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the plate thickness in the failure mechanism is considered using the plane strain assumption. For any 
finite plate thickness it is expected that the actual stresses lie between the two considered bounds, 
plane stress and plane strain conditions. The materials properties used in these analyses are listed in 
Table 1. The difference between plane stress and plane strain strength estimates can be larger than 
60%, indicating that further investigation of the thickness influence is recommended. The main 
difference between the failure models used here is how they treat fiber failure under compression. The 
LaRC05 criterion assumes damage considerable before the others, since it considers fiber instability.  

 

Table 1: Mechanical properties of carbon/epoxy used in this work [7] 

Elastic Properties Strengths 

1E  140 GPa 11
tS  1990 MPa 

2 3E E=  10 GPa 11
cS  1500 MPa 

12 13G G=  6 GPa 22 33
t tS S=  38 MPa 

23G  3.35 GPa 22 33
c cS S=  150 MPa 

12 13n n=  0.3 12 13S S=  70 MPa 

23n  0.49 23S  50 MPa 
( )
1
fE  231 GPa   

( )
12
fn  0.2   

 

2. STROH FORMALISM 

The Stroh formalism is a powerful mathematical tool to model anisotropic elasticity, which has 
been successfully used to solve several 2D problems, see Ting [3] and Hwu [4] for further details.  

In a general way, the equilibrium requirements, geometrical compatibility, and linear elastic 
constitutive relations are expressed as 

, 0ij js =  (1) 

, ,
1
( )
2ij i j j iu ue = +  (2) 

ij ijkl klss e=  (3) 

To start with, suppose a displacement field solution with the form ( )k ku v f z= , where kv  depends 

on material constants (eigenvector) and ( )f z  is a generic function that depends on the boundary 

conditions and also on material properties. Considering, without loss of generality, 1 2z x px= + , 

where p  is a material constant (eigenvalue), it can be shown that 

( ) 2 0ik ik ki ik kQ R R p T p vé ù+ + + =ê úë û  (4) 

where 1 1ik i kQ s= , 1 2ik i kR s=  and 2 2ik i kT s= .  

However, these equations consider that the reference coordinate system coincides with the material 
coordinates, but this is not necessarily true in practical applications, and usually it is not. In fact, to 
obtain the stress distribution around a circular hole in a large anisotropic plate it is necessary to use 
three coordinate systems; one to define the load, called global in this paper; another to define the 
material properties, named material coordinates; and the last one to map the hole border. To use a 
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 (16) 

( ) 13 2333BLL G G=  (17) 

 

3. FAILURE CRITERIA 

This section briefly introduces the failure criteria used here. Additional details are found in 
references [8] for Tsai-Wu, [9] for Puck, and [10] for LaRC05. 

3.1 Tsai-Wu 

Tsai-Wu model is the most popular of those used in this paper. It has an adjustable polynomial 
function and can be expressed as  

( )

( )
( )

( )

22 2 2 2 2
11 22 33 12 13 23

12 11 22 332
11 11 22 22 2312

23 22 33 11 22 33
11 11 22 22

1 1 1 1

TW t c t c

t c t c

f a
S S S S SS

a
S S S S

s s s s s s
s s s

s s s s s

æ ö+ + ÷ç ÷= + + + + + +ç ÷ç ÷çè ø
æ ö æ ö÷ ÷ç ç+ + - + - +÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø

 (18) 

Despite no phenomenological basis, it has a great advantage of easer applicability.  

 

3.2 Puck 

Puck model use the following four different equations to model fiber and matrix failure under 
tension and compression  

( ) ( ) ( )( , ) ( ) ( )
11 11 1 12 22 331 121f t f ft

fPf S E E ms n n s sé ù= ⋅ + - +ê úë û  (19) 

( ) ( ) ( ) ( )2( , ) ( ) ( )
11 11 1 12 22 33 12 121 121 10f c f fc

fPf S E E m Gs n n s s sé ù= ⋅ + - + +ê úë û  (20) 

( ) ( ) ( )
2( , ) (23)

12 12 12 11 11222
nm c c

Pf S p S XF F F
Fs s s= + +  (21) 

( ) ( ) ( )( ) ( )
22( , ) (23) (23)

12 12 12 22 12 22 11 1122 222 1 2
nm t t t t t

Pf S p S p S S S XF F F F
F Fs s s s= + + - +  (22) 

where fm  is equal to 1.3 for carbon fiber in polymeric matrix, 11 111.1 tX S=  if 11 0s ³  or 

11 111.1 cX S=-  if 11 0s <  and 6 8n£ £ . The stress components on the critical plane are computed as 
(23)
ij ik jl kls l l s= , where ( )cos ,ij i jx xl =  and the angle between 2x  and (23)

2x  is g . At last to quantify 

the shear effect, the “equivalent” shear is calculated as (23) (23)2 2
12 12 23( ) ( )Fs s sé ù= +ë û  and assuming 12

cp  

and 12
tp  are equal respectivly to 0.3 and 0.35 for carbon fiber, the quantities 

( ) ( ) ( )2 22 (23) (23) (23)
12 12 1212 23 23S S SF Fs s s= + , ( )12 12 12

c cp S p SF
F = , ( )12 12 12

t tp S p SF
F = , 

( ) ( )(23)
12 12 12 22 1223 2 1 2 1c c cS S p p S Sé ù= ⋅ + -ê úë û

 can be calculated. 
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Figure 1: Stress concentration in material coordinate for a circular hole under plane stress. 

 

  

Figure 2: Normalized strength predictions for three failure criteria for uniaxial tension and 
compression applied to a large plate with circular hole under plane stress. 

 



 

 

The S
[3,4]. Th

than the 

 

Figure
tension 

 

Cons
more ap
maximum
the plane
stress an
are also 
the resul
LaRC05

Stroh formal
he stress dist

nominal app

 4: Comparis
and compres

idering the p
ppropriated f
m error gene
e strain hypo

nd are presen
plotted toge

lts are very d
 because the

Figure 3: 

lism may be
tribution are 

plied stress d

son between 
ssion applied

plane strain 
for thin plate
erated on the
othesis the s

nted in Fig. 4
ether. For ten
different bot

e multiaxial s

Critical poin

e modified fo
omitted her

depending of 

normalized 
d to a large p

hypothesis a
es (lower bou
e strength est
strengths wer
4. To get an e
nsion, the ten
th on curve s
stress state ha

BCCM-3 –

 

nts for tensio

for plane stra
re, but the ad

f the fibers-to

 

strength pre
plate with circ

as an upper
und) [12], th
timation wh
re obtained 
easier compa
ndencies rem
shape and m
as influence 

– Brazilian C

Gramad

on and compr

ain problems
dditional com

o-load angle 

dictions for t
cular hole un

bound for t
he failure cr
en the thickn
following th
arison, the st
main similar

magnitude asp
in fiber insta

Conference on

do, RS - Braz

ression loads

s. For additi
mponent ( 33

[11]. 

three failure 
nder plane str

hick plates, 
riteria are ap
ness effect is
he same proc
trengths estim

(not equal),
pects. The la
ability. 

n Composite 

zil, August 28

s. 

ional discuss

3 ) can be ev

criteria for u
tress and plan

while plane
pplied to esti
s despised. A
cedure than 
mated for pla
, but for com
argest variati

 

Materials 

8-31, 2016 

 

 

 

sions, see 
ven larger 

 

uniaxial 
ne strain. 

e stress is 
imate the 

Assuming 
for plane 
ane stress 
mpression 
ion is for 



Lucas L. Vignoli, Jaime T. P. Castro, Marco A. Meggiolaro 

 

5. CONCLUSIONS 

Uniaxial tension and compression stress concentration effects around the border of a circular hole 
in a very large anisotropic plate were analyzed for plane stress and plane strain conditions. Clearly, the 
fibers inclination which produces the higher stress concentration do not means the critical fiber-to-load 
angle, as pointed out by Vignoli et al [13]. This result is basically because the higher stress component 
is acting on the fibers, which have a much higher strength than the matrix.  

The thickness effect was evaluated and it was proved that it must be considered for design purpose 
because the errors generated are not disregarded for all the criteria, becomes even more significate for 
fiber under compression according to LaRC05 (up to 60%). 
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