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Abstract: Several problems in mobile robotics need probabilistic formulations to handle the inherent uncertainty of mo-
tion and sensor measurements. Graph-SLAM is a probabilistic approach to the simultaneous localization and mapping
problem that is based on maximum likelihood estimation and non-linear least squares optimization. It consists in ge-
nerating a graph from the poses of the robot and from the constraints of measurements between poses, followed by the
optimization of this graph to obtain a consistent trajectory. This paper presents the development and implementation of a
pose-graph optimization tool for MATLAB. A pose quaternion representation is used and a manifold optimization appro-
ach is applied to handle attitude representation problems in the optimization. The system is evaluated using benchmark
datasets available in the literature.
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1. INTRODUCTION

The simultaneous localization and mapping problem (SLAM) is one of the most important subjects in mobile robotics
research due to the fact that is an essential step to a robot achieve full autonomy in an unknown environment. A robot
needs an accurate model of the environment, as well as a precise estimate of its pose, in order to be fully autonomous.

A SLAM problem can be divided into two main parts: front-end and back-end. The front-end is heavily sensor-
dependent because it uses sensor information to estimate the pose of the robot between states. However, pose estimation
itself is inherently noisy and a probabilistic formulation is necessary to explicitly deal with the uncertainty using probabi-
lity theory. This is done in the back-end step (Cadena et al., 2016).

There are three main probabilistic formulations for SLAM: extended kalman filters, particle filters (Thrun et al., 2005)
and graph-based approaches. The first two are considered online SLAM. The graph-based is also called full SLAM
because it gives an estimate of the complete trajectory of the robot, in contrast to the previous formulations that only
estimate the most recent pose of the robot (Cadena et al., 2016).

The Graph-SLAM formulation was introduced by Lu and Milios (1997) and consists in a graph-based representation
of the states that is optimized using a non-linear least squares approach to create a maximum likelihood solution for the
trajectory of the robot. In this formulation the nodes of the graph are the state variables and the edges are measurement
relations affected by Gaussian noise.

There are several back-end implementations in the literature, such as TORO (Grisetti et al., 2009) and g2o (Kümmerle
et al., 2011), that were implemented in C++ and have both computational speed and precision. Wagner et al. (2011)
implemented a MATLAB framework to make the technique accessible to non C++ developers, the Manifold ToolKit.
Their framework uses a manifold optimization approach to deal with attitude representation problems in optimization
algorithms. The implementation of Wagner et al. is based on the �-method, presented by Hertzberg (2008).

This implementation is based on the work of Wagner et al. (2011) for the 3D case. However, their framework is
more general, extended to multi-sensor calibration problems, with an object-oriented implementation and a SO(3) ex-
ponential map. The present work is specifically designed to pose-graph optimization problems with a pose-quaternion
representation.

Hence, this paper presents the development and implementation of a 2D and 3D pose-graph optimization tool for
MATLAB. The system is evaluated using benchmark datasets available in the literature.

The work is organized as follows. Section 2 introduces the theoretical background of maximum likelihood estimation
and Graph-SLAM. In section 3 is shown details of the 2D implementation. Section 4 details the 3D implementation. In
section 5 is shown the evaluation of the system using 2D and 3D benchmark datasets. Section 6 presents the conclusions
and also suggestions for improvements in future works.
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2. METHODOLOGY

In the SLAM problem, the robot does not have prior knowledge of it own poses x, or access to a map m of the
environment. Instead, only odometry information or other sensor measurements are available. In a graph-based approach,
a graph is constructed using these raw sensor measurements. The nodes of the graph are the robot positions over time
and the edges represent spatial constraints between two poses (Grisetti et al., 2010). The graph optimization is done by
estimating the state x̂ that best explains the measurements, which is the state that maximizes the posterior belief p(x|z)
(Endres, 2015):

x̂ = argmax
x

p(x|z) (1)

However, usually p(x|z) is hard to obtain due to the non-linearity associated with the map between the measurements
and the states. Using Bayes’ Theorem Eq. (1) can be rewritten as:

x̂ = argmax
x

p(z|x)p(x)

p(z)
(2)

Since p(z) is independent of x and there is no knowledge about the prior state, p(x) and p(z) can be dropped (Küm-
merle et al., 2011).

x̂ ∝ argmax
x

p(z|x) (3)

Eq. (3) represents the maximum likelihood solution. Assuming independent measurements, the problem becomes:

x̂ ∝ argmax
x

n∏
k=1

p(zk|x) (4)

With the assumption of locally Gaussian measurements, the likelihood of the measurements will also be Gaussian:

x̂ = argmax
x

∏
exp(−eTij(xi, xj , zij)Ωijeij(xi, xj , zij)) (5)

where Ω is the inverse of the covariance matrix of the measurements, and eij represents the vector error function associated
with the difference between prediction and observation. Taking the logarithm to transform the product into a sum:

x̂ = argmin
x

∑
ij

eTij(xi, xj , zij)Ωijeij(xi, xj , zij) (6)

Eq. (6) has the same structure of a non-linear least squares problem:

x∗ = argmin
x

F (x) (7)

where

F (x) =
∑

eTijΩeij (8)

and can be solved using standard optimization methods such as Gauss-Newton or Levenberg-Marquardt. A solution to
the non-linear least squares problem is to use the first order Taylor expansion around the initial guess x̌ to approximate
the error function, as stated in eq. (9).

eij(x̌+ δx) ≈ eij + Jijδx (9)

where Jij is the Jacobian of the error function computed in x̌. Thus, the cost function F of an observation between nodes
i and j can be obtained rewritting a parcel of the sum in Eq. (6) with the local approximation of Eq. (9).

Fij(x̌+ δx) ≈ (eij + Jijδx)TΩij(eij + Jijδx) (10)
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The global cost function can be found with the sum of all local approximations:

F (x̌+ δx) =
∑

Fij(x̌+ δx) ≈
∑

(eTijΩijeij + 2eTijΩijJijδx + δTx J
T
ijΩijJijδx) (11)

Eq. (11) can be minimized solving the following linear system:

Hδx = −b (12)

where

H =
∑

JTijΩijJij = JTΩJ (13)

b =
∑

JTijΩijeij = JTΩe (14)

The solution for one iteration is then obtained by adding the increments to initial guess, as stated in Eq. (15).

x∗ = x̌+ δx (15)

3. 2D IMPLEMENTATION

The poses of the robot are given by a translation vector ti = [xi, yi] and a rotation angle θi, that represents the
orientation of the robot.

p = [ti, θi] (16)

Each measurement between the nodes i and j is given by zij :

zij = [tij , θij ] (17)

The rotations of the robot are expressed with 2x2 rotation matrices, as shown in Eq. (18).

Ri =

(
cos(θi) −sin(θi)
sin(θi) cos(θi)

)
(18)

The error function is given by Eq. (19).

eij = z−1ij

(
RTi (tj − ti)
θj − θi

)
(19)

The Jacobian matrix is composed by the derivate of the error function in terms of each pose. However, as the error
function of each measurement only depends on the values of two nodes, the Jacobian has the folowing structure:

Jij =

(
0 . . . 0

∂eij
∂xi

0 . . . 0
∂eij
∂xj

0 . . . 0

)
(20)

4. 3D IMPLEMENTATION

Oposed to 2D optimization, with a single normalized angle, the representation of orientation is very problematic in
3D. There are several parameterizations, for instance, euler angles, rotation matrices and unit quaternions. However, all
three suffer from considerable drawbacks in problems such as pose-graph optimization. The use of Euler Angles is subject
to singularities. When two of the three rotation axes are aligned, a DOF is lost, which is called the gimbal lock problem.
To overcome this problem, a solution would be the use of an over-parametrized representation, such as rotation matrices
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or unit quaternions. The problem with the use of rotation matrices is the necessity to impose six non-linear constraints to
ensure orthogonality and unit length of the columns. In other words, to ensure it remains in SO(3) (Grassia, 1998).

Quaternions are more suitable for optimization problems than rotation matrices due to the number of constraints that
need to be maintained at every iteration. Quaternions were first described by W. R. Hamilton in 1843 (Jia, 2016), and can
be seen as a generalization of complex numbers, with three different imaginary parts (Horn, 2001). In Eq.(21) is shown a
general form of a quaternion.

q = qxi+ qyj + qzk + qr (21)

where

i2 = j2 = k2 = ijk = −1 (22)

and qx, qy, qz, qr ∈ R. Thus, it is a sum of a scalar qr and a vector part qv = [qx, qy, qz].
The set of unit-lenght quaternions, also called unit quaternions, are a sub group of quaternions that are used to represent

rotations. They satisfy the condition ‖qu‖ = 1. The unit quaternion is given by Eq. (23). A full quaternion belongs to
the R4 space. However, the unit quaternion belongs to a subspace of R4 called S3, which represents the unit sphere in R4

(Gallier, 2012), (Ude,1999).

qu =
q

‖q‖
=

1√
q2w + q2x + q2y + q2z

q (23)

A unit quaternion just need to maintain its unit lenght throughout the optimization process. However, the addition
of this constraint degrades the performance of the algorithm (Grassia, 1998). The problems about the quaternion para-
meterization occur because rotations have three DOF and the quaternion can change in four directions. Since estimation
algorithms, in general, expect variables from euclidean vector spaces (Hertzberg, 2008), the goal is to use a representation
with three parameters, such as euler angles, but without singularities. However, there is no SO(3) parameterization with
only three parameters that has no singularities (Hertzberg, 2008).

To overcome these problems, the state is globally represented by a unit quaternion, but local perturbations around the
current state have a minimal representation, ideally behaving as an euclidean space (Hertzberg, 2008). This parametriza-
tion is related to manifold theory and exponential maps.

A manifold is a mathematical space that can be locally approximated by an euclidean space, but it is not on a global
scale (Lee, 2001). In other words, "every point of a manifold has a neighborhood that can be mapped bidirectionally to
Rn"(Hertzberg et al., 2013).

The space of rotations and S3, the unit quaternions, are manifolds and can be locally mapped to a euclidean space.
Therefore, the parameterization problem can be dealt with using unit quaternions to represent the orientation of the state,
and defining a operator � that maps a local variation in the euclidean space to a variation on the manifold (Grisetti et al.,
2010).

The �-method, developed by Hertzberg (2008), defines the mapping functions between the manifold and the eucli-
dean spaces, which are called the exponential and logarithmic maps. The operator �, stated in Eq. (24), represent the
exponential map, which performs a rotation around axis δ with an angle ‖δ‖, accoding to Hertzberg et al. (2013).

p� δ = p exp
(δ

2

)
(24)

The operator�, stated in Eq. (25), represent the logarithmic map, which computes the rotation from p to q. The global
difference in manifold space is mapped to a local perturbation in euclidean space (Grisetti et al., 2010).

q � p = 2 · log(p−1q) (25)

According to Ude (1999) and Hertzberg (2008), the exponential and logarithmic functions are given by the following
equations, considering a quaternion with real part w and vector part u.

The exponential map function maps a vector v into a unit quaternion q:

exp : R3 → S3 (26)

exp(v) = q =

{ [
sin(‖v‖) v

‖v‖ , cos(‖v‖)
]

for ‖v‖ 6= 0

[0,0,0,1] for v = 0
(27)
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The logarithmic map function maps a unit quaternion q into a vector v:

log : S3 → R3 (28)

log(q) = v =


0 for u = 0

atan(‖u‖/w)
‖u‖ u for u 6= 0, w 6= 0

π/2
‖u‖u for w = 0

(29)

Thus, the pose of the robot is represented by a translation vector and a unit quaternion:

xi = [x, y, z, qx, qy, qz, qr] (30)

The error function can be approximated as:

eij = eij(x̌� δx) w eij + Jijδx (31)

where eij is the difference between the predicted and the actual measurement, as stated in Eq. (32)

eij = ẑij � zij (32)

The Jacobian is given by Eq. 33.

Jij =
∂eij(x̌� δx)

∂δx
(33)

However, now the Jacobian matrix is computed numerically, according to Hertzberg (2008). A small perturbation is
applied for each degree of freedom.

Jij =
eij(x� dvj)− eij(x)

d
(34)

where eij is the error function, d is a small positive scalar and vj is the unitary vector corresponding to the DOF.
Thus, the incremental addition to the initial guess is defined by the exponential map:

x∗ = x̌� δx (35)

The operator � first converts the rotational part of δx to a full quaternion and then apply the transformation to x̌
(Grisetti et al., 2010), (Ude, 1998).

5. DATASET EVALUATION

The implementation was evaluated using several datasets available in the literature. There are two main formats to
represent graph files: TORO and g2o. They differ with respect to the ordering of the elements of the information matrix.

5.1 2D Evaluation

The Intel Dataset was chosen for the 2D evaluation, a benchmark dataset with real data acquired at the Intel Research
Lab in Seattle, consisting of raw measurements from wheel odometry and laser range finder. Its graph contain 1228 poses
and 1505 constraints. The graph is written in the TORO format. All nodes are represented by an ID, x, y and θ values,
which correspond to the initial odometry poses.

All edge lines have the format: "IDfrom IDto x y θ I11 I12 I22 I33 I13 I23". The first two numbers "IDfrom
IDto"correspond respectively to the ID of observing and observed nodes i and j. The x and y values compose the
translation vector between nodes, and θ correspond to the rotation angle between nodes. The numbers "I11 I12 I22 I33
I13 I23"are the 6 top triangular elements of the 3x3 information matrix corresponding to each measurement. As the
information matrix is symmetric, it becomes:

Ωij =

I11 I12 I13
I12 I22 I23
I13 I23 I33

 (36)
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Fig. 1 shows the initial pose-graph corrupted by drift in odometry estimation and measurement errors. The blue dots
are the poses of the robot, and the red lines are the measurement constraints, derived from scan matching. In Fig. 2 the
graph is successfully optimized and it is closest to the real trajectory of the robot. In Fig. 3 is shown a comparative image
of the same dataset optimized by a method called MOLE2D, developed by Carlone and Censi (2012).

Figura 1: Intel - Initial corrupted pose-graph

Figura 2: Intel Optimized pose-graph Figura 3: MOLE 2D Optimization

In Fig. 4 is shown the logarithmic global error per iteration. In only four iterations the system was able to optimize
the entire graph, which shows the robustness of this implementation.
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Figura 4: Intel dataset - Global error per iteration
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5.2 3D Evaluation

For the 3D evaluation, the nodes are listed in the format "ID x y z qx qy qz qr", which corresponds to the number of
the pose and its respective 3D position and orientation, represented by a unit quaternion. All edge lines have the format:
"IDfrom IDto x y z qx qy qz qr I11, I12,...,I16, I22, ... I66". The first two numbers "IDfrom IDto"correspond to the ID
of observing and observed nodes i and j. The x, y and z compose the translation vector between nodes, and qx qy qz
qr compose the unit quaternion that represent the rotation between two nodes. The numbers I11 ... I66 are the 21 top
triangular elements of the 6x6 information matrix, stated in Eq. (37). As the information matrix is symmetric, only 21
number are necessary to fill the entire matrix.

Ωij =



I11 I12 I13 I14 I15 I16
I22 I23 I24 I25 I26

I33 I34 I35 I36
I44 I45 I46

... I55 I56
I66


(37)

The following 3D dataset represents the movement of a robot on a surface of a sphere. The graph has 2500 poses and
4949 contraints. Fig. 5 shows the initial graph configuration, a sphere corrupted by noise. Figure. 6 shows that the system
is able to correctly optimize the graph, displaying the optimized sphere. Figure 7 shows the global error per iteration of
the evaluation in logarithmic scale.

Figura 5: Initial pose-graph Figura 6: Optimized pose-graph
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Figura 7: Sphere dataset - Global error per iteration
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Another evaluation was made using real data aquired from an instrumented car at the Stanford parking garage. The
parking garage dataset, provided by Carlone et al. (2015), has a graph with 1661 poses and 6275 constraints. Figure 8
shows the place were data was aquired. In Fig. 9 is shown the initial corrupted graph, and Fig. 10 shows the optimized
trajcetory of the robot. Figure 11 shows the global error per iteration of the evaluation in logarithmic scale.

Figura 8: Stanford garage

Figura 9: Initial pose-graph Figura 10: Optimized pose-graph
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Figura 11: Garage dataset - Global error per iteration
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6. CONCLUSION

In this paper an implementation of a pose-graph optimization tool for MATLAB, that can be used with 2D or 3D data,
was presented. The technique is based on a maximum likelihood estimation and non-linear least squares optimization. A
manifold optimization approach with a unit quaternion representation was used to handle attitute representation problems.
The accuracy of the implementation was stated by benchmark dataset evaluation, with simulated and real world data, that
assured the convergence of the initial corrupted trajectories to the desired result in few iterations. Future improvements
include the use of other methods to solve the non-linear least squares problem, such as stochastic gradient descent.
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