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Abstract. This paper presents a procedure for the determination of the analytical form of dynamic models of parallel - 

or closed kinematic chains - mechanisms through the characterization of the power flow between its components. From 

the geometrical relations associated to the displacement of their degrees of freedom, the kinematic relations associated 

to their velocities are determined. Considering the power flow between the degrees of freedom, and also, if necessary, 

between these and the actuating elements (e.g. electric motors or hydraulic actuators) the equilibrium relations of the 

forces and torques are obtained. Finally, accounting for inertial effects of system components and, if necessary, the 

stiffness and damping effects, the equations of motion or the state equations are analytically determined and 

represented in any reference frame, local or global. This approach adopts the same fundamentals, concepts and 

elements of the Bond Graph Technique. As an illustration, the procedure is applied in a parallel planar mechanism 

with three degrees of freedom. The analytical equations lead to a more efficient simulation process and real-time 

control of these systems.  
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1. INTRODUCTION 

 

Mechanisms are mechanical devices composed of links connected by joints, forming open or closed mobile chains. 

Mechanisms are used in almost every machine to transfer motion or force. Conveyors, part handling systems, printers 

and vehicle suspension systems are some of the mechanisms applications (Chironis, 1991).  

 

1.1. Parallel mechanisms 

 

Mechanisms are essentially (but not exclusively) made up of multiple rigid bodies that have relative motion 

between themselves. Each rigid body is connected through a joint to one or more bodies, wherein the serial sequence of 

connected bodies is called kinematic chain. Open kinematic chains have no restrictions on their ends, as closed chains 

have restrictions on both ends. Figure 1 shows the differences between the types of kinematic chain. In this work, the 

focus will be given on the study of mechanisms with closed kinematic chains. 

Parallel systems have great advantages when compared to serial manipulators, as better stability and accuracy, 

ability to handle relatively large loads, high velocities and accelerations and low power operation. The design of parallel 

manipulators dates back several decades ago, in 1962, when Gough and Witehall designed a parallel system to be used 

in a universal test machine. Stewart, in 1965, designed a platform to be used in flight simulators. Since then, there have 

been numerous studies by many researchers. Figure 2.a shows the first flight simulator with a structure of six degrees of 

freedom and Figure 2.b shows a parallel manipulator used in parts assembling, also with six degrees of freedom (Tapia 

et al., 2009). Parallel manipulators can also be classified as planar, spherical or spatial according to the geometric and 

motion characteristics (Fig. 3). 
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                                               a)                                        b)                                          c) 

Figure 1. Types of kinematic chains: a) serial (open); b) multi-branch; c) parallel (closed). 

 

              
        

                                                             a)                                                      b) 

Figure 2. Stewart platform based mechanisms examples: a) flight simulator; b) assembly robot. 

 

                     
 

                                                a)                                             b)                                       c) 

Figure 3. Parallel manipulators classification according to its movements: a) planar; b) spherical; c) spatial. 

 

The improvement in the modeling of parallel mechanisms also contributes to solve problems associated with some 

serial robots tasks. In some tasks, such as when a serial robotic arm opens a door or engages its end effector to a surface 

or object, the kinematic chain, due to the appearance of restrictions in the degrees of freedom of the end effector, is 

temporarily closed (Bennett et al., 1991). Another case in which a serial mechanism becomes a closed kinematic chain 

is the case of the legs of an anthropomorphic robot. When both feet found a restriction (such as the floor, for example), 

the kinematic chain closes and thus, to estimate the robot's hip movement in order to balance it, multi-branch 

mechanisms or parallel mechanisms modeling techniques are used (Khandelwal et al., 2013). 

Some parallel mechanisms, such as the Bricard’s octahedron, are similar, in certain configurations, to the molecular 

structures of certain compounds, such as the carbon skeleton of the cyclohexane molecule (Chai et al., 2009). Thus, the 

development of a procedure for modeling parallel mechanisms may assist in the study of the behavior of these 

molecules and even the development of new materials and substances. 

Mohamed et al. (2005) deals with the kinematics of parallel mechanisms with several closed chains separating the 

Jacobian matrices of mechanism’s active and passive joints. Kim et al. (2001) proposed a two-step solution process: 

cutting operation and paste operation, that is, a restriction is removed and the model works as the kinematic chain was 

opened, and then a solution that meets the original closed chain is found. In Fischer et al. (2001) the Denavit-

Hartenberg and Sheth-Uicker notations were used for kinematic modeling of various types of parallel mechanisms, such 

as the Whitworth quick return mechanism. In Goulin et al. (2011) the static modeling of a 3-RPR parallel robot is made 

by using the graphs theory in the problem topological modeling and in the derivation of the equations of balance, where 

the mechanical quantities (movements and actions) are described by helicoids (Davies method). 

 

1.2. Power flow approach 

 

Created by H. M. Paynter in the late 50’s and developed by D. C. Karnopp and R. C. Rosenberg (Karnopp et al., 

1968; Rosenberg et al., 1983 and Karnopp et al., 1990) in the mid-60’s, the bond graphs technique are characterized by 

the physical model representation of a system through a logical graphic, where the energy flow and the system 

components information are contained (Speranza Neto et al., 2005). 
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In Costa Neto (2008) the mathematical models of subsystems using power flow were created so that it was possible 

to implement them as separate and interchangeable modules in a block diagram, coupling them directly, in 

computational form. The independent modules are tested individually, being possible to separate kinematics and 

dynamics. The method used to open the algebraic loops of the closed chain mechanisms eliminates the algebraic 

equations that characterize the loop. Once the module is created, no adjustment needs to be made in the overall structure 

of the system.  

 Zhao et al. (2012) used the same technique to model the kinematics and dynamics of a Stewart platform. After the 

kinematic modeling, the dynamic equations of the upper platform were developed using the Newton-Euler method and 

then, its model in bond graph has been established.  An equivalent approach is used to handle the inertial effects of each 

actuator. In each actuator-valve set of the simulator an independent position closed loop control is coupled. The bond 

graph model is made using the software 20-sim and then, several simulations are realized to verify the model. A 

comparison with experimental tests proved the feasibility and efficiency of the model, whose the method can be used to 

model other types of parallel mechanisms. 

In his work, Yildiz et al. (2008) represented the Stewart platform dynamics using a novel spatial visualization form 

of the bond graphs. This dynamic model includes all the dynamic and gravitational effects such as the linear motor 

dynamics (used as an actuator) and the viscous friction of the joints. Furthermore, in this work the actuation system and 

the structure modeling are unified. As this system has many nonlinearities, originated by your non-linear geometry and 

the gyroscopic forces, the problem of the resulting derivative (forced) causality due to the rigidly coupled inertial 

elements is approached and the space-state equations are presented. 

The proposed methodology is generalized and applicable in any type of mechanism (open or closed, planar or 

spatial). For a better comprehension of the methodology, a planar case will be discussed in this work. The inverse 

kinematic model of the closed chain mechanism, which has easy solution when compared to the direct model, can be 

developed by any known methodology, without the need for a systematic approach. It begins by determining the inverse 

geometric model and its derivation to obtain the kinematic relations, and therefore the inverse Jacobian matrix. With the 

inverse kinematic model, the inverse kinematics bond graph is built and, from the cause and effect relations, the direct 

dynamic model of the mechanism is found. Thus, this methodology (bond graphs or power flow) is more efficient and 

secure to achieve the dynamic analytical (closed) models of parallel mechanisms. 

 

2. INVERSE KINEMATICS OF THE PLANAR PLATFORM 

 
2.1. Inverse geometry using vector loop 

 

Figure 4 shows a 3-RPR parallel manipulator. Three limbs connects to the mobile platform and the fixed base by 

rotational joints in points Bi and Ai, i = 1, 2 e 3. To describe its geometry, a referential frame A(X, Y) fixed to the 

platform base is added and other frame, B(x, y), is coupled to the mobile platform. Another reference frame, C(xi, yi), is 

fixed to each rotational joint, thus having its origin at the point Ai (i = 1, 2 e 3). The zi axis of this system points from Ai 

to Bi (direction of the actuator i). For convenience, the origin of the frame B is located at the center of the mobile 

platform. The position of the mobile platform can be described by the vector p = [pX, pY]
T
 = [X, Y]

T
 and by the rotation 

matrix 
A
RB.  

 

 
 

Figure 4. Planar platform with three degrees of freedom. 
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2.2. Inverse kinematics using vector loop 

 

The velocities state of the mobile platform is defined as a three dimensional vector with the absolute linear velocity 

and the angular velocity of the mobile platform (Eq. 1). 

 

 ̇  [
  

  
]  [

 ̇
 ̇
 ̇

]                                                                                                                                                          (1) 

 

For this manipulator, the input vector is given by  ̇       ̇     ̇   ̇ 
 
 and the output vector can be described by the 

centroid velocity P and the angular velocity of the mobile platform (Eq. 1). From the vector loop presented in the Fig. 4, 

the Eq. 2 is obtained. 

 

  ̅̅ ̅̅     
̅̅ ̅̅ ̅     

̅̅ ̅̅ ̅       ̅̅ ̅̅ ̅̅                                                                                                                       (2) 

 

Applying the differential with respect to time, the Eq. 3 is found. 

 

                     
̇                                                                                                                             (3) 

 

in which bi and si represent the vector    ̅̅ ̅̅̅ and a unit vector along     ̅̅ ̅̅ ̅, respectively. ωi denotes the i-th member 

velocity in relation to the fixed frame A. To eliminate ωi, both sides of Eq. 3 are multiplied for si (Eq. 4). 

 

                              
̇                                                                                                            (4) 

 

With       ,    ω        0 and    ω                ω , the Eq. 5 is obtained. 

 

                   
̇                                                                                                                                       (5) 

 

Thus, one obtains the relationship between the variables which describe the angular and linear velocity of the 

mobile platform and the velocities of the links of the planar platform (Eq. 5). With this relation, the inverse Jacobian of 

the manipulator is found (Eq. 6 and Eq. 7). 
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Equations 8 to 10 shows the dismembering of the terms   
 . 
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The cross product       is obtained transforming the first vector into a 3 x 3 antisymmetric matrix. Equation 11 

presents the result of this cross product and, in Eq. 12, Eq. 6 is rewritten with the inverse Jacobian terms. 
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in which θ1, θ2 and θ3 are given by Eq. 13 to 15. 
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Rewriting Eq. 13 to 15 in function of tan(θi) and differentiating both sides, Eq. 16 are obtained for i = 1, 2, 3. 
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Solving the derivative in both sides of Eq. 16 and manipulating the terms in order to put in evidence the absolute 

linear velocities and angular velocity of the platform, we obtain the inverse Jacobian that relates these velocities to the 

angular velocity of each of the members. Equation 17 presents that relation and the Eq. 18 presents the terms of the 

matrix. 
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With cθ = cos(θ), sθ = sin(θ) and fi given by Eq. 19. 

 

           
        

                    
                                                                                                                          (19) 

 

2.3. Inverse kinematics using power flow approach 

 

As in the bond graph speed restrictions may be imposed directly, one can build the bond graph for the kinematics 

system analysis before mounting the graph for dynamic analysis. In a graph that correctly describes the kinematics (1 

and 0 junctions, transformers and gyrators), the dynamics (capacitors, inertias and resistors) can be imposed without the 

risk of creating models where the main constraints of mechanical systems are violated: geometric or kinematic ties 

(Speranza Neto et al., 2005). 

In this model, speed conditions are imposed by ideal velocity sources, that is, a source of velocity for  ̇,  ̇ and  ̇. 

Besides these velocities, the others 1 junctions (of common velocities) indicates the linear (  ̇,   ̇ e   ̇) and angular 

velocities ( ̇ ,  ̇  e  ̇ ) of the actuators. Thus, the inverse kinematics of the planar platform via bond graphs is 

represented as shown in Fig. 5, whereby the modulated transformer type two-port elements indicated by    
   and     

   

represents the matrixes     (Eq. 12) and   
   (Eq. 18) terms of row i and column j, respectively. 

 

3. DYNAMIC MODEL USING POWER FLOW APPROACH 

 

In this Section, will be presented the planar platform dynamics model from the kinematic model using power flow. 

At first, only one rigid body will be considered in the dynamic model of the manipulator: the mobile platform (with 

mass mP and moment of inertia IPzz). According to the described in Speranza Neto (2007), the Eq. 20 describes the 

Newton-Euler equations in that rigid body mobile local frame. The differential equations in the local frame are given in 

Eq. 21. 
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Figure 5. Bond graphs representation of the planar platform inverse kinematics. 
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According to Speranza Neto (1999), when it can, both completely match the power variables on the inputs and 

outputs of the subsystems (same type and direction of power flow) and a consistent cause and effect relation (which 

variables enter and which come out the models to be coupled), the resulting model is fully equivalent to that which 

would be obtained analytically, allowing your simulation from the simple connection of the modules. Considering this, 

the diagram (Fig. 6) that illustrates the relationships of cause and effect of the planar platform with three degrees of 

freedom is mounted. 

With the kinematic relationships of this parallel mechanism comes the relation of consequence of the power 

conservation on the actuators coupling with the rigid body based on the inverse Jacobian (Eq. 6). Equations 22 to 24 

present the development of this relation. 

 

 
 

Figure 6. Cause and effect relations of the planar platform. 
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Rewriting Eq. 23 in terms of the vectors that contain the velocities (flux) of the actuators (  ⃗⃗  ⃗) and the platform (  ⃗⃗  ⃗), 
Eq. 25 is obtained. Given the relation between the output variables, effort and flow, the relation between the efforts of 

the actuators and the mobile platform is as shown in Eq. 26. 

 

  ⃗⃗  ⃗       ⃗⃗  ⃗                                                                                                                                                                 (25) 

 

  ⃗⃗⃗⃗          ⃗⃗  ⃗                                                                                                                                                           (26) 

 

3.1. Direct dynamics of the planar mechanism using power flow approach 

 

Thereby, the bond graphs structure of the direct dynamics model of the planar platform with three degrees of 

freedom is shown in Fig. 7. In this, was further added the inertial effects of the bodies that compound the actuators, 

introducing the terms mAi and IAi, which correspond to the mass and moments of inertia of the actuators, with i = 1, 2 

and 3. It was also included in this model the viscous friction in the rotation joints of the base (indicated by bAi, with i = 

1, 2 and 3). Besides this, it can also be considered the viscous friction in the Bi joints. In this case, in its constitutive 

equation will appear the difference in angular velocities θ - θ . Figure 8 shows the alteration in the bond graph model for 

this last case and a scheme showing the involved velocities in detail. 

 

 
 

Figure 7. Bond graphs representation of the planar platform dynamics. 
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Figure 8. The involved velocities in detail and part of the bond graph model considering the viscous friction in 

the Bi joints. 

 

3.2. Electric actuator dynamics using power flow approach 

 

The property of modularity, one of the major advantages of the technique, enables the development of complex 

systems models from simple subsystems (or modules), since these are created predicting the manner in which they will 

engage each other. This can be done by passive (open) connections or active connections. In the case of the actuation 

elements (with two or more ports), it is mandatory the use of passive connections, because there is power interaction 

effectively, resulting in the loading effect, represented in the bond graphs by the causal bar (Speranza Neto et al., 2005). 

Fig. 9 presents the electric actuator scheme used in this modeling. An electric motor provides power to the actuation 

system through a torque    and an angular velocity   . This power is then transmitted to a leadscrew by a gear set. In 

bond graphs modeling, motors can, in general, be considered, as effort sources. 

 

 
 

Figure 9. Electric actuator scheme. 

 

From the diagram of Fig. 9, follows that the angular velocity (ωA) of the gear A, with zA teeth, is the same velocity 

of the motor shaft (ωm). The transmission ratio from gear A to the gear B1, with zB1 teeth, is nA-B1 = zA/ zB1. Gears B1 

and B2, with zB2 teeth, possess the same angular velocity (ωB1 and ωB2, respectively). The transmission ratio from gear 

B2 to C, that have zC teeth and angular velocity ωC, is nB2-C = zB2/ zC. The leadscrew D has the same velocity, ωC. 

Through the leadscrew nut, which is coupled to the actuator rod, this movement becomes linear with velocity  ̇. This 

relation is given by nP = 0,5.π
-1

.p.Ne, where p is the leadscrew pitch and Ne refers to type of thread (single or double). 

Equation 27 presents the total transmission ratio of the system, where ne is the transmission ratio between the gears A 

and C. 

 

 ̇                                                                                                                                                (27) 

 

In this model, were considered the inertia of the motor (Jm), the gear train (JC), of the actuator rod (mA) and also the 

viscous friction coefficients bm, bC and bA associated with these elements. Figure 10 presents the bond graph structure of 

the actuation system. In the electrical circuit model, R, L and Ke are the resistance, the inductance and the electromagnet 

constant of the motor, respectively. 
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Figure 10. Bond graphs for the electric linear actuator. 

 

3.3. Coupled dynamic model 

 

Figure 11 show the coupled dynamic model represented using the Bond Graph Technique. The actuators model are 

coupled to the planar platform model through the 1 junctions that represents the actuator output speed,   
̇ , with i = 1, 2 

and 3. 

 

4. CONCLUSIONS AND FUTURE WORK 

 

In this work a procedure for the determination of the analytical form of dynamic models of a 3-RPR parallel 

mechanism through the characterization of the power flow between its components was presented. From the 

geometrical relations associated to the displacement of their degrees of freedom, the kinematic relations associated to 

their velocities were determined. Considering the power flow between the degrees of freedom and between these and 

the actuating elements, the equilibrium relations of the forces and torques were obtained. Also, inertial effects of system 

components, stiffness and damping effects were taken into account and the equations of motion were analytically 

determined. This approach adopted the same fundamentals, concepts and elements of the Bond Graph Technique.  

With this these analytical equations obtained, this leads to a more efficient simulation process and real-time control 

of these systems. Future works aim at validating the method through the simulation of the complete model and 

comparison with the experimental data of the manipulator which is under construction. 

 

 
 

Figure 11. Complete bond graph representation for the 3-PRP parallel mechanism. 
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