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Abstract: This work presents the analytical form determination of the dynamic model of a parallel planar 

mechanism with three degrees of freedom through the characterization of the power flow between its components. 

From the geometrical relations associated to the displacement of their degrees of freedom, the kinematic relations 

associated to their speeds are determined. Considering the power flow between the degrees of freedom, and also 

between these and the actuating elements (linear electric actuators) the equilibrium relations of the forces and 

torques are obtained. Accounting for inertial effects of system components, the stiffness and damping effects, the 

equations of motion or the state equations are analytically determined. Besides, the relation between the inverse 

kinematics and the direct dynamics is presented. The proposed methodology is generalized and applicable in any 

type of mechanism (open or closed, planar or spatial). In this work, the vector loop technique is used to determine 

the inverse geometric model, and with its derivation, the kinematic relations are obtained, and therefore the inverse 

Jacobian matrix. Thereby, the inverse kinematics bond graph is built and, from the cause and effect relations, the 

direct dynamic model of the mechanism is found. Thus, this methodology (bond graphs or power flow) is more 

efficient and secure to achieve the dynamic analytical (closed) models of parallel mechanisms. A set of simulations 

are performed to validate this approach, using the real data (geometry, inertia, damping, actuators forces, etc.) from 

a planar mechanism designed and built especially for the purpose to compare the simulated and experimental 

results. The analytical equations lead to a more efficient simulation process and real-time control of these systems. 
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INTRODUCTION 

Mechanisms are essentially (but not exclusively) made up of multiple rigid bodies that have relative motion between 

themselves. Each rigid body is connected through a joint to one or more bodies, wherein the serial sequence of 

connected bodies is called kinematic chain. Open kinematic chains have no restrictions on their ends, as closed chains 

have restrictions on both ends. In this work, the focus will be given on the study of mechanisms with closed kinematic 

chains. Despite of having a smaller workspace, higher inertia and a harder dynamic analysis, parallel systems have great 

advantages when compared to serial manipulators, as better stability and accuracy, ability to handle relatively large 

loads, high velocities and accelerations and low power operation (Wang, 2008).  

The proposed methodology is generalized and applicable in any type of mechanism (open or closed, planar or 

spatial). For a better comprehension of the methodology, a planar case will be discussed in this work. The inverse 

kinematic model of the closed chain mechanism, which has easy solution when compared to the direct model, can be 

developed by any known methodology, without the need for a systematic approach. It begins by determining the inverse 

geometric model and its derivation to obtain the kinematic relations, and therefore the inverse Jacobian matrix. With the 

inverse kinematic model, the inverse kinematics bond graph is built and, from the cause and effect relations, the direct 

dynamic model of the mechanism is found. Thus, this methodology (bond graphs or power flow) is more efficient and 

secure to achieve the dynamic analytical (closed) models of parallel mechanisms. For the purpose of provide real data 

(geometry, inertia, damping, actuators forces, etc.) and compare the simulated and experimental results, a planar 

mechanism was designed and built. Figure 1.a shows the CAD model of the planar mechanism and Fig. 1.b shows the 

built platform. 

 

           
                                                              (a)                                                                  (b) 

Figure 1 – CAD model of the planar mechanism (a) and the built platform (b). 
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This procedure is based on the Bond Graph Technique and all its potential for the development of modules’ models. 

However the formalism and the graphical representation of Bond Graphs are no longer needed once the model of one 

module is built, as a function of the power flow and of the causality relations among their internal elements and mainly 

as a function of the elements in the power input and power output ports. Thus the module can be coupled to other 

modules whose models were created observing such restrictions and therefore the analytical model of a system 

constructed from multiple subsystems may be easily established by the consistent combination in terms of power and 

causality, avoiding the necessity of apply the formal treatment of the Bond Graph Technique (Martins et al., 2016). 

INVERSE KINEMATICS OF THE PLANAR PLATFORM 

Figure 2 shows the 3-RPR parallel manipulator considered in this study. Three limbs connects to the mobile 

platform and the fixed base by rotational joints in points Bi and Ai, i = 1, 2 e 3. To describe its geometry, a referential 

frame A(X, Y) fixed to the platform base is added and other frame, B(x, y), is coupled to the mobile platform. Another 

reference frame, C(xi, yi), is fixed to each rotational joint, thus having its origin at the point Ai (i = 1, 2 e 3). The yi axis 

of this system points from Ai to Bi (direction of the actuator i). For convenience, the origin of the frame B is located at 

the center of the mobile platform. The position of the mobile platform can be described by the vector p = [pX, pY]
T
 = [X, 

Y]
T
 and by the rotation matrix 

A
RB. Hence, the velocities state of the mobile platform is defined as a three dimensional 

vector with the absolute linear velocity and the angular velocity of the mobile platform (Eq. 1). 

 

ẋ = v = [
vp

ωp
]= [

Ẋ

Ẏ

θ̇

]= [
vX

vY
ωz

]                                                                                                                                            (1) 

 

 
Figure 2 – Planar platform with three degrees of freedom. 

 

For this manipulator, the input vector is given by vA = [v1, v2, v3]
T
 and the output vector can be described by the 

centroid velocity P and the angular velocity of the mobile platform, v = [vx, vy, ωz]
T
. Using the vector loop technique 

and then, applying the differential with respect to time, the relationship between the variables which describe the 

angular and linear velocity of the mobile platform and the velocities of the links of the planar platform is found. With 

this relation, the inverse Jacobian of the manipulator is obtained, as shown in Eq. 2 (Albuquerque et al., 2016). 

 

q̇ = [

d1̇

d2̇

d3̇

]  = [
𝑣1
𝑣2
𝑣3
]  = J-1ẋ = [

cos θ1 sin θ1 b1X sin θ1 - b1Y cos θ1

cos θ2 sin θ2 b2X sin θ2 - b2Y cos θ2

cos θ3 sin θ3 b3X sin θ3 - b3Y cos θ3

] [
Ẋ

Ẏ

θ̇

]                                                                      (2) 

 

in which θi are given by Eq. 3 (with i = 1, 2 and 3). 

 

θi = tan-1 (
biY - aiY

biX - aiX
)= tan-1 (

Y + bix sin θ + biy cos θ - aiY

X + bix cos θ - biy sin θ - aiX
)                                                                                                        (3) 
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Rewriting Eq. 2 in function of tan(θi), differentiating both sides, and manipulating the terms in order to put in 

evidence the absolute linear velocities and angular velocity of the platform, we obtain the inverse Jacobian that relates 

these velocities to the angular velocity of each of the members (Albuquerque et al., 2016). Equation 4 presents that 

relation the terms of the matrix. 

 

θ̇ = [

θ1̇

θ2̇

θ3̇

]= ωA= [
ω1

ω2
ω3

]= Jθ

-1
[
vX

vY
ωZ

]=

[
 
 
 
 
 
 
(a1Y-b1Y)cos2(θ1)

(b1X-a1X)
2

cos2(θ1)

(b1X-a1X)

cos2(θ1)

(b1X-a1X)
2 j

θ1

(a2Y-b2Y)cos2(θ2)

(b2X-a2X)
2

cos2(θ2)

(b2X-a2X)

cos2(θ2)

(b2X-a2X)
2 j

θ2

(a3Y-b3Y)cos2(θ3)

(b3X-a3X)
2

cos2(θ3)

(b3X-a3X)

cos2(θ3)

(b3X-a3X)
2 j

θ3]
 
 
 
 
 
 

[
Ẋ

Ẏ

θ̇

]                                                            (4) 

 

jθi are given by Eq. 5, with i = 1, 2, 3, cθ = cos(θ) and sθ = sin(θ). 

 

j
θi

 = (bix c θ  - biy s θ)(biX-aiX)+(bix s θ  + biy c θ)(biY-aiY)                                                                                        (5) 

 

In order to obtain the relation between the linear and angular velocities and accelerations of the moving platform and 

the linear accelerations of the actuators of the mechanism, the differential of the inverse Jacobian has to be calculated, 

as shown in Eq. 6. The matrix of the derivatives of the inverse Jacobian is given by Eq. 7.  

 

q̈= [

v1̇

v2̇

v3̇

]= [
a1

a2
a3

]= J-1̇ ẋ+J-1ẍ = J-1̇ [
vX

vY
ωZ

]+J-1 [
aX

aY
αZ

]                                                                                                           (6) 

 

J-1̇ = [

- s θ1 θ1̇ c θ1 θ1̇ b1X
̇ s θ1 - b1Y

̇ c θ1 +b1X c θ1 θ1̇+b1Y s θ1 θ1̇

- s θ2 θ2̇ c θ2 θ2̇ b2X
̇ s θ2 - b2Y

̇ c θ2 +b2X c θ2 θ2̇+b2Y s θ2 θ2̇

- s θ3 θ3̇ c θ3 θ3̇ b3X
̇ s θ3 - b3Y

̇ c θ3 +b3X c θ3 θ3̇+b3Y s θ3 θ3̇

]                                                                            (7) 

 

biẊ and biẎ are given by Eq. 8 and 9, respectively, for i = 1, 2 and 3. 

 

biẊ = vX - ωZ(bix s θ + biy c θ)                                                                                                                                       (8) 

 

biẎ = vY + ωZ(bix c θ -biy s θ)                                                                                                                                       (9) 

 

The same method is applied with the relation between the velocities and accelerations of the moving platform and 

the angular accelerations of the actuators (Eq. 10). The matrix of the derivatives of Jθ
-1

 is given by Eq. 11. 

 

θ̈= [

ω1̇
ω2̇
ω3̇
]= [

α1

α2
α3

]= Jθ
-1̇
ẋ+Jθ

-1
ẍ = Jθ

-1̇
[
vX

vY
ωZ

]+Jθ
-1
[
aX

aY
αZ

]                                                                                                        (10) 

 

Jθ
-1̇

=

[
 
 
 
 Jθ11

-1̇
Jθ12

-1̇
Jθ13

-1̇

Jθ21

-1̇
Jθ22

-1̇
Jθ23

-1̇

Jθ31

-1̇
Jθ32

-1̇
Jθ33

-1̇
]
 
 
 
 

                                                                                                                                                (11) 

 

Jθi1

-1̇
, Jθi2

-1̇
 and Jθi3

-1̇
 are given by Eq. 12, 13 and 14, respectively, for i = 1, 2 and 3. 

 

Jθi1

-1̇
 = 

[2 c θi s θiωi(biY-aiY)-biẎ c2 ωi](biX-aiX)-2biẊ(aiY-biY) c2 θi

(biX-aiX)
3                                                                                                     (12) 

 

Jθi2

-1̇
 = 

2 c θi s θiωi(aiX−biX)-biẊ c2 θi

(biX-aiX)
2                                                                                                                                        (13) 

 

Jθi3

-1̇
 = 

[jθi
̇ c2 θi−2 c θi s θiωijθi](biX-aiX)-2biẊjθi c2 θi

(biX-aiX)
3                                                                                                                     (14) 

 

j
θi
̇  are given by Eq. 15 for i = 1, 2 and 3. 
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j
θi
̇  = (biy c θ -bix s θ)(biX-aiX)ωZ+(bix c θ +biy s θ)biẊ+(bix c θ -biy s θ)(biY-aiY)ωZ+(bix s θ +biy c θ)biẎ                   (15) 

 

As in the bond graph speed restrictions may be imposed directly, one can build the bond graph for the kinematics 

system analysis before mounting the graph for dynamic analysis. In a graph that correctly describes the kinematics (1 

and 0 junctions, transformers and gyrators), the dynamics (capacitors, inertias and resistors) can be imposed without the 

risk of creating models where the main constraints of mechanical systems are violated: geometric or kinematic ties 

(Speranza Neto and Silva, 2005). 

In this model, speed conditions are imposed by ideal velocity sources, that is, a source of velocity for vX, vY and ωZ. 

Besides these velocities, the others 1 junctions (of common velocities) indicates the linear (v1, v2 e v3) and angular 

velocities (ω1, ω2 e ω3) of the actuators. Thus, the inverse kinematics of the planar platform via bond graphs is 

represented as shown in Fig. 3, whereby the modulated transformer type two-port elements indicated by Jij
-1

 and Jθij
-1

  

represents the matrices J
-1

 (Eq. 2) and Jθ
-1

 (Eq. 4) terms of row i and column j, respectively. Figure 4 shows the same 

model using multibond graphs. 

 

 
Figure 3 – Bond graphs representation of the planar platform inverse kinematics. 

 

 
Figure 4 – Multibond graphs representation of the planar platform inverse kinematics. 

 

Inverse kinematic model validation   

A set of simulations were made to validate the inverse geometric model (vector loop equation) and the inverse 

kinematic model (using the matrices J
-1

 and Jθ
-1

). Table 1 presents the geometric parameters of the mechanism and 

Figure 5 shows two different configurations of the planar mechanism in the MatLab/Simulink simulation environment: 

the initial condition, where [X Y θ] = [0.0 0.0 0.262] (a) and a configuration where [X Y θ] = [20.0 30.0 0.262] (b), with 

X and Y in mm and θ in rad. 

 
Table 1 – Geometric parameters. 

Identification Symbol Value 

A1 joint coordinates in reference frame A (mm) a1 [-389.14 -224.67] 

A2 joint coordinates in reference frame A (mm) a2 [389.14 -224.67] 

A3 joint coordinates in reference frame A (mm) a3 [0.00 449.34] 

B1 joint coordinates in reference frame B (mm) b1 [-125.00 -72.17] 

B2 joint coordinates in reference frame B (mm) b2 [125.00 -72.17] 

B3 joint coordinates in reference frame B (mm) b3 [0.00 144.34] 

Linear actuator fixed length (mm) Lmin 255.00 

Stroke of the linear actuator (mm) S 100.00 
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                                                      (a)                                                                            (b) 

Figure 5 – 3-RPR parallel manipulator: (a) X = 0.0 mm, Y = 0.0 mm and θ = 0.000 rad; (b) X = 20.0 mm, Y = 30.0 

mm and θ = 0.262 rad (15.0º). 

 

Using the Jacobian matrices from the Eq. 2 and 4, the time response of the limbs was obtained for the input 

functions shown in Eq. 16. Figures 6.b and 6.d shows the linear and angular velocities of the actuators, respectively, 

obtained directly from the Jacobian matrices. Figure 6.a and 6.c shows the linear and angular displacements of the 

actuators, respectively, by integrating (with the corresponding boundary conditions) the velocities of the actuators. 

 

{

Ẋ = 50.00sin(πt) mm/s

Ẏ = 50.00sin(πt) mm/s

θ̇ = 0.785sin(πt) rad/s

                                                                                                                                            (16) 

 

         
                                                       (a)                                                                           (b) 

         
                                                       (c)                                                                           (d) 

Figure 6 – Linear and angular displacements and velocities of the actuators. 

 

Using the derivatives of the Jacobian matrices from the Eq. 7 and 11, the time response of the limbs was obtained 

for the input functions shown in Eq. 17. Figures 7.b and 7.d shows the linear and angular accelerations of the actuators 

and Fig. 7.a and 7.c shows the linear and angular velocities of the actuators, respectively, by integrating (with the 

corresponding boundary conditions) the accelerations of the actuators. 

 

{

𝑋̈ = 5.00sin(πt) mm/s2

𝑌̈ = -5.00sin(πt) mm/s2

𝜃̈ = 0.0873 rad/𝑠2
                                                                                                                                            (17) 
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                                                       (a)                                                                           (b) 

         
                                                       (c)                                                                           (d) 

Figure 7 – Linear and angular velocities and accelerations of the actuators. 
 

DYNAMIC MODEL USING POWER FLOW APPROACH 

In this Section, will be presented the planar platform dynamics model from the kinematic model using power flow. 

At first, only one rigid body will be considered in the dynamic model of the manipulator: the mobile platform (with 

mass mP and moment of inertia JPzz). According to the described in Speranza Neto (2007), the Eq. 18 describes the 

Newton-Euler equations in that rigid body mobile local frame. The differential equations in the local frame are given in 

Eq. 19. 

 

{

∑Fx  = mP(v̇X + vYωZ)

∑Fy  = mP(v̇Y - vXωZ)

∑Mz  = JPzzω̇Z

                                                                                                                                              (18) 

 

{
 
 

 
 v̇X = 

∑FX

mP
 - vYωZ

v̇Y = 
∑FY

mP
 + vXωZ

ω̇Z = 
∑MZ

JPzz

                                                                                                                                                     (19) 

 

According to Speranza Neto (1999), when possible, both completely match the power variables on the inputs and 

outputs of the subsystems (same type and direction of power flow) and a consistent cause and effect relation (which 

variables enter and which come out the models to be coupled), the resulting model is fully equivalent to that which 

would be obtained analytically, allowing your simulation from the simple connection of the modules. Considering this, 

the diagram (Fig. 8) that illustrates the relationships of cause and effect of the planar platform with three degrees of 

freedom is mounted. 

With the kinematic relationships of this parallel mechanism comes the relation of consequence of the power 

conservation on the actuators coupling with the rigid body based on the inverse Jacobian (Eq. 2). Equations 20 to 22 

presents the development of this relation. Using the same methodology, the relation of consequence of the power 

conservation on the actuators coupling with the rigid body based on Jθ
-1

 (Eq. 4) is shown in Eq. 23. 
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Figure 8 – Cause and effect relations of the planar platform. 

 

PRigid

Body

 = PActuation
System

 ⇒ [FX FY MZ]. [

vX

vY

ωZ

]  = [F1 F2 F3]. [

v1

v2

v3

]                                                                              (20) 

 

[FX FY MZ]. [

vX

vY

ωZ

]  = [F1 F2 F3].J
-1 [

vX

vY

ωZ

]                                                                                                        (21) 

 

[FX FY MZ] = [F1 F2 F3].J
-1 ⇒ [

FX

FY

MZ

]  = (J-1)
T

[

F1

F2

F3

]                                                                                    (22) 

 

[FX FY MZ] = [M1 M2 M3].Jθ

-1
 ⇒ [

FX

FY

MZ

]  = (Jθ

-1
)

T

[

M1

M2

M3

]                                                                                (23) 

 

Considering the inertia effects of the moving platform, with mass mP and mass moment of inertia JPzz, the bond 

graphs structure of the direct dynamics model of the planar platform with three degrees of freedom is shown in Fig. 9. 

Using the concepts, elements and the graphical representation of the Bond Graph Technique, was further added the 

inertial effects of the bodies that compound the actuators, introducing the terms mAi and JAi, which correspond to the 

mass and moments of inertia of the actuators, with i = 1, 2 and 3. It was also included in this model the equivalent 

viscous friction in the rotation joints. Figure 10 shows the same model using multibond graphs. 

 

 
Figure 9 – Bond graphs representation of the planar platform dynamics. 
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Figure 10 – Multibond graphs representation of the planar platform dynamics. 

 

From the model in the Fig. 10, the constitutive equations of the inertia elements (I) with integral (or natural) 

causality are written in their differential form. Thus, making explicit the efforts, inserting this equation into the junction 

structures equations and replacing the constitutive equations of the inertial elements with differential (forced) causality, 

the resistors elements (R) and the modulated transformers (MTF), the Eq. 24 is obtained, where MP, fe, MA, JA and BA 

are defined in Eq. 25 to 29, respectively. 

 

MPv̇=J-Tf
e
-J-TMAvȦ-Jθ

-T
JAωȦ-Jθ

-T
BAωA                                                                                                                    (24) 

 

MP= [

mP 0 0

0 mP 0

0 0 JPzz

]                                                                                                                                                 (25) 

 

f
e
= [

Fe1

Fe2

Fe3

]                                                                                                                                                                     (26) 

 

MA= [

mA1 0 0

0 mA2 0

0 0 mA3

]                                                                                                                                             (27) 

 

JA= [

JA1 0 0

0 JA2 0

0 0 JA3

]                                                                                                                                                  (28) 

 

BA= [

bA1 0 0

0 bA2 0

0 0 bA3

]                                                                                                                                                 (29) 

 

Substituting the equations from the derivatives of the Jacobian matrices (Eq. 7 and 11) and the Eq. 4 into the Eq. 24 

and solving the algebraic loops associated to the storage elements with differential causality, the state-space equations 

are obtained (Eq. 30), with M1 and M2 given in Eq. 31 and 32, respectively.  

 

v̇= (M1
-1M2) v+ (M1

-1J-T) f
e
                                                                                                                                    (30) 

 

M1=MP+J-TMAJ
-1+Jθ

-T
JAJθ

-1
                                                                                                                                      (31) 

 

M2=-J-TMAJ
-1̇ -Jθ

-T
JAJθ

-1̇
-Jθ

-T
BAJθ

-1
                                                                                                                             (32) 

 

In the simulation of the dynamic model were considered the mass and the mass moment of inertia of the moving 

platform, mP and JPzz, the mass and the mass moment of inertia of the actuators, mA1, mA2, mA3 and JA1, JA2, JA3, and the 

viscous friction coefficients from the actuators joints, bA1, bA2 and bA3. Table 2 presents the parameters used in this 

simulation. The time response of the limbs was obtained for the inputs shown in Fig. 11. Two pulses with amplitudes 5 

N and –5 N, widths of 0.1 s and interval of 0.1 s between them were given by the actuator 1. Figures 12.a and 12.b 

shows the linear and angular accelerations of the moving platform, Fig. 12.c and 12.d shows the linear and angular 

velocities of the moving platform and Fig. 12.e and 12.f shows the linear and angular displacements of the moving 

platform. 
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Figure 11 – Forces given by the actuators. 

 
Table 2 – Planar mechanism simulation parameters. 

Identification Symbol Value 

Mass of the platform (kg) mP 0.578 

Mass moment of inertia of the platform (kg.m
2
) JPzz 4.50x10

-3
 

Mass of the actuator rod (kg) mA1, mA2, mA3 0.175 

Mass moment of inertia of the actuator (kg.m
2
) JA1, JA2, JA3 7.28x10

-3
 

Viscous friction coefficient of the joints (N.s.m
-1

) bA1, bA2, bA3 0.006 

 

         
                                                       (a)                                                                           (b) 

         
                                                       (c)                                                                           (d) 

         
                                                       (e)                                                                           (f) 

Figure 12 – Linear and angular accelerations, velocities and displacements of the moving platform. 
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Dynamic modeling and simulation of a parallel planar mechanism using bond graph (power flow) approach 

CONCLUSIONS AND FUTURE WORK 

In this work a procedure for the determination of the analytical form of dynamic models of a 3-RPR parallel 

mechanism through the characterization of the power flow between its components was presented. From the 

geometrical relations associated to the displacement of their degrees of freedom, the kinematic relations associated to 

their velocities were determined. Considering the power flow between the degrees of freedom and between these and 

the actuating elements, the equilibrium relations of the forces and torques were obtained. Also, inertial effects of system 

components, stiffness and damping effects were taken into account and the equations of motion were analytically 

determined. This approach adopted the same fundamentals, concepts and elements of the Bond Graph Technique. 

A set of simulations were performed to validate this approach, using the real data (geometry, inertia, damping, 

actuators forces, etc) from a planar mechanism designed and built especially for the purpose to compare the simulated 

and experimental results. The ongoing work focuses in implement these models in the built platform in order to verify 

these responses on real environment.  
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