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ABSTRACT 
 
The best multiaxial low-cycle fatigue damage models use both the stress and strain histories 
to quantify fatigue damage accumulation. However, in most engineering applications, either 
the stress or the strain history is known, but not both. Therefore, to properly reproduce 
memory effects on stress-strain loops induced by non-proportional (NP) elastoplastic 
histories, incremental plasticity models are indispensable to correlate infinitesimal changes in 
all stress components with the associated infinitesimal strain changes, and vice-versa. These 
models are based on three fundamental equations: (i) the yield function, which describes 
combinations of stresses that lead to plastic flow; (ii) the plastic flow rule, which describes the 
relationship between stresses and plastic strains; and (iii) the hardening rule, which defines 
how the yield resistance changes with plastic straining. To predict the Bauschinger effect 
under multiaxial conditions, two kinematic hardening formulations using multiple surfaces 
have been commonly used: the multi-linear Mróz and the non-linear kinematic formulations. 
In this work, multiaxial stress-strain predictions based on these two formulations are 
evaluated from elastoplastic strain-controlled tension-torsion experiments performed on 
tubular specimens of 316L stainless steel, for several challenging NP paths. 
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INTRODUCTION 
 
The Bauschinger effect causes kinematic hardening, which can be modeled in stress spaces 
by allowing the yield surface to translate with no change in its size or shape. The radius S of 
the yield surface is fixed while its center is translated, changing the associated generalized 
plastic modulus P that defines the slope between stress and plastic strain increments in the 
Prandtl-Reuss plastic flow rule. The main difference among kinematic hardening models is 
how to obtain the scalar P as the yield surface translates, as well as the direction of such 
translation under general multiaxial loads. Most of these hardening models can be divided 
into two classes: Mróz multi-surface and non-linear kinematic (NLK) models. 
 
The multi-surface kinematic hardening model proposed by Mróz [1] describes the behavior of 
elastoplastic solids through a family of nested surfaces in stress space, the innermost being 
the yield surface associated with the material yield strength. It assumes P is piecewise 
constant, resulting in a multi-linear description of the stress-strain curve. Garud [2] improved 
this model to avoid intrinsic numerical errors during the surface translation calculations. 
Despite popular, such multi-linear models cannot predict any uniaxial ratcheting or mean 



 

stress relaxation caused by unbalanced loadings, since their idealized uniaxial hysteresis 
loops are assumed to always perfectly close. In addition, under several non-proportional 
(NP) loading conditions, these models predict multiaxial ratcheting with a constant rate that 
never decays, severely overestimating the ratcheting effect measured in practice [3]. 
 
Non-linear kinematic (NLK) models introduce non-linearity in the hardening surface 
translation equations and in the calculation of the modulus P, to better predict the stress-
strain history associated with unbalanced loadings. Armstrong and Frederick’s single-surface 
original formulation [4] was improved by Chaboche [5] to include multiple nested surfaces, in 
a similar framework as the one from Mróz, but with a non-linear instead of multi-linear 
formulation. In the next section, the multi-surface hardening framework is briefly presented, 
based on an efficient 5D reduced-order deviatoric stress space. 
 
 
MULTI-SURFACE HARDENING FRAMEWORK  

 

In the multi-surface framework, the innermost circle is the monotonic yield surface, with 

radius r1  SY, see Fig. 1. In addition, M 1 hardening surfaces with radii r1 < r2 < … < rM  1 

are defined, along with an outermost failure surface whose radius rM  1 is equal to the true 

rupture stress U of the material. Their centers are located at points cis  with i  2, …, M  1, 

respectively. These nested circles cannot cross one another, must have increasing radii, and 

for a virgin material they all are initially concentric at the origin of the stress space. The 

failure surface never translates, i.e. its center always remains at the origin of the stress 

space,  M 1cs 0 . Except for the failure surface, all other hardening surfaces can translate as 

the material plastically deforms and hardens. The difference between the radii of each pair of 

consecutive surfaces is defined as ri  ri  1  ri. In principle, all hardening surfaces radii ri 

may change during plastic deformation as a result of isotropic and NP hardening effects. On 

the other hand, any changes in the stress state fully inside the yield surface are assumed 

elastic, not resulting in any surface translation as long as   1c 1|s s | r . 

 

The current location of the yield surface center is known as the backstress vector 1cs  . It 

can be decomposed as the sum of M surface backstresses 1  , …, M   that describe the 

relative positions i i 1i c cs s     between centers of the consecutive hardening surfaces, see 

Fig. 1. Note that the length (norm) i   of each surface backstress is always between i 0  , 

if the surface centers ics  and i 1cs   coincide (as in an unhardened condition), and i ir   , if 

the surfaces are mutually tangent (a saturation condition with maximum hardening). 

 

All yield and hardening surfaces: (i) must translate as rigid bodies when the point s  that 

defines the current deviatoric stress state in the adopted deviatoric space reaches their 
boundaries, to guarantee that such stress point is never outside any surface; and (ii) they 
cannot cross through one another, therefore they gradually become mutually tangent to one 

another at the current stress point s as the material plastically deforms. 

 
Mróz Linear Formulation 
 
In the Mróz multi-surface formulation, a hardening surface can only translate if the current 

stress state s  reaches its border. The outermost surface that is moving at any instant is 

called the active surface, denoted here as the surface with index iA. As a result, during plastic 

straining, all inner surfaces 1, 2, …, iA 1 must be mutually tangent at s  (to not cross each 



 

other) and translate altogether with the active surface iA. Thus, their centers do not move 

relatively to each other, resulting in null increments  id 0 . The Mróz translation rule only 

needs then to be applied to the evolution id   of the active surface i  iA, giving 
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Fig. 1: Yield, hardening, and failure surfaces in the deviatoric space for M  3, showing the 

backstress vector    that defines the location of the yield surface center 1cs    and its 

components 1
 , 2

 , and 3
  that describe the relative positions between centers. 

 

The kinematic rule for the translation id   of a surface can be defined from an assumed 

translation direction iv . Prager [6] assumed that iv  is parallel to the direction of the unit 

vector n  normal to the surface at s . Ziegler, on the other hand, assumed id   happens in 

the radial direction   cis s  from the surface center [7]. For von Mises materials, both Prager’s 

and Ziegler’s rules result in i 1 i iiv n ( r r ) n r       . Mróz [1], on the other hand, assumed 

id   occurs in a direction     i i iv n r  , where i  is called the “dynamic recovery” term.  

 
In the Mróz formulation, each surface is associated with a constant generalized plastic 

modulus Pi (i  1, 2, …, M  1), which altogether define a field of hardening moduli. The value 
of P at each instant, to be used in the Prandtl-Reuss plastic flow rule, is then chosen as the 

Pi from the active surface i iA. Such piecewise-constant values of P result in a multi-linear 
representation of the stress-strain curve, in a so-called “uncoupled formulation” [8]. 
 



 

The Mróz formulation results in very good plasticity predictions for proportional problems 
without significant mean stresses or ratcheting. However, the directions of the calculated 
stress paths may significantly vary depending on the number of surfaces used, while better 
predictions are not necessarily obtained from using a larger number of surfaces. Moreover, it 
is not able to correctly predict ratcheting and mean stress relaxation effects, because of its 
multi-linear (instead of non-linear) representation of the stress-strain behavior. A more critical 
problem happens e.g. for a stress state contouring a hardening surface, where the Mróz 
formulation wrongfully predicts zero plastic straining even though the yield surface is clearly 
moving in circles. A better approach is to replace such multi-linear models with a non-linear 
kinematic hardening formulation, described next. 
 
Non-Linear Kinematic (NLK) Formulation  
 
During plastic straining, in the NLK multi-surface formulation [4-5] P is assumed coupled with 

the directions iv , while the yield and all hardening surfaces are translated, as opposed to the 

Mróz formulation, where all surfaces outside the active one would not move. Thus, plastic 

straining causes non-zero increments    i i id p v dp  for the yield (i  1) and all non-

saturated hardening surfaces i  2, …, M, where dp is the equivalent plastic strain increment 
and pi is a generalized plastic modulus coefficient that must be calibrated for every hardening 
surface i, used in the calculation of P. The main difference among the several NLK hardening 

models proposed in the literature rests in the equation for iv , which for most models can be 

condensed into the general equation [9] 
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which includes calibration parameters known as the ratcheting exponent i, the multiaxial 

ratcheting exponent mi, the ratcheting coefficient i, and the multiaxial ratcheting coefficient i. 
Table 1 compares the main differences between the Mróz and NLK formulations. 
 

 Mróz multi-surface NLK multi-surface 

Surface translation during 
plastic straining: 

no translation outside 
active surface 

yield and all hardening surfaces  
(including bounding surface) translate 

Surface translation  

direction iv : 
defined by linear rules 

such as Mróz 
defined by  

non-linear rules 

Variation 1d   during 

plastic straining: 
id 0  only for the 

active surface i iA  

all backstress increments 1d   (i  1, 

2, …, M) can be different than zero 

Generalized plastic  

modulus P: 

piecewise-constant        

P  Pi from the  

active surface i  iA 

non-linear and continuously varying,  

calculated from relative positions 
among all surfaces 

Consistency condition that 

prevents s  from moving 

outside any surface: 

used to calculate 1d   

and associated  

translations cids  

used to calculate  
the non-linear value of P 

 
Table 1: Comparison between the Mróz and NLK multi-surface model formulations to predict 

multiaxial kinematic hardening effects. 
 



 

EXPERIMENTAL VALIDATION 
 

Both Mróz and NLK formulations were computationally implemented, to compare their 
prediction potential under multiaxial NP conditions. Isotropic, NP, and several versions of the 
Mróz/Garud and NLK models were simulated for various representative load paths. To 
improve the calculation accuracy, the backstress was divided into 10 additive components, 

resulting in M  10 yield and hardening surfaces, adopted in all simulations for a fair 
comparison. 
 
Tension-torsion experiments were then performed on tubular annealed 316L stainless steel 
specimens in a multiaxial testing machine. Engineering stresses and strains were measured 
using a load/torque cell and an axial/torsional extensometer. The cyclic properties of this 
steel were obtained from uniaxial tests, which were then used to calibrate the parameters of 
all simulated models, to be used in the predictions of the multiaxial NP behavior. Figure 2 

shows the applied strain-controlled histories for six strain paths x × xy/3, as well as the 
predicted and measured stress paths after isotropic and NP hardening stabilization, using 
Jiang-Sehitoglu’s [10] NLK model. A relatively good agreement has been found using NLK 
models, while similar simulations using Mróz/Garud’s multi-linear models failed to converge 
to stabilized loops, wrongfully predicting a net plastic strain accumulation (false ratcheting). 
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Fig. 2: Experimental and predicted stress vs. shear stress paths (in MPa) using NLK models, 
for several strain-controlled tension-torsion histories. 

 



 

CONCLUSIONS 
 
Multiaxial stress-strain predictions based on Mróz and NLK formulations were evaluated from 
elastoplastic strain-controlled tension-torsion experiments on 316L stainless steel tubular 
specimens, for several challenging NP paths. It was found that the Mróz formulation has 
several issues with NP loadings, wrongfully predicting ratcheting even in balanced loadings, 
or zero plastic straining in elastoplastic circular paths. The NLK formulation, on the other 
hand, can deal with unbalanced loadings, being able as well to predict uniaxial and multiaxial 
ratcheting and mean stress relaxation. The NLK formulation is thus strongly recommended 
over the popular Mróz/Garud approach for cyclic variable-amplitude loadings, ultimately 
resulting in better low-cycle fatigue life predictions under multiaxial loads. 
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