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Abstract. Initially, this research was presented as main study to develop a robotic prosthesis for people with hand 

amputation, such as the case of disjointed amputation handle. This paper covers the following topics: position of 

electrodes to capture the surface electromyography signals (sEMG), design of an electromyography as muscle interface, 

pre-processing method and the use of techniques of computational intelligence for the interpretation of the sEMG signals, 

design of the robotic hand and control method used to control the positions of the fingers and the control of hand grip 

strength. Was used the wavelet packet as feature extraction method in electromyographic signals, and multi-layer neural 

network as pattern classification method. The proposed model obtained satisfactory results, thereby capturing 90.5% 

for recognizing positions of 6 different hand positions 5 to 94.3% and 96.25% for 4 positions. 

 

Keywords: Surface electromyography, Patterns Classification, Neural Networks, Wavelet Transform, Robotic Hand. 

 

1. INTRODUCTION 

 

In the last years, robotics had great importance in the area of medicine, developing artificial equipment and devices 

that are increasingly similar to the functions of natural organs, is developing robotic members in different projects: 

mechanical arms with movements increasingly similar to those of natural arms; Advanced robotic hands capable of 

reproducing the functional capabilities of the human hand; Artificial legs controlled with commands, even surrogate hands 

and feet, more and more advanced.  

But, besides the numerous and wonderful technological advances in the field of rehabilitation engineering, prosthetic 

robotic hand today becomes a little large in relation to the human hand, acting as a load at the end of the arm. The 

structural complexity of the skilled robotic hands leads to high costs and very basic reliability in the developed prototypes 

(Douglas G. Smith, 2006). 

 

Table 1. Main features of robotic hand. 

 

Hand name Mass (g) 
Nominal 

size 

Number 

actuators 

Number 

fingers 

Number 

sensors 

Number 

DOF 

Human(1) ≈ 400 1 38 5 17000 22 

RTR1 250 »1 6 3 9 8 

RTR2 350 ˃1 2 3 2 10 

Spring 400 »1 1 3 1 8 

Cyberhand 450 ≈1 6 5 44 16 

DLR2 320 ≈1.5 13 4 64 13 
     (1) data of the human hand as the main reference (G.L. Taylor, R.J.Schwart, 1955) 

 
In the quest to reduce the size and mass of hand prostheses in the current market, and according to the technological 

limitations of our time, the present work proposes to design a robotic system that fulfills the basic functions of the human 

hand, by training a set of common and repetitive patterns of the human hand. This is driven by tendons that are driven by 

direct current (DC) motors, which are the actuators, which in turn are controlled by surface electromyographic signals. 

Robotic hand incorporates force control to do basic gripping tasks. 
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It proposes a mechanical structure based on a sub-actuated mechanism, which requires fewer actuators without 

reducing the number of degrees of freedom. This allows the fingers of the robotic hand is able to adapt to the morphology 

of the object, thus achieving a greater hand flexibility, a simpler control, and reduced mass. 

To achieve this goal, the following steps must be performed: implementation of an electromyography system; 

development of an interface for the pre-processing and processing of electromyographic signals; construction of a robotic 

hand with sensory system; integration of the electromyography system with the robotic hand. 

 

2. IMPLEMENTATION OF ELECTROMYOGRAPHY SYSTEM 

 

Electromyography is the technique used to measure and record muscle response, it measures electrical activity within 

muscle fibers, muscle stimulation caused by nerve impulses at rest and during contraction (Peter Konrad, 2005). 

In this work, the superficial (non-invasive) electromyography technique was used to measure the electrical activities 

of a patient's muscles, using passive Ag/AgCl disc electrodes with 10 mm diameter. To avoid interferences with cross-

talk signals, said electrodes were used with a separation of 20 mm, according to the recommendations of the SENIAM 

standard (R.Merletti, P. Parker, 2004). The muscles were: extensor carpi radialis, palmaris longus, extensor digitorum 

conmunis, as shown in Fig. 1. 

 

 
 

Figure 1. Location of the Ag/AgCl electrodes in the forearm 

 

For the implementation of the electromyography system, an acquisition system was developed with the following 

characteristics: three channels of differential mode input, with protection circuit in the input to electrically isolate the 

patient from the power line or the battery, so that it is Protected from an electric shock produced by the equipment in the 

event of an error; a stage of conditioning the sEMG signals to amplify their reduced magnitude and to filter out the 

different noises affecting them; and a final stage with the signal of the digitization process, with 2 kHz, sampling 

frequency, developed in NI9012 CompactRIO system with the help of NI9205 acquisition module that features 16-bit 

resolution. 

The filtering stage is composed of a 2-order Butterworth low-pass filter at 577 Hz cut-off frequency to eliminate high-

frequency components and avoid aliasing, and composed of a Butterworth high pass filter of order 2 at a cut-off frequency 

of 15.6 Hz to eliminate noise coming from neighboring muscles, and potential repolarization of muscles, these filters are 

connected in cascades. 

 

Table 2. Features of the electromyography system. 

 

Low pass filter fc = 577 Hz 

High pass filter fc = 15.6 Hz 

Gain 31.5 - 3180 

CMRR 130 dB (min) 

Conversion resolution A/D 16 Bits 

 

In the conditioning stage, a signal pre-amplifier was used as the myoelectric signals are in the range of 200 µV-10 

mV peak-to-peak and noises or apparatus such as ambient noise can cause a false interpretation of the results. At this 

stage using an instrumentation amplifier INA114 Texas Instruments so that it has a high CMRR of about 100 dB with a 

gain value of 31, and is more than enough for our design (Texas Instrument, 2000). 

We use the RLD circuit, with the purpose of placing the patient in the same potential of the electric circuit, to avoid 

problems of electric discharge, to minimize noise generated by the common mode potentials that appear when the patient's 

body is not grounded or is not in the Reference potential of the amplifiers (Talles M. G., 2008). 

We also used an amplification circuit to increase the magnitude of the sEMG signals collected. The scheme of this 

stage is a negative feedback non-inverting amplifier that produces a larger input impedance increase and a decrease in 

output impedance (Albert Malvino, 1998). In the scheme, a potentiometer was used to have the possibility to control the 

gain. 
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The Pspice A/D software was used to simulate and verify the correct functioning of the protection circuit. 

For the design of the printed circuit board (PCB) was used Eagle implemented SMD component to obtain a reduced 

size (see Fig. 2). 

 

 
 

Figure 2. Final printed circuit of the Electromyography system. 

 

3. PRE-PROCESSING OF THE SEMG SIGNAL 

 

Muscle activity data were collected in 400 ms times, by the electromyography system, enough time to collect samples 

that determine a type of hand position pattern. To reject high-frequency noise an eighth-order Butterworth digital low-

pass filter was implemented with final passband frequency (fP) at 400 Hz, initial rejection band frequency (fS) at 600 Hz, 

bandpass deviation (δP) at -1 dB, and rejection band deviation (δS) at -20 dB. To reject the electric line noise, the digital 

notch filter was used with sampling rate at 2 kHz, rejection frequency at 60 Hz and quality factor of 12. We use an 

evaluation method to identify whether the collected signal represents a pattern, to be directed to a processing stage or 

simply to be discarded. 

The block diagram shown in Fig. 3, shows the process sequence in the pre-processing stage. 

 

 
 

Figure 3. Block diagram of the preprocessing phase. 

 

In the evaluation method, we used the root mean square value (RMS), a statistical measure used to analyze the 

magnitudes of the sub-samples, extracted from a sample of the sEMG signal. In Figure 4, we show 4 sub-samples that 

are analyzed to determine whether or not they undergo much variation over the length of the signal. In the case of the 

figure, it can be seen that it is a signal in transition from one posture to another and the sample would have to be discarded. 

 

 
 

Figure 4. Sampling analysis of the digitized sEMG signal. 
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Being x[n] sign on n1 ≤ n ≤ n2 time interval, the RMS is defined as: 

 

𝑅𝑀𝑆 = √
1

𝑛2−𝑛1
∑ 𝑥[𝑛]2𝑛2

𝑛=𝑛1
                                 (1) 

 

We calculated the mean RMS value of the M sub-samples from the sample collected for an sEMG signal. 

 

𝑅𝑀𝑆 =
1

𝑀
∑ 𝑅𝑀𝑆𝑖

𝑀
𝑖=1 ,    𝑖 = 1,2, … , 𝑀                      (2) 

 

To validate the signal, we use the relative value of the (rmsi) sub-sample, we use the following Eq. (3): 

 

𝑟𝑚𝑠𝑖 =
𝑅𝑀𝑆𝑖

𝑅𝑀𝑆
   and |𝑟𝑚𝑠𝑖 − 1| < 𝜃𝑒𝑟𝑟𝑜𝑟                        (3) 

 

Where 𝜃𝑒𝑟𝑟𝑜𝑟  is the admissible error value as the maximum limit. 

From the RMS we will use the 𝑃 (Alan V. Oppenheim, 1997) mean power concept to estimate the total energy value 

of the samples. 

 

𝑃 =
1

𝑀
∑ 𝑅𝑀𝑆2𝑀

𝑖=1 ,     𝑖 = 1,2, … , 𝑀                     (4) 

 

The calculation of the (𝐸𝑇) total energy of the three electromyographic signals for our analysis is calculated with: 

 

𝐸𝑇 = (𝑃𝑠𝐸𝑀𝐺1 + 𝑃𝑠𝐸𝑀𝐺2 + 𝑃𝑠𝐸𝑀𝐺3)𝑥𝑁                         (5) 

 

Where N is the total number of data in a sample. 

For our analysis of the sample of the sEMG signal we use the following logical rules (6). We determine as a possible 

pattern when it complies with the (3) and (6) equations, and if it is not determined by default, the robotic hand remains in 

the same position. 

 

𝑂𝑢𝑡𝑝𝑢𝑡: {  

𝑖𝑓 𝐸𝑇 > 𝜃𝐸𝑚𝑎𝑥     ; 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛.           

𝑖𝑓 𝐸𝑇 < 𝜃𝐸𝑚𝑖𝑛     ; 𝑃𝑎𝑡𝑡𝑒𝑟𝑛: 𝑟𝑒𝑙𝑎𝑥𝑒𝑑 ℎ𝑎𝑛𝑑.
𝐴𝑛𝑜𝑡ℎ𝑒𝑟     ; 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛.       

                          (6) 

 

Where 𝜃𝐸𝑚𝑎𝑥  and 𝜃𝐸𝑚𝑖𝑛  are respectively the maximum value and the minimum allowable energy value, and are 

calculated experimentally as is 𝜃𝑒𝑟𝑟𝑜𝑟 . 

To estimate the parameters of the Eq. (3) and (6), a sEMG signal database shown in Tab. 3 was used. With the help 

of the total energy bloxplot plot (see Fig. 6), estimated from the records for each pattern, the parameters 𝜃𝑒𝑟𝑟𝑜𝑟  = 0.6 

(60%), 𝜃𝐸𝑚𝑎𝑥  = 10 and 𝜃𝐸𝑚𝑖𝑛  = 2 were determined, knowing that the data size for each sample was N=1024, and from 

each sample 4 sub-samples were extracted (M=4). 

 

Table 3. Results for 60% of permissible error and 100 ms of analyzed for each sub-sample. 

 

Name of 

Pattern 

Number of 

Samples 

Well defined 

(%) 

Average value 

Total Energy 

Maximum value 

Total Energy 

Extension 223 91.03 26.15 109.85 

Flexion 226 96.02 26.88 88.06 

Like hand 231 83.98 12.45 77.07 

Make fist 223 90.13 42.40 192.05 

Spherical 225 98.67 51.40 161.48 

Spread 208 94.23 16.09 44.58 
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Figure 5. Boxplot of the estimated total energy of the database. 

 

4. PROCESSING OF THE SEMG SIGNAL 

 

In the processing stage, the wavelet transform method is used as the extraction of characteristics of the preprocessed 

sEMG data and the neural networks as a classification method (see Fig. 6). 

 

 
 

Figure 6. Block diagram of the processing phase. 

 

4.1 Feature Extraction 

 

In the method of extraction of characteristics, we use the wavelet transform with the help of the wavelet daubechies 

base function of order 6, thus creating a decomposition tree, as shown in Fig. 7.  

For our signal that presents a sampling frequency FS=2 kHz with N=1024 data in the sample, we use the wavelet 

transform with decomposition tree up to level 7, with reference to the fact that the maximum decomposition level is 10 

(log2N=10). In level 7, the frequency range of each node has a difference of ∆f = 15.625 Hz between the nodes, where 

we chose to select those nodes with frequency bands of interest for our processing. 

 

 
 

Figure 7. Analysis of the filter bank tree that leads to wavelet packets. 

 

𝐶𝑛
𝑙 (𝑘) are the coefficients of the wavelet transform for a node, determined for a decomposition level l, n as node 

location index within a decomposition level, and k as the vector index of the coefficient of the wavelets transform (see 

Fig. 8). 

According to the general concepts, the harmonics of interest of the sEMG signal are approximately in the frequency 

range 16 Hz-400 Hz, therefore, from the wavelet packets tree it is determined the use of the nodes in the level 7, which 
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allows us to select a set of nodes with frequencies contained in the desired range. As a result, we get the frequency range 

15.625 Hz-406.25 Hz. At level 7, the first node (𝐶0
7: 0 − 15.625 𝐻𝑧) and nodes with frequencies greater than 406.25 Hz 

(𝐶26
7  for above) were disregarded. 

In the Equation (7), we calculate the energy of the (𝐸𝑊
𝑖 ), wavelet coefficients, using all the nodes selected at the depth 

level of the wavelets tree studied for an electromyographic signal register. 

 

𝐸𝑊
𝑖 = ∑ ∑ |𝐶𝑛

7(𝑘)|225
𝑛=1

25
𝑛=1 ,    𝑖 = 1, 2, 3                       (7) 

 

Where i indicates the channel number used to acquire the sEMG signal records (remember that 3 channels were used). 

We obtain 𝐸𝑊
1 , 𝐸𝑊

2  and 𝐸𝑊
3  respectively from the electromyographic records sEMG1, sEMG2, sEMG3 and calculate the 

total energy of the wavelet coefficients 𝐸𝑊
𝑇  for the three signals studied, according to the Eq. (8).  

 

𝐸𝑊
𝑇 = 𝐸𝑊

1 + 𝐸𝑊
2 + 𝐸𝑊

3                             (8) 

 

With Eq. (7) and Eq. (8) we calculate the relative energy of the wavelet coefficients (𝐸𝑊

𝑖
= 𝐸𝑊

𝑖 /𝐸𝑊
𝑇 ) and obtain 𝐸𝑊

1
, 

𝐸𝑊

2
 and 𝐸𝑊

3
 to be used as characteristic value in the training and decision on the classification system. 

Our pattern classification system is based on the multi-layer artificial perceptron neural network (MLP) model. From 

a database created, our classification system was modeled to determine six different positions (Fig. 8) in which we also 

call patterns. 

 

 
 

Figure 8. Types of hand positions to be used as recognition patterns. 

 

We use the WEKA software to search for the best configuration of our classification model and to validate it in 

comparison with other different methods; K-nn (K nearest neighbours) method,Naive Bayes classification method, C4.5 

(known as J48) algorithm. From the database, different data sets were created to train the classification models in the 

recognition of 6 patterns, 5 patterns and 4 patterns, with a learning rate of 0.3, momentum in 0.2 and different training 

times for all the configurations of our neural network model. We obtain the following Tab. 4, where we can observe the 

best models of the three groups. The parameter values of the K-nn, C4.5 and Naive Bayes models are predefined values 

of the WEKA software. 

 

Table 4. Recognition percentage in 3 groups of patterns with different sorting methods. 

 

Number of Pattern %K-nn %C4.5 %Naive Bayes %MLP 

6 Patterns 81.11 84.07 80.37 87.78 

5 Patterns 87.72 89.04 86.40 92.55 

4 Patterns 88.52 93.44 90.16 94.00 

 

5. DESIGNING AND BUILDING OF THE ROBOTIC HAND 

 

The architecture of the robotic hand operating system was designed according to Fig. 9. It is composed of the following 

parts: the processing system responsible for carrying out all the operations necessary for the operation of the robotic hand, 

which stores and executes the control algorithms; the input and output modules that are used as interface between the 

devices and elements external to the processing system; sensors and actuators; and a power source for the system. 
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Figure 9. Architecture of the robotic hand operating system. 

 

The mechanical structure of the robotic hand, is composed of five fingers (index, middle, ring, minimum and thumb), 

and was taken into account the following concepts for its projection: it should be self-contained, the robot hand must be 

an independent piece, as yet should not have external tendons or transmission elements to the same hand; it should be 

anthropomorphic, the robotic hand should have the appearance of the human hand; and the dimensions should be as close 

as possible to the human hand. Due to the complexity of the movements presented by the fingers of the hand, the abduction 

and adduction movements of the fingers were excluded, excluding the thumb, which complies with the abduction and 

adduction movements, as well as the flexion and extension movements. 

Taking into account all these aspects, the robotic hand is designed in SolidWorks Simulation software is built with 

tubes and aluminum profile as the main material. We used a steel tape that fulfills the function of flexion of the finger, 

and to achieve its linear movement we use a system based on pulleys of transmission and worm, where from the rotational 

movement of the motor we can have linear movement through the worm screw. 

The pulleys are anodized aluminum with good corrosion resistance and trapezoidal teeth with a 0.080'' spacing 

between the teeth. The screw used is bronze with a minimum tensile strength of 55000 psi, is 1/4'' in diameter and 1 mm 

pitch. 

As actuators we used the Pololu Micro Metal Gearmotor HP motor of the motor-reducer type with parallel rotor that 

work in 6 V and we used the driver L298 of the ST Microelectronics to drive them. 

The position sensors used for the index, middle, annular and minimum fingers are a simple flexibility sensor that 

changes its resistance between its terminals as it bends it, its resistance increases depending on the amount of curve you 

experience. 

The resistance variations of this sensor are unidirectional and range from 60 k𝛺 to 110 k𝛺, have a tolerance of ±30% 

and can be used within the temperature range of -35°C to 80°C. To measure the movements of the thumb, we used two 

potentiometers to determine the angular positions of two gearmotors. 

The force sensor used was the resistive type FSR 400 of 0.5'' diameter sensitive area. This component varies its 

resistance (in ohms 𝛺), as applying force on its surface. 

To prepare the measurements of the sensors, basic circuit structures with operational amplifiers were used, based on 

a simple voltage divider and a voltage follower, in order to increase the voltage difference at the sensors output, to obtain 

a very high resistance of Input and very low output resistance, thus isolating the circuit. 

Biomechanical analysis of the finger was used with the aid of image processing, recognizing the trajectory of red dots 

that were glued to the points that represent the axes of the finger joints, besides, the signal of the flexibility sensor was 

collected, located on the finger and then those data were compared with the kinematic data obtained from the 

biomechanical analysis. 

In Figure 10, y represents the linear displacement of the worm, and y0 is the initial position for the finger flexion 

movement. The steel strip angularly displaces the θ1, θ2, and θ3, (see Fig. 10.a) joints, thus providing a great handling 

capacity (see Fig. 10.b). 

 

 
 

Figure 10. Representation of the index finger. (a) Setting the index finger; (b) Trajectory of the index finger. 
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In the biomechanical analysis of the finger, made with video recording of 29 frames per second, the relation of the 

angles at the joints between the (θ1, θ2, and θ3) finger phalanges was obtained with the displacement of the (y) screw, 

studying the behavior for the flexion movement (see Fig. 11(a)). 

Analyzing the biomechanical results in comparison to the data of the flexibility sensors collected, we observed that there 

is no linearity (see Fig. 11(b)). 

 

 

 

      
 

Figure 11. (a) Relation of the angles of joints between the finger phalanges with the worm screw dislocation for flexion 

movement. (b) Comparison between flexibility sensor data and biomechanical analysis data for flexion movement 

 

Due to the complexities and nonlinearities obtained in the results, for our PID control system, we use the tuning 

process with the help of the “trial and error” method, due to the advantage of not having to know the system model that 

is sometimes very difficult to be determined. The PID control which is to the precise control of a variable in a system, 

allows us to operate stably at the desired set point, even occurring variations or disturbances that affect its stability. 

The idea of position control is to ensure the position of each finger to obtain the desired posture of the robotic hand, 

the measured and conditioned (pm) signals of the flexibility sensors and the potentiometers coupled to the motors are used 

to be compared with the reference value (pd) for the control algorithm. 

The possibility of estimating muscle strength from the EMG signal is attractive because it allows the assessment of 

the contributions of the individual muscles to the total force exerted by a muscle group. This is the main reason why EMG 

signals are and probably will always be the method of choice for estimating the force, approaching that the relationship 

between force and amplitude sEMG has been found to be linear (R.Merletti, P. Parker, 2004). We thus estimate the desired 

force (fd) from the total energy of the 𝐸𝑊
𝑇  wavelet coefficients (see Eq. (8)) and consider (fm) the measured force of the 

FSR sensor readings that were located in the palm of the hand. 

The PID control algorithm was implemented in the FPGA of the compactRio 9012 which operates at the frequency 

of 10 kHz. The structure shown (see Fig. 12) is used for force control and position independent by using the control output 

to power the PWM system of the engine, which controls the movement of the fingers at a frequency of 1 kHz. 

 

 
 

Figure 12. General diagram of the position and force control system. 

 

It was proposed to control force with the help of the following rules: 

• Establish the magnitude of the grip force of the robotic hand to tighten an object in a desired position. 

• The robotic hand starts by operating in position control, moving in the free space until it reaches the desired 

position to begin the grip of the object. For now, the power control is off. 

• The hand comes into contact with the object, and the force sensor starts to experience a small magnitude of the 

signal, thus initiating the force control operation and deactivating the position control. 

a b 
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6. EXPERIMENTS AND RESULT 

 

It was integrated all the methods used and parts developed in this work, and with the help of a graphical environment 

developed in LabView, the methods were evaluated and adjusted, and also the systems of control of position and force of 

the robotic hand were tuned. 

In the Figure 13, We can observe the different types of patterns that our system recognizes and experiences. For the 

“Spherical grasp” pattern our robotic system can control the force interacting with the object.  

 

 
 

Figure 13. Analyzed positions of the robotic hand. 

 

For force control use the desired value (fd) estimated from the total energy of the coefficients wavelets 𝐸𝑊
𝑇  (see Eq. 

(8)), where we use the range of fd to estimate Force.k. 

In the Figure 14, we can observe the different control responses according to the different reference values of the 

desired force. 

 

 
 

Figure 14. Force control response for different reference values. 

 

By integrating all the parts and methods that conform the operation of the robotic hand we obtain a new table of results 

in the recognition for the three sets of patterns studied (see Tab. 5). The results improved in relation to the Tab. 4 because 

we added the sample validation method that we used to discriminate whether the collected signals are part of a standard 

under study or not. 

 

Table 5. Final result of the neural network classification and sample analysis. 

 

Pattern 

name 

% Recognition 

6 Patterns 5 Patterns 4 Patterns 

Extension 88.5 89.5 94 

Flexion 98 100 100 

Like hand 97.5 95 94.5 

Spherical 87 91.5 96.5 

Make fist 94.5 95.5 ----- 

Spread 77.5 ----- ----- 

 90.50% 94.30% 96.25% 
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To estimate the processing time at each stage, a database was used for the recognition of five patterns. (Tab. 6). 

 

Table 6. Time of robotic hand processes. 

 

Processes Time 

Checking Data 54 µS 

TWP 40 mS 

MLP 11 µS 

Total 40.07 ms 

 

7. CONCLUSIONS 

 

 In this work, all the proposed objectives were fulfilled. Acquisition methods, methods of interpretation and processing 

of superficial electromyographic signals were developed. Also, the construction of a flexible robotic hand was developed, 

able to adapt to the morphology of the objects, developing strategies of position control and force to perform basic tasks.

   

The control algorithms of flexion and extension movement of the fingers and the power control algorithms of the 

robotic hand are controlled by sEMG signal and were implemented in the FPGA of CompactRIO 9012. The robotic hand 

was able to execute the desired commands of the individuals. 

The proportional force control was able to provide adequate gripping force to the object through the measurement on 

the sensor located in the palm of the hand. The control is totally independent to the force control as to control the position 

of the fingers. The tuning of the controls was performed manually in the search for a better performance for the different 

patterns of the robotic hand positions. 

 A program was developed with the help of LabView software to perform communication between the robot actuators 

and the computer, to adjust the control parameters, to adjust some other parameters of the pre-processing step, and to 

visualize the degree of pattern recognition. 

The NI CompactRio 9012 programmable controller complied with high performance, the data acquisition function 

for the collection of the electromyographic signals, and in the measurement of the sensors for the use of the control 

method. It has also satisfactorily fulfilled the real-time processing function, achieving the implementation of high-speed 

control methods in the programmable FPGA. 

The total mass of the robotic hand structure, including the mass of the sensors, actuators and the transmission elements, 

results to be approximately 400 g. In addition, the size is approximately the size of the human hand, 6 DC motors as 

actuators, 8 sensors (6 position + 2 force) and 16 degrees of freedom were used. By which, the goal was to reduce mass 

and size without reducing the number of degrees of freedoms. 
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