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Abstract: Autonomous vehicles - defined as vehicles with carrying capacity of persons or property without the use of 
a human driver - are an interesting and recent problem, with increasing studies in the last twenty years. Besides 
being able to position itself globally and to predict trajectories, these systems have to deal with obstacles and traffic 
signals - a daily situation that requires a combination of sensors and control. Regarding this type of vehicles, a less 
explored option is the motorcycle: apart from the difficulties inherent in making a vehicle move independently, 
autonomous motorcycles have to be able to remain stable at any speed and trajectory. This work’s main object of 
study is a small-scale electric motorcycle; represented by a linear model through a multibody approach: its four 
rigid bodies - wheels, chassis, handlebar and fork -, have separately a characteristic behavior and together they 
influence the dynamics of each other. This approach results in lower order models, easier to simulate and to apply 
classical or modern control strategies. The two-wheeled vehicle is considered an inverted pendulum with a mobile 
base and other simplifications are proposed, as constant displacement speed or small steering and yaw angles. 
Since this vehicle is naturally unstable, to ensure a follow-up course without overturning it is necessary to apply an 
adjusted control signal according to the motorcycle's behavior. The human driver does this unconsciously, setting 
the course through the handlebars and/or tilting the body to avoid falling. Once the autonomous system studied will 
not have the presence of a mechanical counterbalance, there remains only the first choice as a control strategy. 
Thus, this work analyzes the dynamic characteristics of the zero track vehicles and verifies the validity of different 
stability and path tracking control strategies of a motorcycle using as input only the steering of the handlebar. 
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NOMENCLATURE 

Latin symbols 

C : virtual damping matrix 
g: gravity 
J: moment of inertia 
k: feedback gain vector 
K : stiffness matrix 
l: observer gain vector 
M : mass matrix 
m: mass 
q: state variable vector 
t: trail 
v: velocity 
x,y,z: distance in each plane 
w: wheel base 

Greek symbols 

δ: steering angle 
ε: caster angle 
τ: torque 
ϕ: roll angle 
ψ: yaw angle 

Subscripts 

ff : relative to the front frame 
fw : relative to the front wheel 
m : relative to the main body 
rf : relative to the rear frame 
rw : relative to the rear wheel 
s : relative to the steering body 

INTRODUCTION 

Motorcycles are an interesting study subject due to its unique dynamics: inherently unstable, they can achieve 
stability without a rider at certain speeds or settings, thanks to its geometry and gyroscopic effect. With respect to the 
mathematical modeling of this system, the most complete approach to describe its dynamic behavior is the multibody, 
where the motorcycle is interpreted as a combination of rigid bodies - including the wheels, bumpers, chassis, handlebar 
and fork driver - which have a characteristic behavior separately, but together influence the dynamics of one another.  

An alternative step to obtain a more simplified multibody model is to consider only the main components of the 
vehicle, such as the driver, motorcycle’s main body, wheels and front fork. This approach results in lower order models 
which are, therefore, easier to simulate and implement control strategies. Åström (2005), Keo (2011) and Tanaka (2009) 
adopt this path, which, briefly, consider the two-wheeled vehicle as an inverted pendulum mobile base; their work 
propose other simplifications, as a constant displacement speed or small steering and yaw angle. This approach was also 
chosen on this paper, since it easily allows to apply classical and modern control strategies (Sharp (2007) or Yi (2006)). 
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Regarding autonomous vehicles, a topic increasingly in vogue in recent years, it is important to comprehend the 
human driving behavior in order to successfully mimic it. The control exercised by motorcyclists is complex and 
divided into two main categories: the steering torque, applied at the motorcycle handlebar, and the driver’s body roll 
movement, which cause a double reverse pendulum effect on the vehicle dynamics.  

The effects of each controller is clear in a curve trajectory: in motorcycle competitions, the driver tilts its body in the 
same direction of the curve, which results in a torque that changes the rear wheel rotational axis, causing a arched 
trajectory. Examples of this application are in Keo and Yi, where an actuated inverted pendulum and a rotating mass 
reproduce the torque given by the driver. 

The driving system also plays an important role in the motorcycle dynamics: to successfully perform a curve with 
only the steering torque, it is necessary to initially move the motorcycle’s handlebar in the opposite direction of the 
desired movement and then steer it in the right path, a phenomenon known as counter-steering, as described by Fajans 
(2000). Guiding the vehicle in the opposite direction causes a centrifugal force that tilts the motorcycle in the desired 
direction, enabling a curved path. Interestingly, this method has the same operating principle of the previous one, 
without requiring a mass to cause the motorcycle inclination. Given that this work’s object of study is a small-scale 
electric motorcycle, only the first category of control was applied, i.e., the stabilization and path tracking control are 
obtained solely by the steering torque. 

 

MOTORCYCLE DYNAMICS  

The motorcycle model, based on Meijaard (2007), is derived from the Whipple bicycle model: the vehicle is 
composed of two structures, or frames, joined by a revolution joint on the handlebars, with each frame supporting a free 
rotating axisymmetric wheel. The driver, originally simplified to a rigid extension of the main frame, is not considered 
on this paper; the front frame has uniformly distributed mass and wheels provide purely rotational movement, i.e., the 
sideslip and deformation of tires is not accounted in the model.  

Roll, steer and yaw freedoms are allowed; longitudinal velocity is considered constant. To reduce the complexity of 
the model, the four rigid bodies have been simplified to two sets: the front frame includes the handlebar, fork and front 
wheel assembly; the rear frame is the main and rear wheel frame. The main system parameters are shown in “Fig. 1”; it 
is important to highlight the origin of the coordinate system – at the contact point between the rear wheel and the floor – 
and its direction, with the z axis positive in favor of gravity. 

 
Figure 1 – Schematic of motorcycle’s main parameters. 

 
In order to validate the proposed model and test the suggested control strategies, an electric motorcycle was modeled 

using SolidWorks. The Duratrax450 is a 1/5 small-scale motorcycle, actuated by a brushless motor, which controls the 
vehicle speed, and steered by a servomotor, as seen in “Fig. 2 (a)”. The motorcycle had its four main systems measured 
and weighted and the computational model, portrayed in “Fig. 2 (b)”, gave its moments of inertia; the result is in “Tab. 
1”.  

With this data, is possible to combine all four bodies into two main frames: the front frame, consisting of the front 
wheel and the steering body, and the rear frame, including the rear wheel and main body. Meijaard details this 
variables’ manipulation, which makes explicit some important relations, such as the gyroscopic effect, i.e., torque about 
one axis due to angular acceleration about the other. The motorcycle model is then completely defined by 19 design 
parameters, including the vehicle’s velocity; “Table 2” provides additional variables, dependent on main variables 
shown in “Tab. 1”, whose development is explicit in Meijaard. 
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Table 1 – Duratrax450’s main experimental data. 

 Parameter Symbol Value 
 Wheel base (m) w 0.31 
 Trail (m) t 0.028 
 Caster angle (rad) ε 0.49 
 Gravity (m/s²) g 9.81 

Rear wheel    
 Center of mass (m) ( )rwrwrw zyx  ( )061000 .−  

 Mass (kg) rwm  690.  
 Moments of inertia (kg.m²) [ ]

zzyyxx rwrwrw JJJ  [ ] 410045169045 −...  

Main body    
 Center of mass (m) ( )mmm zyx  ( )1100140 .. −  

 Mass (kg) mm  191.  
 

Moments of inertia (kg.m²) 
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Steering body    
 Center of mass (m) ( )sss zyx  ( )1300270 .. −  

 Mass (kg) sm  130.  
 

Moments of inertia (kg.m²) 





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Front wheel    
 Center of mass (m) ( )fwfwfw zyx  ( )06500310 .. −  

 Mass (kg) fm  120.  

 Moments of inertia (kg.m²) [ ]
zzyyxx fwfwfw JJJ  [ ] 410631193631 −...  

Rear frame    
 Center of mass (m) ( )rfrfrf zyx  ( )08700090 .. −  

 Mass (kg) rfm  881.  

 

Moments of inertia (kg.m²) 



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Front frame    
 Center of mass (m) ( )ffffff zyx  ( )1000290 .. −  

 Mass (kg) ffm  250.  
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















−

zzxz

xzxx

ffff

ffff

JJ

JJ

0

00

0

 410

0940280

00

2800278
−
















−

..

..

 

 

         
(a) Small-scale electric motorcycle Duratrax450.                (b)  Computational model by SolidWorks. 

Figure 2 – Test apparatus. 
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Table 2 – Duratrax450’s additional parameters. 
Parameter Symbol Value Parameter Symbol Value 

Total mass (kg) tm  2.13 
Global moment of inertia 

about x axis (kg.m²) xxJ  210112 −×.  

Global centre of mass in x 
(m) tx  0.11 

Global moment of inertia 
about x and z axis (kg.m²) xzJ  210412 −×.  

Global centre of mass in z 
(m) tz  -0.089 

Global moment of inertia 
about z axis (kg.m²) zzJ  210834 −×.  

Perpendicular distance 
from front frame centre of 
mass to steering axis (m) 

f  0.079 
Front frame moment of 

inertia about x axis (kg.m²) xεJ  410115 −×.  

Front wheel gyroscopic 
coefficient  fS  310803 −×.  

Front frame moment of 
inertia about z axis (kg.m²) zεJ  410646 −×.  

Global gyroscopic 
coefficient tS  210462 −×.  

Front frame moment of 
inertia about steer axis 

(kg.m²) 
εεJ  410275 −×.  

Static moment uS  210991 −×.     
 
Given that the motorcycle is considered to be freely rolling forward on the xy plane, with constant speed, and 

approximately parallel to the global x axis – i.e., small roll, yaw and steer angles, as well as small displacement on the y 
axis –, the governing linear equations of motion are the ones referring to two lateral degrees of freedom: the rightward 
lean of the rear frame (ϕ) and rightward steer of handlebars (δ). The forces acting on the system are: gravity in each 
center of mass, the ground reactions to the front wheel and the torque applied to the steering system, Tδ, considered 
positive when moving the handlebars to the right, and applied negatively on the rear frame. The lean and steer equations 
are described, respectively, as the first and second lines of “Eq. 1”. 
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The previous expression allows a parallel with a mechanical mass-spring-damper system; the matrix M is 

symmetric, positive-definite and gives the kinect energy of the system; the “virtual” damping matrix C represents 

gyroscopic torques due to tilting (φ ) and steering (δ ) and inertial reactions to yaw acceleration; the stiffness matrix K 

has a system independent of longitudinal speed ( 0K ) which represents changes in potential energy and a system ( 2K ) 

who is due to gyroscopic and centrifugal effects. The dynamical system may also be written in state-space 
representation; the  numerical result to “Tab. 1” data is in “Eq. 2”.  
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It is known that, for certain speed ranges, the motorcycle is able to remain stable without the aid of a driver; thus it 

is interesting to analyze the vehicle stability with zero input torque. The four poles of this system can be divided in three 
categories: the smaller real value is associated with capsize mode, in which the motorcycle falls sideways, with the roll 
and steering angles slowly increasing; imaginary eigenvalues are associated with the weave mode, in which the rear 
frame oscillates around the steering body; the last eigenvalue, real and with larger module, is known as the wobble 
mode, in which the steering shaft oscillates and aligns quickly with the motorcycle body in the direction of its 
movement, in a tractrix-like movement. The weave and wobble modes are significant at high speeds (up to 10 m/s), 
since these oscillatory effects can lead to serious instability.  

Given the maximum speed of the electric motorcycle is of 15 m/s, the numerical result to the eigenvalues variation 
with speed increase is in “Fig. 3”. The analysis of eigenvalues position in an uncontrolled configuration shows that the 
Duratrax450 is not self-stabilizing, since its weave mode never reach the stable region; most likely this phenomenon is 
due to, mainly, its geometric design, with a steering body much lighter than the rear frame. 
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Figure 3 – Poles variation with speed increase. 

 

STABILIZATION CONTROL STRATEGIES  

The first step to control an autonomous motorcycle is to balance it so it will not fall down. In this work, two 
strategies to keep the motorcycle straight are analyzed: an ideal state feedback control and a state feedback control with 
an observer, since not all state variables are measurable.  

State feedback 
Considering all state variables ideally measurable, the state space model output of the motorcycle systems becomes 

the identity matrix, and the input control is in “Eq. 3”. To verify if the state feedback can be made in this new system, 
the controllability matrix must have full rank; this system, for any speed range, is completely controllable. 

 

u k k k kφ δφ δ

φ
δ
φ
δ

 
 
  = − = −    
 
 

kX  




         (3) 

 
Since the capsize and wobble eigenvalues are already stable – negative real poles – the main objective of the state 

feedback is to change the complex part of the weave eigenvalues. “Table 3” brings the gain vector for three speeds and 
“Fig. 4” illustrates the simulation results, considering an initial state of [ ]00050. ; is worth mentioning that the 

maximum torque provided by the servomotor is 0.32 N.m. 
 

Table 3 – State feedback gain to three different speeds. 

Speed (m/s) Desired eigenvalues State feedback gain 
5 [ ]04202413680 .i... −±−−  [ ]350103410381028 235 .... −−− ×−××−  

10 [ ]08205264180 .i... −±−−  [ ]980109210211021 225 .... −−− ×−××  

15 [ ]01220804610 .i... −±−−  [ ]072108210711021 225 .... −−− ×−××  
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(a) (b) 

 
(c) 

Figure 4 – Simulation to stabilization state feedback at: (a) 5 m/s; (b) 10 m/s; (c) 15 m/s. 

State feedback with observer 
In practice, not all state variables are available for feedback: only the steer angle (δ), given by the servomotor, and 

the roll angular speed ( φ ), measured by a gyrometer, are directly measurable. Therefore, “Eq. 4” brings the observed 

state, where l is the observer gain vector, and the input control is in “Eq. 5”, a state feedback of the observed state. To 
verify if the full order state observer can be made in this new system, the observability matrix must have full rank; 
again, for any speed range, the system is completely observable. 

 

( ) BuXXlCXAX +−+= ~~~
          (4) 

 

Xk~
u −=             (5) 
 
Since the observer and state feedback gain are independent, it is possible to choose two different sets of desirable 

eigenvalues; the poles of the observer are usually chosen so that its response is faster than the system’s, roughly five 
times faster, i.e., multiplied by five. The feedback poles will follow the previous method’s design, keeping the open 
loop eigenvalues stable, meaning the feedback gain will be the same in “Tab. 3”. “Table 4” brings the observer gain 
vector for three speeds and “Fig. 5” illustrates the simulation results, considering an initial state of [ ]00050.  only 

to the measured state space.  
 



Assad, M.M, Speranza Neto, M., Meggiolaro, M.A. 

Table 4 – Observer gain to three different speeds. 
Speed (m/s) Desired eigenvalues Observer gain vector 
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(a) (b) 

 
(c) 

Figure 5 – Simulation to stabilization state feedback with observer at: (a) 5 m/s; (b) 10 m/s (c)15 m/s. 
 

TRAJECTORY CONTROL STRATEGY 

The second step to control an autonomous motorcycle is to make it follow a desired trajectory. Since the previous 
model only considered the roll and steer angles and speeds, it needs to be adjusted to include the yaw angle (ψ) and 
lateral speed. “Equation 6” shows the yaw angular speed, “Eq. 7”, the rear wheel lateral velocity and “Eq. 8”, the new 
state space model, all based on Meijaard and considering small displacements and angles. With the altered model, 
described in the “Eq. 8”, the state feedback strategy is applied at the system, to make a lane change with the motorcycle. 
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State feedback 
Considering all new state variables ideally measurable and the path desired dy , the input control becomes “Eq. 9”. 

In this new system, two eigenvalues are added at the origin; the main objective of the state feedback is to change the 
positive complex eigenvalues and to make those zero eigenvalues negative. Unlike the previous strategies, the desired 
eigenvalues are the same to every speed simulated, in order to guarantee an equal time response, given by the dominant 
eigenvalue. 

“Table 5” brings the gain vector for three speeds and “Fig. 6”, a comparison between the path traveled in each 
velocity; “Fig. 7” illustrates the simulation results, with zero initial condition and a desired trajectory of lane change 
with one meter of lateral displacement. The simulation results make clear the countersteering phenomenon, in which the 
motorcycle is initially move to the opposite side to which you want to move. The adjustment of controller’s gains has 
respected the system torque limit, which translates to a higher stabilization time than expected.  
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Table 5 – State feedback gain to three different speeds. 

Speed 
(m/s) Desired eigenvalues State feedback gain 

5 [ ]2520151051 −−−−−−  [ ]223 109132801113101055210983 −−− ×−−−××− ......  

10 [ ]2520151051 −−−−−−  [ ]3232 10889140032107591001710474 −−−− ×−−×−×× ......  

15 [ ]2520151051 −−−−−−  [ ]32222 103041050910310425103411067 −−−−− ×−×−×−×−× ......  

 

 
Figure 6 – Comparison between trajectory control at: (a) 5 m/s; (b) 10 m/s; (c) 15 m/s. 
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(a) (b) 

 
(c) 

Figure 7 – Simulation to trajectory state feedback at: (a) 5 m/s; (b) 10 m/s; (c) 15 m/s. 
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CONCLUSIONS 

In this work the linearized model of a small-scale electric motorcycle was equated through a multibody approach, 
considering its main four rigid bodies - wheels, chassis, handlebar and fork. The physical system was also modelled in a 
computational simulator in order to provide all moments of inertia and other minor parameters. 

Additional simplifications were brought into the system to facilitate its analysis: the two-wheeled vehicle is 
considered an inverted pendulum with a mobile base, with constant longitudinal velocity and small steering, roll and 
yaw angles.  

Three control strategies are proposed to act on the system natural instability and replace a human driver. The usual 
approach is to maintain balance and set the trajectory through the handlebars and tilting the body to avoid falling. Since 
the small scale motorcycle does not have the presence of a mechanical counterbalance, there remains only the steering 
system a control input. Thus, this work analyzed the stability and path tracking control strategies of a motorcycle using 
as input only the steering of the handlebar.  

Numerical simulations with the complete system were carried out to prove the modern control strategies’ validity: a 
state space feedback controller was capable to successfully keep the motorcycle upright; since only two of the state 
variables are measurable by the instrumentation system, another space feedback was proposed, also successful, with an 
state observer to estimate the missing variables values and optimize the control algorithm. 

At last, a state feedback was proposed to make the motorcycle follow a desired trajectory, i.e., a lane change path. 
The state space model was adjusted to include two new variables regarding the lateral dynamics of the system and 
simulations confirmed the validity of this strategy.  

As future works, the authors intend to improve the dynamic motorcycle model, so as to make lateral displacement, 
yaw and roll motions of the bicycle closer to reality. The authors also intend to investigate other control strategies to the 
proposed problem, such as a linear quadratic regulator, in order to minimize the path tracking error.  
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