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ABSTRACT 
 
The Moment Of Inertia (MOI) method has been proposed by the authors to solve some of the 
shortcomings of the convex-enclosure methods to calculate path-equivalent ranges and 
mean components of complex non-proportional (NP) multiaxial load histories. For general 
histories, the load path must first be represented in a 5D deviatoric stress space. Such a 
stress path is then assumed to be represented by a homogeneous wire with unit mass, 
whose center of mass (centroid) is used to estimate the location of the mean component of 
the load path. The mass moment of inertia (MOI) of this hypothetical wire with respect to its 
centroid is calculated, which gives a measure of how much the load path stretches away 
from its mean component. The path-equivalent range of the true stress path is finally 
calculated as a function of this MOI, which can then be applied to stress-based damage 
models to predict fatigue initiation lives. In this work, the MOI method is reviewed and applied 
to multiaxial NP strain paths, to find an equivalent strain (or shear strain) range, associated 
with each rainflow-counted load event, for low-cycle strain-based damage calculations. A 
MOI version for critical-plane models is presented, where a path-equivalent shear strain 
range is obtained based on the projected shear-shear strain history on each candidate plane, 
providing better damage predictions for materials that fail due to a single dominant crack. 
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INTRODUCTION  
 
The Moment Of Inertia (MOI) method [1] is used to predict equivalent stresses or strains in 
non-proportional (NP) loading histories, for multiaxial fatigue damage calculations. In the MOI 
method, the stress or strain path in the deviatoric space is assumed to be represented by a 
homogeneous wire with unit mass, whose center of mass (centroid) estimates the location of 
the mean component. Then, the mass moment of inertia (MOI) of this hypothetical wire with 
respect to its centroid is calculated, giving a measure of how much the path stretches away 
from its mean component. The path-equivalent range of the true stress or strain path is finally 
calculated as a function of this MOI, which is a physically sound approximation, since paths 
with larger amplitudes would be associated with wider wires with increased MOI. 
 
The MOI method has been applied to tension-torsion [2] and to general 6D load histories [3], 
following a fatigue damage calculation approach based on stress invariants. For 6D histories, 
the history must first be represented in a 5D deviatoric stress or strain space, using the 5D 

vectors s   and e , defined as 
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These deviatoric stress and strain spaces are convenient because their Euclidean norms | s |  

and | | ( )e 1    are equal to the von Mises equivalent stresses and strains, where   is an 

effective Poisson ratio. For 2D tension-torsion histories with stress paths defined by the 

normal and shear components x and xy, then y z xz yz 0, while yz  x and  

xz yz 0. In this case,  
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Since only s1, s3, e1, and e3 are not null, the stress or strain paths of such tension-torsion 

histories can be represented in the 2D deviatoric diagrams s1  s3 or e1  e3, see Fig. 1.  
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Fig. 1: Stress path of a 2D tension-torsion load history in a deviatoric stress diagram (left) 
and its corresponding strain path in a deviatoric strain diagram (right), both assumed 
as homogeneous wires with unit mass. 

 
The tension-torsion version of the MOI method assumes that the 2D load path, which is 
represented by a series of points (s1, s3) or (e1, e3) that describe the stress or strain 
variations along it, is analogous to a homogeneous wire with unit mass. The mean 
component of the path is assumed to be located at the center of gravity of this hypothetical 
homogeneous wire shaped as the load history path. Its center of gravity is located at the 
perimeter centroid (s1m, s3m) or (e1m, e3m) of the stress or strain paths, calculated from contour 
integrals along it 
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where | |ds   and | |de  are the lengths of infinitesimal segments of the stress and strain paths, 

while ps and pe are the respective path perimeters, see Fig. 1. 
 
The MOI method calculates the path-equivalent range of a stress or strain path from the 
mass moment of inertia (MOI) of its corresponding unit-mass homogeneous wire. However, 
instead of using the axial MOI of the analogous wire, which is calculated about an axis, the 
Polar MOI (PMOI) is adopted instead, which represents the distribution of the wire (or load) 
path about a single point, its perimeter centroid. The PMOI of the stress or strain path about 
the perimeter centroid is then obtained from the contour integral of the square of the distance 
rm between each point in the path and the path centroid, see Fig. 1, resulting in   
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The path-equivalent ranges are assumed proportional to the radius of gyration of the load 
path, which is equal to the square root of the PMOI of the unit-mass wire. This hypothesis is 
physically sound, since path segments of the load history further away from their mean 
components contribute more to the path-equivalent range, in the same way that wire 
segments further away from the perimeter centroid contribute more to the PMOI of an 
imaginary homogeneous wire. The path-equivalent stress and strain ranges become then 
 

Mises Mises p(1 ) 12 I      or       (7) 

 

where the 12 term was calibrated to be consistent with the uniaxial case. The MOI method 
has been shown experimentally to effectively estimate path-equivalent ranges [2-3]. For 
convex stress or strain paths, it essentially reproduces the good predictions from the 
Maximum Rectangular Hull method [4]. 
 
The tension-torsion version or the 6D generalization of the MOI method can be directly used 
with invariant-based multiaxial fatigue damage models like Sines and Crossland. However, 
models based on stress or strain invariants like von Mises should not be used to make 
multiaxial fatigue damage predictions for directional-damage materials, like most metallic 
alloys, which fail due to a single dominant crack. For such materials, the MOI method needs 
to be applied to projected stress or strain paths, as discussed next. 
 
 
MOI METHOD FOR THE CRITICAL-PLANE APPROACH 
 
Most metallic alloys tend to initiate a single dominant microcrack under fatigue loadings. 
Under multiaxial loading conditions, this behavior tends to be better modeled by critical-plane 
fatigue-damage models, which search for the material plane at the critical point where the 
corresponding accumulated fatigue damage parameter is maximized, than by the simpler 
invariant-based models, which are direction independent. Multiaxial fatigue damage is then 
calculated in several candidate planes from their projected load histories, to find the critical 
plane where damage is maximized and thus where the microcrack is expected to initiate. 
 
According to the critical-plane approach, the MOI method would lead to significant errors if 
directly applied to the original NP deviatoric histories, because the resulting ranges would be 
calculated on different planes at different points in time, not on the critical plane where the 
microcrack is expected to. So, instead of projecting the original 6D stress or strain history 



 

onto 5D deviatoric spaces, it should be projected onto the several candidate planes before 
proceeding with the fatigue damage analysis. 
 
Although in general any plane can be a candidate at the critical point, Bannantine and Socie 
[5] narrowed down the search space for the critical plane at the critical point of the structural 
component when it is under free-surface conditions, as usual. They classified the most 
common microcracks into three types, which depend on the fatigue damage mechanism: 
Case A tensile or Case A shear microcracks, which grow at the critical point along planes 
perpendicular to the free surface; and Case B shear microcracks, which grow on planes that 

make an angle  45o with the free surface, see Fig. 2. To compact and hopefully clarify the 
critical plane notation in this work, Case A tensile planes are represented as A90(T), Case A 

shear as A90(S), and Case B shear as B45(S), where 90 or 45 come from their  angles in 
degrees with respect to the free surface. 
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Fig. 2: NP shear strain path B  A (or shear stress path B  A) acting on candidate planes at 
45o from a free surface, for a general loading history. 

 
A90(T) or A90(S) microcracks, which initiate perpendicular to the free surface, only involve 
one normal and one shear stress/strain component, so normal or shear ranges are quite 
easy to calculate under variable amplitude loading (VAL) conditions using classic uniaxial 
rainflow procedures. However, B45(S) microcracks involve in general two shear components, 

an in-plane stress A (or strain A) and an out-of-plane B (or B), see Fig. 2, which must be 
properly combined to evaluate their joint effect on fatigue damage. 
 

The combination of both usually non-zero B and A ranges may cause the initiation of a 

combined Mode II-III B45(S) microcrack, with B mainly contributing to increase its depth 

while A is mainly tending to increase its width. The combination of B and A into an 

equivalent range  is not a trivial step under general NP loadings, where the B and the A 
histories may be (and usually are) out of phase. 
 
This process requires first a 2D rainflow algorithm such as the Modified Wang Brown method 

[6] to identify every load event from the B  A (or B  A) history. Then, for each identified 

load event, its path segments are used to calculate a path-equivalent shear stress  (or 

strain ) range. The simplest approach for the B  A diagram is to assume a path-

equivalent    2 2
BA  for each identified load event, as discussed in [7]. However, this 

simple equivalent range expression would not be able to tell apart e.g. a rectangular from a 

less damaging cross-shaped B  A path with same B and A, because both would 

wrongfully generate the same equivalent shear stress range . Hence, this path-equivalent 
range is not a suitable solution to solve these problems in practical applications. 



 

 
Another possible approach is to use the so-called convex-enclosure methods [1], which try to 

find circles, ellipses, or rectangles that circumscribe the load-event path in such 2D B  A or 

B  A diagrams. But convex-enclosure algorithms do not consider the actual shape of the 
loading path, usually failing when the load path shape is not convex. 
 

This issue can be solved if the Moment-Of-Inertia (MOI) method is applied to the B  A (or 

B  A) history projected on each B45 candidate plane, since it considers the influence of the 
load path shape, not only its convex enclosure. To do so, the load history of the two shear 
stresses or strains acting parallel to each B45 candidate plane first needs to be represented 

in a 2D B  A or B  A diagram, see Fig. 3, where a 2D rainflow followed by a 2D shear-
shear version of the MOI method can be applied. 
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Fig. 3: Stress path of a 2D shear-shear history on a candidate plane (left) and corresponding 

strain path (right), both assumed as homogeneous wires with unit mass. 
 

For each rainflow-counted path, the path perimeters p or p, the mean shear components 

(Bm, Am) or (Bm, Am), the associated PMOI Ip, and the resulting path-equivalent ranges  

and  from the MOI method become 
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The resulting ranges are then used in a shear-based multiaxial fatigue model together with 
Miner’s rule to obtain the accumulated shear damage on each B45 candidate plane. The 
critical plane is then the one among all A90(T)/A90(S) and B45(S) planes that has the 
maximum accumulated damage. For further details, see [8]. 
 
  



 

CONCLUSIONS 
 
In this work, strain-based versions of the Moment Of Inertia (MOI) method were presented to 
allow the calculation of path-equivalent strain ranges under low cycle fatigue conditions. A 
critical-plane version of the MOI method was also presented, applicable for materials that fail 
due to a single dominant crack, like most metallic alloys. The combination of both out-of-

plane B and in-plane A shear components into an equivalent strain range  is fundamental 
to correctly account for shear damage on candidate planes inclined at 45o from the free 
surface. The MOI method is robust, computationally inexpensive and physically sound, since 
load paths with larger amplitudes are intrinsically associated with wider wires with increased 
MOI. Moreover, it deals with non-convex load paths better than convex-enclosure methods, 
since it accounts for the contribution of every single segment of the path. It thus deals with 
arbitrarily shaped multiaxial load histories without losing information about such shapes, 
while its different versions make it applicable for both invariant-based and critical-plane 
approaches. 
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