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Abstract. Strip-yield models, which assume that the effective stress intensity range (Keff) is the driving force for fatigue 

crack propagation, are widely used for fatigue design purposes. Since originally proposed by Newman in 1981, a few 

strip-yield algorithms have been developed and implemented in commercial or proprietary codes, to calculate fatigue 

crack opening stresses created by plasticity-induced crack closure. Since such codes are not properly discussed in the 

open literature, here an academic strip-yield algorithm especially developed to calculate Keff under constant and 

variable amplitude loading is described in detail. Like in similar commercial codes, this homemade algorithm uses 

equations for plastic zones, element displacements, and opening stresses proposed by Newman, and combine them with 

a proper calculation procedure. Moreover, its capability to reproduce measured opening loads and fatigue crack growth 

rates is also analyzed. 
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1. INTRODUCTION 

 

After identifying plasticity-induced fatigue crack closure under tensile loads, Elber (1971) speculated that the effective 

stress intensity range Keff  Kmax  Kop (instead of K  Kmax  Kmin) would be the actual fatigue crack driving force, 

where Kmax and Kmin are the maximum and the minimum values of the applied stress intensity factor (SIF), and Kop ≥ Kmin 

is the SIF value that completely opens the fatigue crack. Despite its many limitations (Vasudevan et al. 2003,  Meggiolaro 

and Castro, 2003) this idea still is supported by many fatigue experts, because it can rationalize many load order effects 

induced by variable amplitude loadings (VAL), like delays and arrests of fatigue crack growth (FCG) after overloads, as 

well as FCG accelerations after underloads (Skorupa, 1999). 

Indeed, based in a good correlation between Keff and FCG rates (da/dN) reported by von Euw et al. in 1972, shortly 

after Elber proposed it, this idea was promptly accepted in the fatigue community. Since then, many experimental works 

have been performed to test Keff predictions under several conditions, see e.g. Skorupa (1998) for a quite comprehensive 

although somewhat biased review of the work done in the last century.  

The most successful models that use Keff principles for fatigue design purposes are the so-called strip-yield models 

(SYM) based on the Dugdale (1960) idea. Dill and Saff (1976), Newman Jr. (1981), de Koning and Liefting (1988), and 

Wang and Blom (1991) are examples of such SYMs. In fact, a SYM-based algorithm is included into the NASGRO 

software developed by the NASA team, an early example of a code used for design purposes (which used to be free, but 

is not anymore). Similar codes are particularly popular in the aerospace industry. The objective of this work is to describe 

an algorithm for SYM-based calculation procedures (Newman 1981, 1992) in a suitable code capable of estimating fatigue 

lives under VAL. In particular, the entire calculation procedure is presented, to clearly show how to deal with the crack 

closure transient behavior under VAL, an issue not properly discussed in the open literature, due to its commercial 

applications. Kop values calculated by the proposed algorithm are compared with Newman’s estimates for constant 

amplitude loads (CAL) and with the results published by de Koning and Liefting (1988) for VAL. 
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2. SYM ALGORITHM DESCRIPTION 

 

SYMs numerically estimate the crack opening SIFs Kop needed to find Keff using the classic Dugdale model (1960), 

modified to leave plastically deformed material around the faces of the advancing fatigue crack. Newman´s original SYM 

(1981) is based on Elber’s plasticity-induced crack closure idea. It was developed for a finite plate with a central crack 

(an M(T) specimen) remotely loaded by a uniform tensile stress n. The plastic zone size pz and the surface displacements 

are obtained by the superposition of two linear elastic problems: (i) a cracked plate loaded by a remote uniform nominal 

tensile stress n (Fig. 1a), and (ii) by a uniform distributed stress  applied over crack surface segments (Fig. 1b). 

 

 

Figure 1. (a) M(T) with a crack of size 2(a  pz) loaded by a remote tensile stress n; and (b) M(T) with a crack of size 

2(a  pz) loaded by symmetrical distributed stresses  over two segments near the crack tips (Newman, 1981). 

 

 

Figure 2: Crack surface displacements and stress distribution along the crack line (Newman Jr, 1981). 

 

  Figure 2 shows the crack surface displacements and the stress distributions around the crack tip at the maximum max 

and minimum min applied stresses. It is composed of three regions: (1) a linear elastic region containing a fictitious crack 

of half-length a  pz; (2) a plastic region of length pz; and (3) a residual plastic deformation region along the crack surface. 

The plastic zone pz is discretized in a series of rigid-perfectly plastic 1D bar elements, which are assumed to yield at 

the flow strength of the material, SF = (SY + SU)/2, to somehow account for the otherwise neglected strain-hardening 
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effects. These elements are either intact inside the plastic zone or broken at the crack wake, but storing their residual 

plastic deformations. If they are in contact, the broken bar elements can carry compressive stresses, therefore they can 

yield in compression when their stresses reach –SF. The (broken) elements along the crack face that are not in contact do 

not affect the crack surface displacements, or carry stresses. 

The SYM uses a constraint factor  to increase the tensile flow stress SF in the unbroken elements along the plastic 

zone during loading in thick plates. This is done to somehow consider the effects of the actually 3D stresses around the 

crack tip, caused by plastic restrictions when the plate is thick and cannot be assumed to work under plane stress pl-. 

So, this constraint factor should vary from   1 for plane-stress to up to   1/(1  2)   3 for plane-strain limit 

conditions, where  is Poisson's coefficient (albeit  is often used as a data-fitting parameter in practical applications). 

Since there is no crack-tip singularity when the crack closes, this constraint factor is not used to modify the compressive 

yield stress during unloading, assuming the conditions around the crack tip tend to remain uniaxial.  

The coordinate system shown in Fig. 2 is fixed and its origin lies at the center of the central crack, whose length is 2a. 

Due to symmetry, only one quarter of the plate needs to be analyzed. Equation (1) governs the system response by 

requiring compatibility between the LE part of the cracked plate and all bar elements. When the length Lj of the broken 

wake elements along the crack faces is larger than their displacement Vj under min, they come into contact and induce a 

stress j needed to force Vj  Lj. The influence functions f(xi) and g(xi, xj) used in Eq. (1) are related to the plate geometry 

and its width correction, as expressed in Eqs. (2-4). 

 

𝑉𝑖 = 𝜎𝑛𝑓(𝑥𝑖) − ∑ 𝜎𝑗 ∙ 𝑔(𝑥𝑖 , 𝑥𝑗)𝑛
𝑗=1                                                                                                                                (1) 

 

𝑓(𝑥𝑖) = [2(1 − 𝜂2) 𝐸⁄ ]√(𝑑2 − 𝑥𝑖
2) sec(𝜋𝑑 2𝑊⁄ )                                                                                                     (2) 

 

𝑔(𝑥𝑖 , 𝑥𝑗) = 𝐺(𝑥𝑖 , 𝑥𝑗) + 𝐺(−𝑥𝑖 , 𝑥𝑗)                                                                                                                              (3) 
 

𝐺(𝑥𝑖 , 𝑥𝑗) =
2(1−𝜂2)

𝐸
{(𝑏2 − 𝑥𝑖) ∙ 𝑐𝑜𝑠ℎ−1 (

𝑑2−𝑏2𝑥𝑖

𝑑|𝑏2−𝑥𝑖|
) − (𝑏1 − 𝑥𝑖) ∙ 𝑐𝑜𝑠ℎ−1 (

𝑑2−𝑏1𝑥𝑖

𝑑|𝑏1−𝑥𝑖|
) + √𝑑2 − 𝑥𝑖

2 ∙

[𝑠𝑖𝑛−1(𝑏2 𝑑⁄ ) − 𝑠𝑖𝑛−1(𝑏1 𝑑⁄ )] ∙ [
𝑠𝑖𝑛−1 𝐵2−𝑠𝑖𝑛−1 𝐵1

𝑠𝑖𝑛−1(𝑏2 𝑑⁄ )−𝑠𝑖𝑛−1(𝑏1 𝑑⁄ )
] ∙ √𝑠𝑒𝑐 (

𝜋𝑑

2𝑊
)}                                                                     

      (4) 

 

Notice that   0 for plane stress and    for plane strain, and that B1 and B2 are calculated from Eq. (5), b1 and b2 

from Eqs. (6) and (7), and the plastic zone pz from Eqs. (8) and (9). 

 

𝐵𝑘 = sin(𝜋𝑏𝑘 2𝑊⁄ ) sin(𝜋𝑑 2𝑊⁄ )⁄                                                                                                                              (5) 
 

𝑏1 = 𝑥𝑗 − 𝑤𝑗                                                                                                                                                                 (6) 
 

𝑏2 = 𝑥𝑗 + 𝑤𝑗                                                                                                                                                                 (7) 
 

𝑝𝑧 = 𝑎{(2𝑊 𝜋𝑎⁄ ) ∙ sin−1{sin(𝜋𝑎 2𝑊⁄ ) ∙ sec[(𝜋𝜎𝑛𝑓) (2𝛼𝑆𝐹)⁄ ]} −1}                                                                       (8) 
 

𝑓 = 1 + 0.22(𝑎 𝑊⁄ )2                                                                                                                                                  (9) 

 

In Fig. 2, the plastic zone ahead of the crack tip pz is divided into 20 bar elements with variable width ratio, namely  

2wi/pz  0.01, 0.01, 0.01, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.058, 0.066, 0.074, 0.082, 0.09, 0.098, 

0.107, 0.125, 0.15. The smallest element n 1 is the closest to the crack tip, at x  a. After calculating the pz size induced 

by the peak stress max of the current cycle, the lengths of the bar elements inside the plastic zone become: 

 

𝐿𝑖 = 𝑉𝑖 = 𝜎𝑚𝑎𝑥 ∙ 𝑓(𝑥𝑖) − ∑ 𝛼 ∙ 𝑆𝐹 ∙ 𝑔(𝑥𝑖 , 𝑥𝑗)20
𝑗=1                                                                                                         (10) 

 

When the plate is unloaded down to min (Fig. 2b), the bar elements inside pz unload until some of them near the crack 

tip start to yield in compression, when they try to reach a stress j ≤  SF. The broken elements located inside the plastic 

wake formed along the crack surfaces, which store residual deformations, may come into contact and carry compressive 

stresses as well. Some of these elements may also yield in compression, if they try to reach j ≤   SF. The compatibility 

equation for the minimum applied load (min) is expressed in Eq. 11. It can be rewritten to calculate the element stresses 

(Eq. 12), in which the stresses i acting at each one of the n elements is calculated considering the stretched length Li 

induced by the displacements caused by the previous maximum load. 

 

∑ 𝜎𝑗𝑔(𝑥𝑖 , 𝑥𝑗)𝑛
𝑗=1 = 𝜎𝑚𝑖𝑛𝑓(𝑥𝑖) − 𝐿𝑖                                                                                                                            (11) 
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(𝜎𝑖)𝐼 = [𝑆𝑓𝑖 − 𝐿𝑖 − ∑ (𝜎𝑗)
𝐼
𝑔𝑖𝑗

𝑖−1
𝑗=1 − ∑ (𝜎𝑗)

𝐼−1
𝑔𝑖𝑗

𝑛
𝑗=𝑖+1 ] 𝑔𝑖𝑖⁄                                                                                       (12) 

 

This system of equations is solved by Gauss-Seidel’s iterative method with added constraints. The constraints are 

related to the idealized yield behavior in tension and compression of the bar elements inside pz, see Eqs. (13) and (14), 

and to element separation and compressive yielding for the broken elements along the plastic wake that envelops the 

crack surfaces, see Eqs. (15) and (16). The adopted convergence criterion for the iteration process is an error lower than 

0.01*SF. 

 

𝐹𝑜𝑟 𝑥𝑗 > 𝑎, 𝑖𝑓 𝜎𝑗 > 𝛼𝑆𝐹  𝑠𝑒𝑡 𝜎𝑗 = 𝛼𝑆𝐹                                                                                                                       (13) 

 

𝐹𝑜𝑟 𝑥𝑗 > 𝑎, 𝑖𝑓 𝜎𝑗 < −𝑆𝐹  𝑠𝑒𝑡 𝜎𝑗 = −𝑆𝐹                                                                                                                     (14) 

 

𝐹𝑜𝑟 𝑥𝑗 ≤ 𝑎, 𝑖𝑓 𝜎𝑗 > 0 𝑠𝑒𝑡 𝜎𝑗 = 0                                                                                                                               (15) 

 

𝐹𝑜𝑟 𝑥𝑗 ≤ 𝑎, 𝑖𝑓 𝜎𝑗 < −𝜎𝐹  𝑠𝑒𝑡 𝜎𝑗 = −𝑆𝐹                                                                                                                     (16) 

 

From the stresses in the elements at the minimum load, their plastic residual deformations can be recalculated using 

Eq. (17). For the elements not in contact, it follows that i = 0 and Li < Vi. 

 

𝐿𝑖 = 𝑉𝑖 = 𝜎𝑚𝑖𝑛 ∙ 𝑓(𝑥𝑖) − ∑ 𝜎𝑗 ∙ 𝑔(𝑥𝑖 , 𝑥𝑗)𝑛
𝑗=1                                                                                                               (17) 

 

The stress op that completely opens the crack surfaces is calculated from Eqs. (18) and (19) with k  1 or 2 according 

to Newman (1992). In these equations, aw is the sum of the initial crack length with all element widths at the crack surface, 

but the width for the element n is replaced by the largest crack growth increment during the generation of a*, not by the 

entire increment over which the opening stress is held constant. 

 

𝜎𝑜𝑝 = 𝜎𝑚𝑖𝑛 − ∑ (2𝜎𝑗 𝜋⁄ )𝑛
𝑗=21 ∙ [sin−1 𝐵2 − sin−1 𝐵1]                                                                                               (18) 

 

𝐵𝑘 = 𝑠𝑖𝑛(𝜋𝑏𝑘 2𝑊⁄ ) 𝑠𝑖𝑛(𝜋𝑎𝑤 2𝑊⁄ )⁄                                                                                                                         (19) 

 

The opening stress op is kept constant during a small arbitrary crack increment a*, to save computational cost. At 

the maximum load, a* is calculated from Eq. (20), where Rx  R  min/max if R > 0 and Rx = 0 if R ≤ 0. In the original 

FASTRAN code, the crack increment is assumed to be a*  0.05pz, and Eq. (20) is used to improve the opening stress 

calculations for higher stress ratios (Newman, 1992). 

 

∆𝑎∗ = 0.2(𝑝𝑧 4⁄ ) ∙ (1 − 𝑅𝑥)2                                                                                                                                    (20) 

 

The number of load cycles N needed to grow the crack by this a* increment (limited to 500 cycles) is calculated 

by the NASGRO da/dN×Keff FCG rule, Eq. (21) (NASGRO, 2002), in which Cn, m, p and q are data fitting parameters, 

Kc is the fracture toughness, and the threshold Kth can be estimated using Eqs. (22) and (23). K1
* is given by Eq. (24), 

A0 by Eq. (25), K1 is the threshold measured at high R when the crack is closure-free, Cth is still another empirical data-

fitting constant with different values for positive or negative (superscript p or n) values of R, and a0 is an "intrinsic crack 

size" (assumed fixed, a0  0.0381mm). K1 is also called the intrinsic threshold by Keff supporters, or the threshold of 

the maximum by the Unified Approach followers, who say that K and Kmax are the true fatigue crack driving forces 

(Vasudevan et al, 2003). 

 

𝑑𝑎 𝑑𝑁⁄ = 𝐶𝑛(∆𝐾𝑒𝑓𝑓)
𝑚

∙ (1 − ∆𝐾𝑡ℎ ∆𝐾⁄ )𝑝 (1 − 𝐾𝑚𝑎𝑥 𝐾𝑐⁄ )𝑞⁄                                                                                   (21) 

 

∆𝐾𝑡ℎ = ∆𝐾1
∗[(1 − 𝑅) (1 − 𝐾𝑜𝑝 𝐾𝑚𝑎𝑥⁄ )⁄ ]

(1+𝑅𝐶𝑡ℎ
𝑝

)
(1 − 𝐴0)(1−𝑅)𝐶𝑡ℎ

𝑝

, 𝑅 ≥ 0⁄                                                              (22) 

∆𝐾𝑡ℎ = ∆𝐾1
∗[(1 − 𝑅) (1 − 𝐾𝑜𝑝 𝐾𝑚𝑎𝑥⁄ )⁄ ]

(1+𝑅∙𝐶𝑡ℎ
𝑚)

(1 − 𝐴0)(𝐶𝑡ℎ
𝑝

−𝑅∙𝐶𝑡ℎ
𝑚), 𝑅 < 0⁄                                                         (23) 

∆𝐾1
∗ = ∆𝐾1[𝑎 (𝑎 + 𝑎0)⁄ ]1 2⁄                                                                                                                                        (24) 

𝐴0 = (0.825 − 0.34𝛼 + 0.05𝛼2) ∙ [cos(𝜋𝜎𝑚𝑎𝑥 2𝑆𝐹⁄ )]1 𝛼⁄                                                                                        (25) 
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To keep the number of elements reasonable, say less than 40, a lumping process along the plastic wake is used to join 

the bar elements, combining adjacent elements i and i  1 to form a single one when 

 

2(𝑤𝑖 + 𝑤𝑖+1) ≤ 𝑎 − 𝑥𝑖+1 − ∆𝑎∗                                                                                                                                (26) 

 

It follows that the elements near the crack tip are not as likely to be lumped together as those that are away from the 

tip. In the lumping process, the width of the lumped element is the sum of the widths of the two adjacent elements, while 

its length is the weighted average of the two, namely 

 

𝐿 = (𝐿𝑖𝑤𝑖 + 𝐿𝑖+1𝑤𝑖+1) (𝑤𝑖 + 𝑤𝑖+1)⁄                                                                                                                         (27) 

 

The model is able to estimate the nonlinear behavior of FCG observed under VAL due to plasticity-induced memory 

or load-order effects, assuming the crack-opening SIF Kop is their inductor mechanism. FCG acceleration or retardation 

is predicted if the actual Kop is lower or higher than the opening loads that would be induced under equivalent (i.e., same 

Kmax and Kmin) CAL conditions. Hence, the transient behavior of the crack-opening stresses under VAL is a direct result 

of the influence of the plasticity induced by the previous load cycles on the subsequent stress and displacement fields near 

the crack tip. In other words, to consider memory effects on FCG, it is necessary to use the previous stress and 

displacement fields ahead and behind the crack tip to determinate the subsequent states of stress and displacement.  

The routine to calculate the stresses and displacements acting in all bar elements around the crack tip under VAL is 

developed based on the concept of plasticity-induced memory effects proposed by Führing and Seeger (1979). The effect 

of a previous loading state on a subsequent loading state ceases when the elastoplastic boundary of the previous loading 

is reached by the current plastic zone. The loss of the plastic memory caused by any given previous loading state occurs 

just when the entire initially plasticized region has yielded, since the bearing capacity of all material elements within this 

region is reached. In other words, if the monotonic plastic zone created by the current maximum applied stress plus the 

current crack length is lower than the previous monotonic plastic zone plus its associated crack length, then the history of 

the stresses and displacements must be used. Otherwise, the current loading sets the new stress and displacement history. 

Hence, memory effects occur while a + pz ≤ aol + pzol. So, the plastic zone size is the basic quantity for describing memory 

effects since it governs the memory criterion as well as the stresses and displacement functions  variable d at Eqs. (2 and 

(4). 

Therefore, while the memory effect criterion is satisfied if (a + zp ≤ aol + zpol), the algorithm must first recalculate the 

elements’ width and position based on the remaining monotonic plastic zone of the overload cycle and on the current 

crack size. After that, an interpolation routine estimates the displacements of each element based on the residual 

displacements previously stored at the overload event. With a similar procedure to find the contact stress at the minimum 

applied stress described by Eqs. (12)-(16), the next step is to find the element stresses using as input the displacements 

calculated by interpolation and by the current applied maximum stress. This interactive process results in a stress array 

for the elements ahead of the crack tip used to calculate the displacements of these elements. So, the stresses and 

displacement fields ahead of the crack tip during memory effects are obtained. The sequence of calculation steps and the 

flow diagram of the implemented algorithm are described in Fig. 3. 

 

3. RESULTS AND DISCUSSION 

 

To validate the SYM algorithm described here, its predictions are compared with results from Newman (1981, 1992) 

and from Koning and Liefting (1988). Predictions of crack opening stresses estimated by the proposed model are 

compared as well with fitting equations developed by Newman (1992), which are able to estimate the crack opening stress 

under CAL conditions.  

Figure 4 presents results for three constraint factors (from plane stress to plane strain) and stress ratios 1 ≤ R ≤ 0.8 

keeping the maximum applied stress in 135MPa. The lines are the results from the developed algorithm and the dots are 

from Newman’s equation. The maximum difference between them is lower than 4%. Notice that the crack remains opened 

(since op  min) for   3 if R > 0.6, for   2 if R > 0.7, and for   1 if R > 0.8. 

FCG rates da/dN predicted by the proposed algorithm are compared with 7075-Al alloy data measured in a wide K 

range at two stress ratios, R = 0.1 and R = 0.7 (Durán et al., 2003), as shown in Fig. 5. Ferreira et al. (2017) describe this 

comparison in detail, but it can be stated here that the curves are indeed numerical predictions, not a result of any data-

fitting procedure. Hence, Fig. 5 certainly indicates that the SYM used here can describe the FCG behavior of this material 

under CAL. The better agreement between the predictions and the FCG data obtained by using  = 3 in the calculations 

is related to the plane strain FCG conditions in which Durán’s data was measured. 

VAL conditions are simulated as shown in Figs. 6-9, to verify how the model can predict memory effects induced by 

single overloads and by combinations of overloads-underloads, considering the subsequent behavior of the crack-opening 

stress. The model parameters and the applied loads are similar to those used by de Koning and Liefting (1988), in order 

to compare both results: the flow stress is 415MPa, the Young’s modulus 70GPa, Poisson’s ratio 0.3, and the constraint 

factor 1, assuming plane stress conditions.  
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Figure 3: Flow diagram for the strip yield model. 
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Figure 4: Proposed SYM against Newman’s fit equation. 

 

  

Figure 5: Algorithm results for (a) R=0.1 and (b) R=0.7. 

 

The effect of the residual plastic deformations left on the crack surface before the overload is analyzed in Fig. 6. For 

three different crack surface conditions, the crack-opening stress resulting from the application of a single overload of 

160MPa is the same. The general crack-opening stress behavior from the proposed SYM is similar to the behavior 

described by de Koning and Liefting (1988), with a small difference on the size of the zone affected by the overload. 

Results from de Koning and Liefting (1988) predict this zone should be about 0.3mm, whereas the proposed algorithm 

predicts it should be about 0.5mm.  

In fact, the monotonic plastic zone for the overload (160MPa) is 1.08mm and for the subsequent load cycle (120MPa) 

is 0.57mm, a difference of about 0.5mm. Hence, the affected zone size predicted by the proposed model properly 

reproduces Führing and Seeger’s (1979) memory rule. 
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Figure 6: The effect of different plastic wakes on the crack-opening stress after a single overload. 

 

 

Figure 7: The effect of the overload level on the crack-opening stress. 

 

A similar behavior is observed in Fig. 7, where the effect of the overload (OL) amplitude is analyzed. As it could be 

expected, an increase in the overload level, while keeping the amplitude of the subsequent CAL cycles, increases the 

crack-opening peak stress and the affected zone size too, inducing a higher retardation effect on the OL-affected FCG. 

The effect of an underload event applied after the overload is analyzed in Fig. 8. The size of the region affected by 

the overload is not changed by the application of the underload, as shown by curves II and IV. The crack opening stress 

decreases with the underload level, and for the overload-underload ratio R = 1 (curve III) the beneficial effect of the 

overload is completely removed. The expected behavior of the crack-opening load after the underload application is 

predicted by the proposed SYM algorithm and reproduces the results reported by de Koning and Liefting (1988).  

The main difference between the results reported here and those reported by de Koning and Liefting is again in the 

size of the overload-affected region – always superior according to the memory criterion adopted in the proposed 

algorithm. The peak crack-opening stress was lower by 6% in curve II and by 4% in curve IV, as compared with the 

results reported by de Koning and Liefing (1988). 
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The effect of changes in the upper load level of the CAL applied following a single overload is illustrated in Fig. 9. 

As expected, the size of the affected zone and the crack-opening peak stress decrease with the upper level of the CAL 

cycles after the overload, as shown by curves I, II and III. Once again, the FCG behavior predicted by the proposed model 

is similar to the behavior predicted by de Koning and Liefting (1988). 

 

 

Figure 8: The effect of the underload level on the crack-opening stress. 

 

 

Figure 9: The effect of the upper CAL level on the crack-opening stress. 

 

4. CONCLUSION 

 

A SYM algorithm to calculate the crack-opening stress and estimate FCG rates under CAL and VAL is proposed and 

described in detail. It uses equations developed by Newman (1981, 1992) with a proper calculation procedure. Memory 

effects induced by VAL are estimated by the rules proposed by Füring and Seeger (1979), and with them the proposed 

algorithm simulates single OL and OL followed by UL effects in the same way similar algorithms reported in the literature 
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do. Finally, the proposed algorithm is validated using Newman’s fit equation (1992) for CAL and the results reported by 

de Koning and Liefting (1988) for VAL. 
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