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Abstract. Mechanisms are essentially made up of multiple rigid bodies that have relative motion between themselves. 

Each body is connected through a joint to one or more bodies, wherein the sequence of connected bodies is called 

kinematic chain. Open kinematic chains have no restrictions on their ends, as closed chains have restrictions on both 

ends. The focus in this work will be given on the study of mechanisms with closed kinematic chains. Thus, this work 

presents the analytical form determination of the dynamic model of a parallel planar mechanism with three degrees of 

freedom through the characterization of the power flow between its components. Considering the power flow between 

the degrees of freedom, and also between these and the actuating elements (linear electric actuators) the equilibrium 

relations of the forces and torques are obtained. Accounting for inertial effects of system components, the stiffness and 

damping effects, the equations of motion are analytically determined. Besides, the relation between the inverse 

kinematics and the direct dynamics is presented. The proposed methodology is generalized and applicable in any type 

of mechanism. A set of simulations are performed to validate this approach using the real data from a planar 

mechanism designed and built especially for the purpose to compare the simulated and experimental results. This 

comparison validates the dynamic model and the analytical equations lead to a more efficient simulation process and 

real-time control of these systems. Finally, a closed-loop control strategy using the inverse kinematic and the direct 

dynamic models is proposed. 

 

Keywords: Parallel Mechanisms, Inverse Kinematics, Direct Dynamics, Power Flow, Bond Graphs 

 

1. INTRODUCTION 

 

Mechanisms are essentially (but not exclusively) made up of multiple rigid bodies that have relative motion between 

themselves. Each rigid body is connected through a joint to one or more bodies, wherein the serial sequence of 

connected bodies is called kinematic chain. Open kinematic chains have no restrictions on their ends, as closed chains 

have restrictions on both ends. In this work, the focus will be given on the study of mechanisms with closed kinematic 

chains. Despite of having a smaller workspace, higher inertia and a harder dynamic analysis, parallel systems have great 

advantages when compared to serial manipulators, as better stability and accuracy, ability to handle relatively large 

loads, high velocities and accelerations and low power operation (Wang, 2008).  

 

1.1 Parallel mechanisms 

 

The improvement in the modeling of parallel mechanisms also contributes to solve problems associated with some 

serial robots tasks. In some tasks, such as when a serial robotic arm opens a door or engages its end effector to a surface 

or object, the kinematic chain, due to the appearance of restrictions in the degrees of freedom of the end effector, is 

temporarily closed (Bennett et al., 1991). Another case in which a serial mechanism becomes a closed kinematic chain 

is the case of the legs of an anthropomorphic robot. When both feet found a restriction (such as the floor, for example), 

the kinematic chain closes and thus, to estimate the robot's hip movement in order to balance it, multi-branch 

mechanisms or parallel mechanisms modeling techniques are used (Khandelwal et al., 2013). 

Mohamed et al. (2005) deals with the kinematics of parallel mechanisms with several closed chains separating the 

Jacobian matrices of mechanism’s active and passive joints. Kim et al. (2001) proposed a two-step solution process: 

cutting operation and paste operation, that is, a restriction is removed and the model works as the kinematic chain was 
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opened, and then a solution that meets the original closed chain is found. In Fischer et al. (2001) the Denavit-

Hartenberg and Sheth-Uicker notations were used for kinematic modeling of various types of parallel mechanisms, such 

as the Whitworth quick return mechanism. In Goulin et al. (2011) the static modeling of a 3-RPR parallel robot is made 

by using the graphs theory in the problem of topological modeling and in the derivation of the equations of balance, 

where the mechanical quantities (movements and actions) are described by helicoids (Davies method). 

 

1.2 Power flow approach 

 

Created by H. M. Paynter in the late 50’s and developed by D. C. Karnopp and R. C. Rosenberg (Karnopp et al., 

1968; Rosenberg et al., 1983 and Karnopp et al., 1990) in the mid-60’s, the bond graphs technique are characterized by 

the physical model representation of a system through a logical graphic, where the energy flow and the system 

components information are contained (Speranza Neto et al., 2005). 

In Costa Neto (2008) the mathematical models of subsystems using power flow were created so that it was possible 

to implement them as separate and interchangeable modules in a block diagram, coupling them directly, in 

computational form. The independent modules are tested individually, being possible to separate kinematics and 

dynamics. The method used to open the algebraic loops of the closed chain mechanisms eliminates the algebraic 

equations that characterize the loop. Once the module is created, no adjustment needs to be made in the overall structure 

of the system.  

 Zhao et al. (2012) used the same technique to model the kinematics and dynamics of a Stewart platform. After the 

kinematic modeling, the dynamic equations of the upper platform were developed using the Newton-Euler method and 

then, its model in bond graph has been established.  An equivalent approach is used to handle the inertial effects of each 

actuator. In each actuator-valve set of the simulator an independent position closed loop control is coupled. The bond 

graph model is made using the software 20-sim and then, several simulations are realized to verify the model. A 

comparison with experimental tests proved the feasibility and efficiency of the model, whose the method can be used to 

model other types of parallel mechanisms. 

In his work, Yildiz et al. (2008) represented the Stewart platform dynamics using a novel spatial visualization form 

of the bond graphs. This dynamic model includes all the dynamic and gravitational effects such as the linear motor 

dynamics (used as an actuator) and the viscous friction of the joints. Furthermore, in this work the actuation system and 

the structure modeling are unified. As this system has many nonlinearities, originated by your non-linear geometry and 

the gyroscopic forces, the problem of the resulting derivative (forced) causality due to the rigidly coupled inertial 

elements is approached and the space-state equations are presented. 

 

1.3 Procedure 

 

The proposed methodology is generalized and applicable in any type of mechanism (open or closed, planar or 

spatial). For a better comprehension of the methodology, a planar case will be discussed in this work. The inverse 

kinematic model of the closed chain mechanism, which has easy solution when compared to the direct model, can be 

developed by any known methodology, without the need for a systematic approach. It begins by determining the inverse 

geometric model and its derivation to obtain the kinematic relations, and therefore the inverse Jacobian matrix. With the 

inverse kinematic model, the inverse kinematics bond graph is built and, from the cause and effect relations, the direct 

dynamic model of the mechanism is found. Thus, this methodology (bond graphs or power flow) is more efficient and 

secure to achieve the dynamic analytical (closed) models of parallel mechanisms. For the purpose of provide real data 

(geometry, inertia, damping, actuators forces, etc.) and compare the simulated and experimental results, a planar 

mechanism was designed and built. Figure 1 shows the built platform. 

 

 
 

Figure 1. The built planar mechanism. 
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2. DYNAMIC MODEL USING POWER FLOW APPROACH 

 

2.1 Inverse kinematic model 

 

Figure 2 shows the 3-RPR parallel manipulator considered in this study. Three limbs connects to the mobile 

platform and the fixed base by rotational joints in points Bi and Ai, i = 1, 2 e 3. To describe its geometry, a referential 

frame A(X, Y) fixed to the platform base is added and other frame, B(x, y), is coupled to the mobile platform. Another 

reference frame, C(xi, yi), is fixed to each rotational joint, thus having its origin at the point Ai (i = 1, 2 e 3). The yi axis 

of this system points from Ai to Bi (direction of the actuator i). For convenience, the origin of the frame B is located at 

the center of the mobile platform. The position of the mobile platform can be described by the vector p = [pX, pY]
T
 = [X, 

Y]
T
 and by the rotation matrix 

A
RB. Hence, the velocities state of the mobile platform is defined as a three dimensional 

vector with the absolute linear velocity and the angular velocity of the mobile platform (Eq. 1). 

 

ẋ = v = [
vp

ωp
]= [

Ẋ

Ẏ

θ̇

] = [
vX

vY
ωz

]                        (1) 

 

For this manipulator, the input vector is given by vA = [v1, v2, v3]
T
 and the output vector can be described by the 

centroid velocity P and the angular velocity of the mobile platform, v = [vx, vy, ωz]
T
. Using the vector loop technique 

and then, applying the differential with respect to time, the relationship between the variables which describe the 

angular and linear velocity of the mobile platform and the velocities of the links of the planar platform is found. With 

this relation, the inverse Jacobian of the manipulator is obtained, as shown in Eq. 2 (Albuquerque, A.N., et al., 2016). 

 

 
 

Figure 2. Planar platform with three degrees of freedom. 

 

q̇ = [
𝑣1

𝑣2
𝑣3

]  = J-1ẋ = [

cos θ1 sin θ1 b1X sin θ1 - b1Y cos θ1

cos θ2 sin θ2 b2X sin θ2 - b2Y cos θ2

cos θ3 sin θ3 b3X sin θ3 - b3Y cos θ3

] [
Ẋ

Ẏ

θ̇

]                       (2) 

 

in which θi are given by Eq. 3 (with i = 1, 2 and 3). Rewriting Eq. 2 in function of tan(θi), differentiating both sides, 

and manipulating the terms in order to put in evidence the absolute linear velocities and angular velocity of the 

platform, we obtain the inverse Jacobian that relates these velocities to the angular velocity of each of the members (Eq. 

4). 

 

θi = tan-1 (
biY - aiY

biX - aiX
) = tan-1 (

Y + bix sin θ + biy cos θ - aiY

X + bix cos θ - biy sin θ - aiX
)         (3) 
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ωA= [
ω1

ω2
ω3

] = Jθ

-1
[

vX

vY
ωZ

] =

[
 
 
 
 
 
 
(a1Y-b1Y)cos2(θ1)

(b1X-a1X)
2

cos2(θ1)

(b1X-a1X)

cos2(θ1)

(b1X-a1X)
2 j

θ1

(a2Y-b2Y)cos2(θ2)

(b2X-a2X)
2

cos2(θ2)

(b2X-a2X)

cos2(θ2)

(b2X-a2X)
2 j

θ2

(a3Y-b3Y)cos2(θ3)

(b3X-a3X)
2

cos2(θ3)

(b3X-a3X)

cos2(θ3)

(b3X-a3X)
2 j

θ3]
 
 
 
 
 
 

[
Ẋ

Ẏ

θ̇

]         (4) 

 

jθi is given by Eq. 5, with i = 1, 2, 3, cθ = cos(θ) and sθ = sin(θ). 

 

j
θi

 = (bix c θ  - biy s θ)(biX-aiX)+(bix s θ  + biy c θ)(biY-aiY)         (5) 

 

In a graph that correctly describes the kinematics (1 and 0 junctions, transformers and gyrators), the dynamics 

(capacitors, inertias and resistors) can be imposed without the risk of creating models where the main constraints of 

mechanical systems are violated: geometric or kinematic ties (Karnopp, D.C., et al., 1990). In this model, speed 

conditions are imposed by ideal velocity sources, that is, a source of velocity for vX, vY and ωZ. Besides these velocities, 

the others 1 junctions (of common velocities) indicates the linear (v1, v2 e v3) and angular velocities (ω1, ω2 e ω3) of the 

actuators. Thus, the inverse kinematics of the planar platform via multibond graphs is represented as shown in Fig. 3, 

whereby the modulated transformer type represents the matrices J
-1

 (Eq. 2) and Jθ
-1

 (Eq. 4). 

 

 
 

Figure 3. Multibond graphs representation of the planar platform inverse kinematics. 

 

2.2 Direct dynamic model 

 

According to (Karnopp, D.C., et al., 1990), when possible, both completely match the power variables on the inputs 

and outputs of the subsystems (same type and direction of power flow) and a consistent cause and effect relation (which 

variables enter and which come out the models to be coupled), the resulting model is fully equivalent to that which 

would be obtained analytically, allowing your simulation from the simple connection of the modules. Considering the 

inertia effects of the moving platform, with mass mP and mass moment of inertia JPzz, the multibond graphs structure of 

the direct dynamics model of the planar platform with three degrees of freedom is shown in Fig. 4. Using the concepts, 

elements and the graphical representation of the Bond Graph Technique, was further added the inertial effects of the 

bodies that compound the actuators, introducing the terms mAi and JAi, which correspond to the mass and moments of 

inertia of the actuators, with i = 1, 2 and 3. It was also included in this model the equivalent viscous friction in the 

rotation joints (Albuquerque, A.N., et al., 2017).  

 

 
 

Figure 4. Multibond graphs representation of the planar platform dynamics. 

 

From the model in the Fig. 5, the constitutive equations of the inertia elements (I) with integral (or natural) causality 

are written in their differential form. Thus, making explicit the efforts, inserting this equation into the junction 

structures equations and replacing the constitutive equations of the inertial elements with differential (forced) causality, 

the resistors elements (R) and the modulated transformers (MTF), the Eq. 6 is obtained. 
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MPv̇=J-Tfe-J
-TMAvȦ-Jθ

-T
JAωȦ-Jθ

-T
BAωA         (6) 

 

Substituting the equations from the derivatives of the Jacobian matrices and the Eq. 4 into the Eq. 6 and solving the 

algebraic loops associated to the storage elements with differential causality, the state-space equations are obtained (Eq. 

7), with M1 and M2 given by Eq. 8 and 9, respectively. 

 

v̇= (M1
-1M2) v+ (M1

-1J-T) fe          (7) 

 

M1=MP+J-TMAJ-1+Jθ

-T
JAJθ

-1
          (8) 

 

M2=-J-TMAJ-1̇ -Jθ

-T
JAJθ

-1̇
-Jθ

-T
BAJθ

-1
          (9) 

 

2.3 Dynamic model of the actuation system 

 

The property of modularity, one of the major advantages of the technique, enables the development of complex 

systems models from simple subsystems (or modules), since these are created predicting the manner in which they will 

engage each other. This can be done by passive (open) connections or active connections. In the case of the actuation 

elements (with two or more ports), it is mandatory the use of passive connections, because there is power interaction 

effectively, resulting in the loading effect, represented in the bond graphs by the causal bar (Speranza Neto et al., 2005). 

Figure 5 presents the electric actuator scheme used in this modeling. An electric motor provides power to the 

actuation system through a torque 𝑇𝑚 and an angular velocity  𝑚. This power is then transmitted to a leadscrew by a 

gear set. In bond graphs modeling, motors can, in general, be considered, as effort sources. 

 

 
 

Figure 5. Electric actuator scheme. 

 
In the dynamic model of the actuation system were considered the inertia of the motor (Jm), of the gear train (JC), of 

the actuator rod (mA) and also the viscous friction coefficients bm, bC and bA associated with these elements. Figure 6 

presents the bond graph structure of the actuation system, where ne is the transmission ratio between the gears A and C. 

The leadscrew D has the same velocity of C, ωC. Through the leadscrew nut, which is coupled to the actuator rod, this 

movement becomes linear with velocity 𝑑̇. This relation is given by nP = 0,5.π
-1

.p.Ne, where p is the leadscrew pitch 

and Ne refers to type of thread. In the electrical circuit model, R, L and Ke are the resistance, the inductance and the 

electromagnet constant of the motor, respectively. 

 

 
 

Figure 6. Bond graphs for the electric linear actuator. 

 

Using the Bond Graph Technique formulation, Eq. 10 and 11 are obtained. Eq. 10 describes the electric DC motor 

with inputs Vi and ii and output ωmi (left part of the bond graph in Fig. 14). Equation 11 describes the mechanical 
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transmission and the load effect on the actuator. The elimination of the electric dynamics, which has time constants of 

smaller orders of magnitude  than the mechanical dynamics, is made by considering the values of Li approximately 

equal to zero (for i = 1, 2 and 3). With this, Eq. 12 is obtained and, substituting that in Eq. 11, the state-space equation 

(Eq. 13) is obtained. 

 

𝐿 
𝑑 𝑖

𝑑𝑡
=   − 𝑅   − 𝐾   𝑚                                                                                                                                         (10) 

 

(   𝑛  
2𝑛  

2 +  𝑚 +    𝑛  
2)

𝑑 𝑖

𝑑𝑡
= 𝐾  𝑛  𝑛    − (   𝑛  

2 +  𝑚 +    𝑛  
2𝑛  

2)𝑣                                             (11) 

 

  =
𝑉𝑖

 𝑖
−

 𝑒𝑖𝜔𝑚𝑖

 𝑖
=

𝑉𝑖

 𝑖
−

 𝑒𝑖 𝑖

 𝑖 𝑝𝑖 𝑒𝑖
                                                                                                                                  (12) 

 

(   𝑛  
2𝑛  

2 +  𝑚 +    𝑛  
2)

𝑑 𝑖

𝑑𝑡
=

 𝑒𝑖 𝑝𝑖 𝑒𝑖𝑉𝑖

 𝑖
− (   𝑛  

2 +  𝑚 +    𝑛  
2𝑛  

2 +
 𝑒𝑖

2

 𝑖
) 𝑣                                    (13) 

 

2.4 Dynamic model of the coupled system 

 

Figure 7 shows the coupled dynamic model represented using multiband graphs. The actuators models are coupled 

to the planar platform model through the 1 junctions that represents the actuator output speed, 𝑣 , with i = 1, 2 and 3. 

Using the Bond Graph Technique formulation, the state-space equation, where v is the state vector and se is the input 

vector (Eq. 16) is obtained, with M3 and M4 given by Eq. 14 and 15, respectively. 

 

 
 

Figure 7. Complete bond graph representation for the 3-RPR parallel mechanism. 

 

𝐌3 = 𝐌P + 𝐉 T𝐌Aa𝐉
 1 + 𝐉θ

 T𝐉A𝐉θ
 1        (14) 

 

𝐌4 = −𝐉 T𝐁Av𝐉
 1 − 𝐉 T𝐌Aa𝐉

 1̇ − 𝐉θ
 T𝐉A𝐉θ

 1̇ − 𝐉θ
 T𝐁A𝐉θ

 1         (15) 

 

𝐯̇ = (𝐌3
 1𝐌4)𝐯 + (𝐌3

 1𝐉 T)𝐬e        (16) 

 

3. SIMULATION AND EXPERIMENTAL RESULTS 

 

3.1 Inverse kinematics simulation 

 

A set of simulations were made to validate the inverse geometric model (vector loop equation) and the inverse 

kinematic model (using the matrices J
-1

 and Jθ
-1

). Table 1 presents the geometric parameters of the mechanism. 

 

Table 1. Geometric parameters. 

 

Identification Symbol Value 

A1 joint coordinates in reference frame A (mm) a1 [-389.14 -224.67] 

A2 joint coordinates in reference frame A (mm) a2 [389.14 -224.67] 

A3 joint coordinates in reference frame A (mm) a3 [0.00 449.34] 

B1 joint coordinates in reference frame B (mm) b1 [-125.00 -72.17] 

B2 joint coordinates in reference frame B (mm) b2 [125.00 -72.17] 

B3 joint coordinates in reference frame B (mm) b3 [0.00 144.34] 

Linear actuator fixed length (mm) Lmin 255.00 

Stroke of the linear actuator (mm) S 100.00 
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Using the Jacobian matrices from the Eq. 2 and 4, the time response of the limbs was obtained for the input 

functions shown in Eq. 17. Figures 8.a and 8.b shows the linear displacements and velocities of the actuators, 

respectively. 

 

{

Ẋ = 50.00sin πt  mm/s

Ẏ = 50.00sin πt  mm/s

θ̇ = 0.785sin πt  rad/s

                                                                                                                                            (17) 

 

   
                                                   (a)                                                                           (b) 

 

Figure 8. Linear and angular displacements and velocities of the actuators. 

 

3.2 Direct dynamics simulation 

 

In the simulation of the dynamic model were considered the mass and the mass moment of inertia of the moving 

platform, mP and JPzz, the mass and the mass moment of inertia of the actuators, mA1, mA2, mA3 and JA1, JA2, JA3, and the 

viscous friction coefficients from the actuators joints, bA1, bA2 and bA3. Table 2 presents the parameters used in this 

simulation. The time response of the limbs was obtained for the inputs shown in Fig. 9.a. Two pulses with amplitudes 5 

N and –5 N, widths of 0.1 s and interval of 0.1 s between them were given by the actuator 1. Figures 9.b shows the 

linear accelerations and Fig. 9.c shows the linear velocities of the moving platform. 

 

Table 2. Planar mechanism simulation parameters. 

 

Identification Symbol Value 

Mass of the platform (kg) mP 0.578 

Mass moment of inertia of the platform (kg.m
2
) JPzz 4.50x10

-3
 

Mass of the actuator rod (kg) mA1, mA2, mA3 0.175 

Mass moment of inertia of the actuator (kg.m
2
) JA1, JA2, JA3 7.28x10

-3
 

Viscous friction coefficient of the joints (N.s.m
-1

) bA1, bA2, bA3 0.006 

 

 
                             (a)                                                       (b)                                                          (c) 

   

Figure 9. Forces given by the actuators (a); linear and angular accelerations (b) and velocities (c) of the moving 

platform. 
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3.3 Actuating system characterization 

 

The actuator system model parameters were obtained by a set of experiments using a small scale electric motors 

dynamometer. Figure 10.a shows the characteristic curve for a given duty cycle ratio and Fig. 10.b. shows the motor 

behavior curves used in the mechanism control system.  

 

        
       (a)                                                                                       (b) 

 

Figure 10. Characteristic curve for duty cycle = 100 % (a) and motor behavior curves (b). 

 

3.4 Coupled model simulation 

 

Figure 12 shows the time response of the actuators for different values of proportional gain for a given input ([X = 

0.0 mm, Y = 20.0 mm, θ = 0.00 rad]) using the control strategy shown in Fig. 11, where G
-1

 represents the inverse 

geometric model an J
-1

 represents the inverse Jacobian model of the mechanism. The reference values for the steady 

state are [d1 = 10.5 mm, d2 = 10.5 mm, d3 = -20,0 mm]. 

 

 
 

Figure 11. Position control strategy. 

 

          
                                        (a)                                                      (b)                                                     (c) 

 

Figure 12. Time response for Y(t) = 20 mm. (a) kp = 0.5; (b) kp = 0.8; (c) kp = 1.0. 
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3.5 Experimental results 

 

The models were validated by a set of experiments using the platform shown in Fig. 1. For example, Fig. 13 shows 

the time response of the actuator 3 for different values of proportional gain for a given input ([X = 0.0 mm, Y = 20.0 

mm, θ = 0.00 rad]).  

 

 
                                                  (a)                                                                                       (b) 

 

Figure 13. Time response for different values of gain. (a) kp from 0.5 to 1.0; (b) kp from 1.0 to 4.0. 

 

4. CONCLUSIONS 

 

In this work the analytical form of the dynamic model of a 3-RPR parallel mechanism through the characterization 

of the power flow between its components was presented. From the geometrical relations associated to the displacement 

of their degrees of freedom, the kinematic relations associated to their velocities were determined. Considering the 

power flow between the degrees of freedom and between these and the actuating elements, the equilibrium relations of 

the forces and torques were obtained. This approach adopted the same fundamentals, concepts and elements of the Bond 

Graph Technique. 

A set of simulations were performed to evaluate this approach, using the real data (geometry, inertia, damping, 

actuators forces, etc) from a planar mechanism designed and built especially for the purpose to compare the simulated 

and experimental results. This comparison validates the dynamic model. The ongoing work focuses in implement a 

IMU based control strategy in the built platform (Fig. 14). 

 

 
 

Figure 14. IMU based control strategy 
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