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Abstract: A person with limited or complete absence of voluntary muscle control may find in a brain-computer 

interface (BCI) an alternative way to communicate with other people and interact with the environment. A non-invasive 

electroencephalogram (EEG) based BCI translates brain signals measured over the scalp into commands to a 

computer. One of the major problems in developing efficient BCI algorithms is the inter-subject variability of scalp 

recorded potentials. Spatial characteristics of brain mapping and spectral and temporal particularities of each 

person’s brain signals contribute to this issue. In this paper, a method for improving the accuracy on classification by 

choosing subject-specific features and channels in an EEG based BCI is proposed and compared with a publicly 

available dataset. The methods are later tested with a BCI system consisting of a commercial EEG headset and a 

microcontroller for simulating real time applications. The EEG signals considered in this paper are related to motor-

imagery (MI), as it is in many publications in the field when aiming the actuation of robotic devices. 
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1. INTRODUCTION 

 

Many disorders can affect a person’s ability to communicate with other people and control external environment. In 

these cases, a brain-computer interface (BCI) can be an important alternative to restore function
1
. Because of its 

relatively low cost, portability, and easiness to use, electroencephalography (EEG) is the most popular brain recording 

modality in the BCI field
2,3

. 

One of the major challenges in BCI research is the inter-subject variability with respect to spatial patterns and 

spectrotemporal characteristics of brain signals
4
. To outcome the spectrotemporal specificity, many researchers use 

subject-specific features in their BCI algorithms
5-7

. For the spatial patterns issue, many channel selection methods have 

been proposed with different approaches
8-13

. Subject-specific features and channel selection is useful to improve 

classification accuracy, and understanding how these procedures affect BCI performance is important for developing 

more efficient methods. 

In this paper, a method is proposed for choosing subject-specific features and channels in an EEG based BCI. The 

main purpose is to improve the accuracy rate of the BCI algorithm aiming the control of robotic devices, and provide 

means to understand how channel selection affects BCI performance. 

 

2. METHODOLOGY  

 

2.1. Computational Procedures 

 

The proposed method is divided into three steps. A publicly available dataset
14

 was used for validating the method. 

The dataset consists of data from seven subjects, named as A through G. EEG signals were recorded from 59 electrodes 

placed accordingly to the extended 10-20 system. Each subject alternated between two out of three possible motor-

imagery signals: left hand, right hand, and foot. Classification was done for every 1s interval of EEG signals. 

Step 1 is performed as it follows: seven channels that are most likely aligned with the motor cortex are selected to 

provide features. In spatial preprocessing, three possibilities are considered: no spatial filter, Common Spatial Patterns 

(CSP), and Surface Laplacian (SL). For feature extraction, the groups of information considered are: Fast Fourier 

Transform (FFT) spectrum, Discrete Wavelet Transform (DWT) coefficients and time domain points. In the preliminary 

stage, combinations of spatial preprocessing and quantity of features per channel with each group of information alone 

are tested and evaluated by the accuracy achieved in classification. In the final stage, the best quantities of features per 

channel and preprocessing obtained in each case are combined and once again tested and evaluated. By the end of this 

step, the spatial filter and the features to be extracted for each channel in step 2 is determined. 
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Step 2 is performed as it follows: 39 channels, including the ones used in step 1, are selected as a starting group. 

Step 2 starts out extracting features from these 39 channels and then eliminates one-by-one the less important ones. By 

the end of this process, the method finds a locally optimal sub-group of channels for every sub-group quantity varying 

from 39 to one. 

Step 3 is performed as it follows: given a set of channels used for feature extraction, all the others (used exclusively 

for spatial filtering) are eliminated one-by-one. The criterion for elimination is the distance of the electrode to an 

average position between feature channels, with the more distant one being the first to be eliminated. By the end of this 

process, classification accuracy with the desired group of feature channels is tested with every possible quantity of 

electrodes. 

Figure 1 shows a schematic of electrodes positions used in the dataset. The seven electrodes in the middle of the 

green line are the ones used in step 1, the colored channels are the 39 used as a starting group in step 2, and the others 

not filled with any color are used exclusively for spatial filtering. 

 

 
 

Figure 1. Channels used for generating the public dataset. 

 

2.2. Experimental Procedures 

 

The pieces of equipment used are: Emotiv Epoc Headset for EEG signal acquisition
15

, notebook Toshiba Satellite 

M645, 2.53GHz processor, and 4GB RAM for applying the computational methods, Raspberry Pi microcontroller, 

1.2GHz processor, and 1GB RAM for online signal analysis
16

, and a simple circuit as the output of the system. Emotiv 

power source is a small embedded battery, and signal is sent to the processing unit by Bluetooth, so it is a wireless EEG 

equipment. Raspberry Pi can use many different power sources, including cell phone batteries. Figure 2 shows the 

Emotiv Epoc Headset with the dongle that receives the signal by Bluetooth (on the left) and Raspberry Pi with the 

electronic circuit with red and green LEDs as the output. These pieces of equipment were selected aiming future work 

with embedded systems. 

 

 
 

Figure 2. Emotiv Epoc Headset, the EEG equipment, and the Bluetooth dongle (left), and Raspberry Pi 

connected to the output circuit (right). 
 

Firstly, EEG data is acquired for applying the proposed method using the notebook. For signal acquisition, the 

subject was oriented to remain in a relaxed position and execute imaginary movements of left and right hands. Then, the 

best features and electrode configuration is selected, and the optimized algorithm is uploaded to the Raspberry Pi 

microcontroller, with the best identified configuration. Finally, the subject is requested to execute an online task. 
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3. RESULTS AND DISCUSSION 

 

3.1. Computational Results 

 

Step 1 of the proposed method is evaluated with the public dataset. The best accuracy result achieved with each 

feature extraction method alone (preliminary stage of step 1) is represented for each subject, see Fig. 3. DWT stands for 

Discrete Wavelet Transform, numbers 2 and 3 after DWT refers to the level of decomposition, while letter ‘a’ indicates 

that it was the approximation level, FFT is Fast Fourier Transform, TDA and TDV are Time Domain Areas and 

Variance, respectively. 

 

 
 

Figure 3. Results for the preliminary stage of Step 1 using the public dataset. 

 

When analyzing each technique alone, it can be seen that FFT and DWT 2 were superior to the rest (72.01 and 

71.62% average), followed by DWT 3 (67.69% average). Time domain features and DWT 3a had a poor performance. 

FFT, DWT 2, and DWT 3 use features from 0 to 30Hz, 12.5 to 25Hz, and 6.25 to 12.5Hz, respectively. DWT 3a uses 

features from 0 to 6.25Hz. These results seem reasonable, since motor-imagery is usually related to changes in the alpha 

(8-12Hz) and beta (12-30Hz) bands over the sensorimotor cortex
17

. In the final stage of step 1, the best configuration for 

each technique were combined and tested in every possible way. The winning configuration of this step is represented 

for every subject A through G, see Table 1. 

 

Table 1. Final results for Step 1 using the public dataset. 

 

Subject Spatial Filter 
Feature extraction 

method 

Features per 

channel 
Accuracy 

A No filter FFT 5 64.36% 

B SL 
TDA 1 

63.86% 
FFT 3 

C SL DWT 2 1 86.05% 

D SL 
DWT 2 1 

84.88% 
FFT 1 

E SL 
DWT 2 1 

88.62% 
FFT 5 

F SL DWT 2 1 59.47% 

G SL FFT 2 71.15% 

 

Subject A did not use any spatial filter, while the six other subjects used SL. Since no artifact removal technique 

was applied in the preprocessing and the CSP algorithm is highly sensitive to outliers
18

, this may be the cause for SL 

superiority. FFT appeared in the best configuration of step 1 for five subjects and DWT 2 appeared for four subjects. 

Besides FFT and DWT 2, only TDA features appeared in the final results (subject B). Accuracy varied from 59.47 to 

88.62%, and no winner configuration was the same for more than one subject, showing the well-known inter-subject 

variability of EEG signals. It is interesting to notice that for subjects B, D, and E the combination of two techniques 

improved the accuracy. 

Step 2 of the proposed method is then evaluated with the public dataset, with results shown in Fig. 4. The horizontal 

axis represents the quantity of feature channels, while the vertical axis represents the highest accuracy with the 

corresponding quantity of electrodes. 
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Figure 4. Results for Step 2 using the public dataset. 

 

The behavior of the lines shown in Fig. 4 suggests that with the features selected from step 1, the 39 channels 

contains information that compromise classification, while groups with less than seven electrodes loses valuable 

information, also compromising the classification. The optimal group within the 39 channels lies on quantities from 

nine to 26 according to the proposed method, and was never the same for two or more subjects. The best accuracy 

values for each subject from A through G are: 70.26, 67.23, 82.95, 91.78, 62.40, and 76.68%. Notice that only for 

subject C the method was not able to achieve better result than with seven channels in step 1. Still analyzing subject C, 

it can be seen that its line in Fig. 4 has the most different behavior among the others, with large variance in accuracy 

when analyzing results for quantities near to each other. 

Step 3 is finally executed, with results shown in Fig. 5. There are no results for subject A, as it did not use any 

spatial filter, so only features channels were used in step 2. For the sake of clarity, Fig. 5 is divided in half, so to avoid 

the lines from superimposing excessively. 

 

 
 

Figure 5. Results for Step 3 using the public dataset. 

 

Results shown in Fig. 5 demonstrate an unpredictable behavior for every subject. The expectation was that the 

elimination of electrodes would gradually decrease accuracy, because SL increases spatial resolution as a function of 

electrodes density
19

. Since SL is calculated in this paper as a smoothing function on a spherical surface, it is not trivial 

to understand how each electrode position affects the potential distribution after smoothing. Thereby, the criterion for 

elimination can be one of the causes for such results. For subjects B, F, and G, step 3 predicted improvement in 

accuracy with specific quantities of electrodes: 68.67 (57 channels), 62.93 (29 channels), and 79.81% (34 channels), 

respectively. 
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Previous results were carried out with a portion of the public dataset. The unused portion of the same dataset is now 

used for validating the proposed methodology. Table 2 shows the accuracy when using this different portion of data for 

testing step 1 winners with seven and 39 channels. In other words, these results were obtained with feature selection, 

but no channel selection procedure, as only step 1 was executed in this case and channels were defined taking into 

consideration literature information, rather than computational methods. As expected, accuracy values are inferior to the 

ones obtained when executing the method. Subject B presented the larger difference between values during execution of 

the method and values with the unused data. Subjects B and F did not reach 60% of accuracy, while C and D obtained 

values above 80%. 

 

Table 2. Validation of feature selection from step 1. 

 

A B C D E F G 

7 channels (step 1) 

Literatura 
61.54% 52.57% 83.98% 81.70% 79.63% 59.20% 73.21% 

39 channels 61.78% 54.70% 52.32% 68.44% 77.78% 59.13% 73.68% 

 

Still considering the new portion of the dataset, Tab. 3 shows the accuracy obtained with the best configurations 

after channel selection performed in steps 2 and 3. Also, the best configurations with only seven feature channels are 

tested to check if the proposed method improved the accuracy when compared to the seven channels used in step 1. In 

this case, step 3 was not applied. 

Analyzing Tab. 3 it can be seen that channel selection was effective for all subjects, except for subject C, as already 

predicted when executing step 2 previously. For subjects C, D, and, E, results with the seven best channels were higher 

than results with the best selected group of electrodes. This is not very surprising, as the differences predicted 

previously between the best group and the best seven were not bigger then differences that occurred between accuracy 

values when executing the method and when using the new potion of data to validate it. Subjects D, E, and G achieved 

accuracy values above 80%, and only subject B remained with accuracy inferior to 60%. 

 

Table 3. Validation of channel selection from steps 2 and 3. 

 

 
A B C D E F G 

Best 64.62% 59.52% 79.07% 85.15% 84.92% 62.40% 80.86% 

Best seven 64.62% 58.31% 79.59% 86.21% 86.77% 56.00% 76.79% 

 

3.2. Experimental Results 

 

Emotiv has 14 electrodes, most of them near the frontal area (Fig. 6), which represents a challenging scenario for 

motor-imagery classification. This is reinforced by the fact that Emotiv does not provide good quality signals when 

compared to other EEG equipments
20

.  

 

 
 

Figure 6. Electrodes positioning in Emotiv, according to the 10-20 extended system. 

 

In order to adapt the methodology to the current situation, as data is now acquired from different EEG equipment, 

steps 2 and 3 were ignored. Also, one more change to the methodology is made as a consequence from previous 

analyses: only FFT is used in step 1 as a feature extraction technique. In this case, besides the spatial filter, the 

quantities of features per channel and the size of a hamming window that multiplies the time interval before Fourier 

transformation could vary. These modifications intend to minimize the time needed for applying the methods without 

compromising the efficiency of step 1. 

Before applying the proposed method for finding the best configuration, two offline analyses were performed to 

check if the subject would achieve a reasonable accuracy when step 1 is applied. 

Data to perform these analyses were acquired in different days. The first signal acquisition was done as described: 

the subject was asked to sit comfortably and not to make any voluntary movements. Then, 1 min of left hand MI was 



X  C o n gr e s s o  N a c i o na l  d e  E n g e n ha r i a  M e c â n i c a ,  20  a  2 4  d e  m a i o  d e  2 0 1 8 ,  S a l va d o r  -  B a h i a  

 
recorded followed by 1 min of right hand MI, and 1 min of mental relaxation. This was repeated seven times, totalizing 

7 min for each MI. During this procedure, subject could not focus sight in his body parts. The second signal acquisition 

differs from the first by allowing the subject to look at the body part that was imagined to be moving, and by the fact 

that it was recorded 7 min straight of left hand MI followed by 7 min straight of right hand MI. Two time intervals are 

tested as the interval in which all the preprocessing, feature extraction and classification are done: 1s and 2s.  

Results for the two offline analysis are shown in Tab. 4. In both analyses the performance was better with 2s being 

processed at a time. The most interesting fact, although, is the increase observed in the second analysis. The ability to 

execute the imaginary movements varies for different people and can be improved with time. The subject in this 

experiment had no previous experience with any activity related to executing imaginary movements, but with only two 

sessions it was possible to achieve 85% in accuracy with 1s being processed at a time, and 90% with 2s. This is 

probably also related to the differences in signal acquisition. According to the subject, the second signal acquisition was 

more comfortable then the first, but he could not say if it was a consequence of these differences in the procedure or 

consequence of his familiarization with the activity. Nevertheless, these values are obtained from a feature selection 

procedure and require other analyses with different data to check if the configuration that obtained these results can 

actually perform in the same way. In the second analysis with 1s as the time interval processed at a time, the spatial 

filter was SL, and for every other no spatial filter was used. This may be caused by the small quantity of electrodes 

available in Emotiv and the spacing between them, which makes it harder to generate a smooth spherical potential 

distribution to represent EEG signals measured along the scalp. 

 

Table 4. Offline analyses before online operation. 

 

Analysis Time Interval for classification Accuracy 

1 
1s 64.03% 

2s 75.00% 

2 
1s 85.55% 

2s 90.00% 

 

Finally, the online experiment took place. Since results from the two offline analyses showed higher precision when 

processing 2s intervals at a time, step 1 was executed in this condition. Signal was acquired only once and followed the 

same procedures described in the second offline analysis. With this dataset, step 1 was executed using the notebook. 

The best configuration selected by step 1 obtained 99.51% of correct commands, which is surprisingly good when 

compared to previous results and considering the known limitations of the hardware. No spatial filter was used once 

again. It took near 4 min to update the algorithms to Raspberry Pi with the desired configuration. 

The first session was performed so the subject could familiarize with the experiment. After that, one online session 

with 2s intervals processed at a time and one with 1s intervals processed at a time were performed. The subject was 

oriented to verbally indicate the MI that was being executed and could freely decide when to alternate them.  

In order to evaluate online performance, the control of horizontal position of an up moving particle was simulated 

with the results obtained in real time activity. To do so, one LED was used for indicating the movement towards left and 

the other for indicating the movement towards right. Figure 7 shows the results for the familiarization session and the 

other two. On top of each graphic is indicated the time interval processed to classify the signal. The red line refers to the 

LEDs that were turned on, while the blue line refers to the MI that was executed by the subject. The horizontal dashed 

lines indicate when the subject switched the MI being executed. 
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Figure 7. Results for the online performance. 
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Analyzing Fig. 7, one can see that the worst online performance happened in the familiarization session. In this 

case, a strong tendency to choose the left command was noticed from the classifier. When the right hand MI was 

executed, accuracy was 35%, while the accuracy for the left hand MI was 92%. The entire session accuracy was 

67.67%, which is a reasonable value when compared to the first offline analysis, but not a good result when the right 

hand MI tendency is considered. 

The middle graphic presents two wrong commands in the first moment, a small delay to recognize the right hand 

MI further in the activity, and after 40s the left hand MI was not recognized. Accuracy was 76%, which is a good 

performance, especially because no tendency in the classifier was noticed. This result is better than the first offline 

analysis, and worse than the second. 

The third graphic shows online performance when only 1s was classified at a time. A small delay to recognize left 

hand MI near 15s, one wrong command near 40s, and an entire left movement that was almost completely ignored 

around 35s represents all the incorrect commands in this session. The accuracy was 75%, which can be considered a 

better performance than the previous session, as this time only 1s intervals was used for classification and the feature 

selection was performed for 2s intervals, so it would not necessary fit to this situation. 

Although step 1 selected the best configuration by achieving 99.51% of correct commands, it is expected that 

online performance presents a big decrease in accuracy. When measuring data in the calibration session, subject can 

concentrate in the MI being executed, as it goes on for 7 min. Also, there are no expectations concerning results in this 

stage, but when performing online there is, as described by the subject. Subject also drew attention to the alternation of 

MIs in a short period of time, differing from what was practiced in calibration and offline analyses sessions, increasing 

the level of difficulty while executing the activity. Finally, Emotiv equipment may have an important role in decreasing 

performance when in online activities. Electrodes can easily change their positions during use because of the flexible 

arms that hold the electrodes with nothing to avoid sliding over the hair. The saline solution used for providing a better 

electric contact between electrode and scalp is another negative point, since it is lost over time, decreasing signal 

quality. All these points should be taken into consideration to provide fair analyses on real time performance with 

Emotiv. 

Raspberry Pi performed adequately classifying 1s intervals of EEG signals in real time, substituting a regular 

computer that is commonly used in this kind of experiment. Thereby, it can be seen that a BCI system using Raspberry 

Pi can be implemented with no need for greater modifications on the existing hardware originally not driven by brain 

signals. The major concern is related to EEG equipment. Emotiv has many advantages when embedded systems are 

considered, such as portability, friendly design, wireless, low cost, and easiness to use, but there is still a gap of quality 

between Emotiv signals and other clinical EEG devices. Besides, it is desired different options concerning electrodes 

quantities and positions for suiting many BCI applications, such as the one in this paper. 

 

4. CONCLUSIONS 

 

In the first part of this paper a method for selecting subject-specific features and channels is proposed and evaluated 

with a publicly available dataset. When analyzing results for seven subjects, the method proved itself efficient in most 

cases, and suggested that features extracted with FFT and spatially filtered with SL is probably the best option among 

others considered in the method. 

In the second part of the paper, an online experiment was prepared. The pieces of equipment used were chosen in 

order to provide means for applying the algorithms and methods to an embedded system in future works. Considering 

the known limitations of EEG equipment used and the lack of experience of the subject, results were good enough to 

encourage further research aiming more challenging applications. 
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