command (δm) issued by the driver with the input angular velocity (ωm) and the output torque 
(Tm). To address as fully as possible the power consumption in the system, losses in the transmission and wheel 
bearings (bT and bD) were included, as well as the slip of the rear tire (in traction), which may be modeled by any 
relation of interest, linear or non-linear, the front tire/wheel load and resistive forces (FR) due to aerodynamic drag, to 
the slopes (route angle θvia) and to the friction in the tire rolling (μr). The brake subsystem is not detailed, only the 
braking commands and the torques generated in the front and rear wheels are considered. Table 1 at the end of the 
article lists the parameters used in all treated models. 

Neglecting the slip on the rear tire in traction, there is no independent longitudinal tire force generated by the slip in 
this element, and FT is directly related to TT, as well as ωt and vx. Assuming also no wheel locking during any braking 
condition, that is, that the maximum frictional force (μN) will not be exceeded in any tire, from the relations associated 
to the representations of Fig. 4, properly handled, the mathematical model that characterizes the longitudinal dynamics 
of a motorcycle (or bicycle), having as input the imposed commands on the propulsion element and on the brakes, and 
as outputs the acceleration, velocity and displacement of the vehicle, is given by 
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where the equivalent mass and dissipation are given by 
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and complementary relations that enables determining the normal forces (Nd and Nt) at the contact of the tires with the 
ground at each instant of time will be obtained from the interaction between models of Longitudinal and Vertical 
Dynamics, which will be treated below. Note that if the rolling friction on the tires is neglected and there is no braking, 
the normal forces do not interfere on the vehicle behavior in traction (speed boost), in this model which does not 
consider rear tire slip. It should be noted that models including the discarded effects can be easily obtained from the 
presented treatment. 

 
(a) Bond Graph 

 

 
(b) Power Flow Graph. 

 
Figure 4. Model for Longitudinal Dynamics. 

 
3. VERTICAL DYNAMICS  

 
Figure 5 shows the physical model, the Bond Graph and the Power Flow Graph for a motorcycle vertical dynamics, 

considering the typical geometries of the front and rear suspensions. If a physical model is adopted in which there is no 
geometry of suspensions, i.e. the lines of action of the springs and dampers are vertical, aligned with the displacement 
of the non-suspended masses, and there is no dissipation in the tires, the resulting Power Flow Graph is that presented in 
Fig. 5c, since this representation does not need the "internal" detailed description of the system components. In that 
case, as 
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the mathematical model in the form of equations of motion used to represent the vertical dynamics in the XZ plane of a 
motorcycle on passive (conventional) suspension moving on a road with uneven ground, ripples or roughness, relating 
the inputs (Fz, My, Fd, Ft, z0d, z0t) with their degrees of freedom (z, θ, zd, zt) is given by 
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where 
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and  z0d(t) =  v0d(t) dt  and  z0t(t) =  v0t(t) dt  represent the ground conditions. 
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(a) Physical Model with Suspensions’ Geometry. 

 

 
(b) Bond Graph with Suspensions’ Geometry. 

 

 
(c) Power Flow Graph. 

 
Figure 5. Vertical Dynamics Model. 
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4. INTEGRATION OF LONGITUDINAL AND VERTICAL DYNAMICS  

 
Figure 6a shows a Bond Graph for the coupling/integration of Longitudinal Dynamics (not detailed) and Vertical 

Dynamics (represented by the vehicle without geometry of suspensions, according to the equations in the previous 
item). The link between the two models is given by the longitudinal velocities of the tires’ contact points with the 
ground, in which the traction and/or braking forces (FT e FD) are applied. Figure 6b shows the Power Flow Graph of 
both coupled subsystems and its coupling variables. 

 

 
(a) Bond Graph.                                                     (b) Power Flow Graph. 

 
Figure 6. Model for the Integration of Longitudinal and Vertical Dynamics. 

 
Disregarding the influence of the suspensions and the tires’ deformations and dissipations in the vertical direction, 

the normal forces on the tire contact with the ground are obtained from the models of Fig. 6 and Fig. 4 combined, and 
are given by 
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5. LATERAL DYNAMICS 

 
Figure 7 illustrates the physical model and the main variables of the handlebar subsystem and the Bond Graph 

which enables us to obtain the equations that describe its rotational movement (δ) as a function of the driver’s torque 
(Tg), including the inertia (Jg) and the dissipation in the fork bearing (bg), the front wheel inertia ( d

zJ ) in the vertical 
direction, and the restoring torque due to the trail and to the front lateral force ( d

yF ) generated in the tire contact with the 
ground. This subsystem is responsible for the excitation of the Lateral Dynamics and for the directional control of the 
motorcycle/bicycle, especially if driver's attitudes (position of his body in relation to the vehicle) are not considered. 

Figure 8 shows the physical model, the variables, the parameters and the Bond Graph for the lateral dynamics 
treatment, including its interaction with the longitudinal dynamics, since such a problem is usually described and solved 
in the vehicle local reference, requiring that the equations governing their movements are properly corrected due to the 
adoption of a non-inertial frame. The model considers only yaw rate of the chassis as significant, disregarding the 
influence of its roll and pitch rates. 
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 (a) Physical Model and Variables.                             (b) Bond Graph. 

 
Figure 7. Handlebar Subsystem.  

 

 
 (a) Physical Model and Variables. 

 

 
 (b) Bond Graph 

 
Figure 8. Lateral Dynamics 

 
6. GYROSCOPIC COUPLING 

 
Figure 9 shows the Bond Graph for the coupling of a rigid body’s angular velocities on local reference frame, for a 

symmetric body, a simple way to treat the gyroscopic effect and its influence on a vehicle movement such as a 
motorcycle/bicycle. All couplings of this nature that are crucial for the understanding and the analysis of this system, 
were represented by the Fig. 9 structure, including the necessary relationships among the variables involved in the 
various bodies/subsystems where such an influence exists (frame, rear wheel, front wheel and handlebar). 

From the Bond Graph of Fig. 9, the Euler equations can be readily determined,  
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and the problem of representation, understanding, interpretation, analysis and simulation of the gyroscopic effect can be 
solved in the transient and in the permanent regimes for each body associated with this structure or for a combination of 
bodies, as will be addressed below. 

 

 
 

Figure 9. Bond Graph for the Rigid Body Coupling of Angular Velocities on a Local Reference Frame. 
 

7. INTEGRATION OF LONGITUDINAL, VERTICAL AND LATERAL DYNAMICS 
 

Figure 10 shows the integration of the several subsystems previously treated with the main motorcycle’s structures 
(chassis and front and rear wheels) represented by Bond Graph in the previous item, where variables are associated with 
the transfer of power among them. With the modules developed and tested separately, the "assembly" of Fig. 10 enables 
us to visualize the complete system, as well as to determine analytically its mathematical model by the oriented 
manipulation of the equations of each one of its components or combinations of them. Furthermore, it is relatively 
simple to create any sub-model, starting from the union of the modules’ models of interest. 

We note that the link between the chassis and the wheels rolls is explained in the model of Fig. 10, and it would 
also be possible to explain the influence of its yaw forcing the wheels in that direction, what however was not included 
in order to simplify the representation. 

 

 
 

Figure 10. Mixed Bond and Power Flow Graph for Motorcycle System  
with Coupling for Rotational Movements. 
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8. CONCLUDING REMARKS 

 
In order to simplify the presentation of the models, transformations of reference were purposefully omitted. It 

should be considered that these operations are implicit in the relationships among some of the variables of the various 
subsystems, or in some cases that the hypothesis of small rotation angles according to the nature of the expected 
movement was adopted, as in the case of the frame pitch over the suspensions. 

The full model of the motorcycle system based on the presented methodology is being established, but tests with 
the modules and some of their combinations have been or are being carried out, and the results indicate that the 
procedure adopted is consistent and well-founded. 

Table 1 lists the parameters (with the adopted symbols and their SI units) employed in the developed mathematical 
models, whose numerical values are being determined in such a way that the system dynamics can be resolved and 
analyzed. 
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Table 1. Parameters used in dynamic models of the motorcycle/bicycle system. 

Parameter Symbol  Unit 

Total mass (sprung + unsprung) – Longitudinal Dynamics m kg 
Sprung mass (frame, handlebar + driver) – Vertical Dynamics m kg 
Mass (unsprung) of the set of front wheel-tire md kg 
Mass (unsprung) of the set of rear wheel-tire mt kg 
Efective radius of front wheel-tire (with ground contact) rd m 
Efective radius of rear wheel-tire (with ground contact) rt m 
Transmission ratio (i = gear)  Ni, i=1...n -- 
Transmission time variation rate 

iN  1/s 

Distance from the front axle to the center of mass (bike + driver) ld m 
Distance from the rear axle to the center of mass (bike + driver) lt m 
Distance between axles l = ld + lt m 
Height of mass center (bike + driver) from the ground h m 
Coefficient of rolling resistance on the tires  μr -- 
Coefficient of tire-ground static friction (adhesion limit) μ -- 
Coefficient of dissipation in front wheel bearing bD Nm/rad/s 
Coefficient of dissipation in rear wheel bearing and transmission bT Nm/rad/s 
Vehicle pitch moment of inertia Jy kg.m2

Stiffness of the suspensions springs kd e kt N/m 
Damping in suspensions’ shock absorbers bd e bt N/m/s 
Stiffness of the tires kpd e kpt N/m 
Damping in the tires bpd e bpt N/m/s 
Cross-sectional area of the vehicle + driver body (in a position) S m2

Drag coefficient of the vehicle + driver body (in a position) CD -- 
Specific mass for the air (at sea level) ρ kg/m3

Angle of the handlebar axis in relation to the vertical (head angle) θg rad 
Trail t m 
Acceleration of gravity g m/s2

Engine spin moment of inertia  Jm kg.m2

Rear wheel/tire spin moment of inertia  JT kg.m2

Front wheel/tire spin moment of inertia JD kg.m2

Route angle  θvia  rad 
Equivalent Mass mE kg 
Equivalent coefficient of dissipation  bE N/m /s 
Engine coefficient of dissipation bm Nm/rad/s 
Distance from the rear superior anchorage point to the center of mass t

al  m 

Distance from the front superior anchorage point to the center of mass  d
al  m 

Distance from the articulation of inferior suspension arm to the center of mass t
bl  m 

Distance from the rear inferior anchorage point to the center of mass  t
sl  m 

Angle of the rear suspension axis in relation to the vertical  αt rad 
Angle of the front suspension axis in relation to the vertical  αd rad 
Fork moment of inertia Jg kg.m2

Coefficient of dissipation in the fork bearing  bg Nm/rad/s 
Moment of inertia of front wheel/tire in vertical direction d

zJ kg.m2

Vehicle yaw moment of inertia  Jz kg.m2

Vehicle roll moment of inertia Jx kg.m2

  


