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ABSTRACT 
This work analyzes the applicability of the ASME Boiler 

and Pressure Vessel Code procedures to calculate fatigue crack 
initiation under multiaxial stresses and/or strains, in particular 
when caused by non-proportional loads that lead the principal 
directions at the critical point to vary with time, e.g. due to out-
of-phase bending and torsion loads induced by independent 
sources. Classic uniaxial fatigue damage models are usually 
inappropriate for analyzing multiaxial loads, since they can 
generate highly inaccurate predictions. Moreover, it is shown 
that the ASME procedures can lead to non-conservative results 
for non-proportional load histories. 

 
INTRODUCTION 

Service loads can be applied on one or on several points of 
a structural component. They can be generated by only one or 
by multiple sources, coherent or not. In general, such loads 
cause bending, torsion, normal, and/or shear efforts which, 
when combined, can (and usually do) generate multiaxial 
strains and stresses at the critical point(s) of the component. 
Multiaxial fatigue deals with the initiation and/or the 
propagation of fatigue cracks under such general conditions.  

Multiaxial fatigue load histories can be proportional or 
non-proportional (NP). They are proportional when the 
principal axes of the stresses and strains induced by them, and 
thus their maximum-shear planes, remain fixed during their 
entire duration. On the other hand, NP loads induce principal 
stress/strain directions that change in time (1). 

Consider for instance a tension-torsion problem where a 
shaft is loaded by a normal stress x(t) in the x direction 
combined with a shear stress xy(t), where t stands for time. In 

this case, the principal stresses 1 and 2 and the angle 1 
between 1 and the x axis are given by 
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When the shear and normal stresses are proportional, the 

ratio xy(t)/x(t) and the angle 1(t) remain fixed for all time t, 
thus this simple multiaxial loading history is proportional. If 
xy(t)/x(t) and hence 1(t) vary with time, then the loading is 
non-proportional. The relative degree of non-proportionality of 
any multiaxial load history is quantified by its so-called non-
proportionality factor 0  FNP  1, with FNP  0 standing for a 
proportional load history and FNP  1 for a fully NP history. 

If all stress and strain components are periodic and have 
the same frequency, they can also be classified as in-phase or 
out-of-phase. Figure 1 shows in-phase as well as 90o and 180o 
out-of-phase tension-torsion load histories. Both the in-phase 
and the 180o out-of-phase loadings have a constant xy(t)/x(t) 
ratio, so they are proportional histories with FNP  0. The 90o 
out-of-phase tension-torsion loading, on the other hand, always 
results in a NP history, with the FNP value depending on the 
ratio between the shear and normal amplitudes. It is usually 
accepted (1) that, in tension-torsion histories, the maximum 
value FNP  1 is achieved for sinusoidal 90o out-of-phase 
loadings with equal amplitudes for x and xy3, when the von 
Mises stress 2 2

x xy3    remains constant along the load path.  
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Fig. 1: In-phase, 90o out-of-phase and 180o out-of-phase 
tension-torsion histories. 
 

The FNP value of tension-torsion loads can also be 
obtained from the shape of their stress paths represented in the 
von Mises tension-torsion diagram x xy3, where the 
distance between any stress state and the diagram origin is 

equal to 2 2
Mises x xy3     , see Fig. 2. For zero mean loads, 

FNP is usually estimated from the aspect ratio b/a of an ellipse 
that encloses the stress path, where a and b  a are the ellipse 
semi-axes. So, both in-phase and 180o out-of-phase tension-
torsion loadings, which always result in straight stress paths, 
are also always proportional and have FNP  0 under zero mean 
loads, see Fig. 2(left). For sinusoidal 90o out-of-phase loadings 
with equal amplitudes for x and xy3, the resulting tension-
torsion path describes a circle, hence it induces FNP  b/a  1 
as expected, see Fig. 2(middle). Figure 2(right) shows the 
enclosing ellipse of a general periodic history, associated with a 
NP factor such that 0  FNP  1. 

 

 
Fig. 2: Definition of the non-proportionality factor FNP for 
proportional (left), 90o out-of-phase (middle), and general 
tension-torsion stress histories (right) (1). 

 
The general periodic tension-torsion path exemplified in 

Fig. 2(right) is a combination of an outer and an inner loop that 
results in two different loading cycles per period, therefore it 
can be classified as a variable amplitude loading (VAL) history. 
On the other hand, periodic paths consisting of one cycle per 
period, such as the proportional and the 90o out-of-phase 
examples from Fig. 2, are classified as constant amplitude 
loading (CAL) histories. Naturally, any non-periodic and non-
monotonic load path results in a VAL history. 

Notice that in-phase or 180o out-of-phase loads can result 
in NP histories, as seen in the straight path C in Fig. 3, which 
has a variable xy(t)/x(t) ratio, thus variable principal 
directions. However, the straight path B, which is also in-phase 

and with a non-zero mean load, induces a proportional load 
history because it maintains a fixed xy(t)/x(t) ratio, similarly 
to path A. Load phase and load proportionality are indeed 
different concepts. 

 

 
Fig. 3: In-phase tension-torsion stress paths that result in pro-
portional histories for paths A and B and in a NP history for C. 
  

However, both in-phase or out-of-phase biaxial tension-
compression histories induced by perpendicular loads are 
always proportional, since they maintain fixed principal-stress 
directions and thus induce xy(t)  0  d1(t)/dt  0, see Fig. 
4. This is the reason why NP experiments should be performed 
on tension-torsion testing machines instead of biaxial load 
frames with two perpendicular jacks, which cannot induce NP 
loads.  
 

 
Fig. 4: General biaxial history, which is always proportional in 
the absence of shear stresses. 

 
The simple examples discussed above involve histories 

with only two stress components. For general six-dimensional 
(6D) stress histories, the FNP estimates need to consider the 
path of all six stress components x, y, z, xy, xzand yz. 
Fatigue crack initiation assessments require as well the use of 
damage models based on methodologies that depend on the 
material type, as discussed next. 

Directional-damage materials, like most metals, fail by 
fatigue due to a single dominant crack. The plane along which 
the microcrack initiates at the critical point is called the critical 
plane, whose direction must be estimated using multiaxial 
fatigue damage models that take into account the stress and 
strain histories projected onto it. For such materials, it is usual 
to neglect fatigue damage eventually induced on other planes, 
assuming they do not interact or affect the microcrack initiation 
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process on the critical plane. It is also assumed that fatigue 
damage can be properly evaluated based only on the normal 
and shear stress (and/or strain) histories acting on the critical 
plane. It is important to note that the plane where the 
microcrack initiates (the critical plane) may be (and usually is) 
different from the plane where the resulting macroscopic 
fatigue crack propagates. For modeling purposes, the search for 
the critical-plane direction can be performed using so-called 
critical-plane approaches. 

Distributed-damage materials, on the other hand, fail by 
multiaxial fatigue due to distributed mechanisms, which may 
cause e.g. multiple cracking in concrete or distributed 
cavitations in ductile metals under high loads. Fiber-reinforced 
composites fail by distributed mechanisms as well, because 
fiber unsticking and rupture happen along their multiple 
directions, so they usually need to be described by anisotropic 
damage models. Moreover, even though multiple microcracks 
(in concrete) and fiber failure (in composites) can happen in 
several different directions, all of them can contribute 
altogether to the accumulated damage in such materials, as well 
as to the decrease or loss of their stiffness. Consequently, 
significant interaction among damage mechanisms acting on 
different planes and directions can happen in these distributed-
damage materials, as opposed to what happens in directional-
damage materials. Multiaxial fatigue damage evaluations in 
distributed-damage materials usually involve invariants like the 
von Mises and the hydrostatic components, which are able to 
mix stress and/or strain contributions in all directions, without 
assuming a preferential plane. 

 
EQUIVALENT STRESSES AND STRAINS 

Several yielding, failure, and fatigue criteria are based on 
comparisons between a uniaxial strength and an equivalent 
stress or strain that combines all multiaxial components. The 
most widely used model to calculate such equivalent stresses 
and strains is the von Mises yield criterion. The loading 
parameter in fatigue crack initiation models for these materials 
can be the von Mises equivalent stress Mises, shear stress Mises, 
or else the octahedral shear stress oct. 

However, as Mises and Mises are always positive, they 
cannot identify whether a load cycle is tensile or compressive, a 
major issue in fatigue analyses. Indeed, two simple uniaxial 
stress states x1  200MPa and x2  200MPa both have the 
same Mises  200MPa, wrongfully suggesting that an alternate 
loading between x1 and x2 would be constant despite its sign 
change.  

To avoid this problem, a von Mises equivalent stress range 
Mises (also called relative von Mises stress RMises) can be 
used in cyclic or VAL histories to correctly evaluate the 
variation of Mises along the loading path, caused by the stress 
range components (x, y, z, xy, xz, yz), calculated 
from: 
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Such relative von Mises ranges are easy to obtain for 

proportional load histories, from the differences between the 
maximum and minimum values of each stress component. 
However, for NP load histories such relative ranges are not able 
to consider the significant load path shape influence on fatigue 
life, as discussed next. Moreover, invariants such as von Mises 
are only applicable for distributed-damage materials, unless the 
load history is very simple for such a differentiation not to 
matter. Despite these limitations, some codes are still based on 
invariants, as discussed next. 

 
THE ASME BOILER AND PRESSURE VESSEL CODE 

The ASME Boiler and Pressure Vessel Code (2) is a widely 
used design tool that includes a method to estimate equivalent 
stresses (or strains) from arbitrary multiaxial load paths at 
critical points, usually notch tips. Such load paths can either 
represent an entire period of a periodic CAL history, or a half-
cycle from a VAL history counted using a multiaxial rainflow 
method such as the Modified Wang-Brown (3).  

However, this traditional code has some idiosyncrasies, 
e.g. its equivalent stresses are calculated by Tresca, while its 
equivalent strain equations adopt the von Mises criterion. For 
simplicity, the von Mises criterion is used below for both 
equivalent stress and strain calculations, which is less 
computationally intensive than the Tresca version, while giving 
similar results. 

For a stress path at the critical point given by the time 
histories x(t), y(t), z(t), xy(t), xz(t), and yz(t), the ranges 
between any two instants t  t1 and t  t2 along the load path 
are defined as 
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The von Mises shear stress range Mises  is then obtained 

from the two instants t  t1 and t  t2 where its expression is 
maximized, i.e. 
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The von Mises equivalent stress range is then calculated 
from Mises Mises 3    . 

An analogous procedure can be adopted for strain paths 
given by the time histories x(t), y(t), z(t), xy(t), xz(t), and 
yz(t), defining the ranges 
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from which the von Mises shear strain range Mises  is 

calculated from the maximization problem 
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where the von Mises equivalent strain range is obtained from 

MisesMises 3 [2 (1 )]      , where   is the elastoplastic 

Poisson ratio that combines elastic and plastic effects defined 
as    (el,Mises  0.5pl,Mises)/(el,Mises  pl,Mises), whose value 
lies in-between the elastic () and plastic (0.5) Poisson ratios, 
i.e. 0.5     (4). 

For a simple multiaxial proportional CAL history, this 
method results in a von Mises equivalent range calculated from 
the difference between the peak and the valley of the 
considered load cycle.  

However, for general multiaxial NP load histories, where 
the principal stress directions can vary, the approach adopted 
by the ASME B&PV code can result in highly non-
conservative predictions. For instance, all four stress paths 
illustrated in the x  xy3 diagram depicted in Fig. 5 (one 
proportional with no shear components, two elliptical with 
different max/max ratios, and one circular with max3/max  
1) would be associated with the very same von Mises 
equivalent stress range Mises  L according to the simplified 
procedures recommended by the ASME code, because Eq. (4) 
is maximized (in all four cases) for the instants t1 and t2 where 
x  L/2 and xy  0, where L is the longest chord in the load 
history diagram.  

However, the fatigue damage induced by the circular stress 
path in Fig. 5 should be significantly higher than the damage 
induced by the proportional (uniaxial) stress path, whereas the 
damage induced by the elliptical stress paths increase as their 
FNP increases. Several experiments (5) have shown that longer 
stress paths associated with NP loads are significantly more 
damaging than straight proportional paths. 

For instance, the ASME B&PV code can non-
conservatively underestimate by a factor of 3 the equivalent 
von Mises range of the circular stress path from Fig. 5, when 
compared to the more reasonable Mises  L3 predicted from 
the MOI (moment of inertia) method for estimating equivalent 
amplitudes of non-proportional multiaxial stress or strain 
histories (6). Or else, based on the theory of convex enclosures 
of NP stress paths (7), the ASME B&PV code can also 
underestimate the equivalent von Mises range of circular paths 
by a factor of 2 when compared to the Mises  L2 
predicted from most convex-enclosure methods. 
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Fig. 5: Proportional, elliptical, and circular stress paths in the 
x  xy3 diagram would result in the same von Mises 
equivalent stress range Mises  L according to the ASME 
standard procedures, a prediction that is highly non-
conservative. 
 

In fact, experimental evidence and convex enclosure 
methods (7) show that the 90o out-of-phase tension-torsion 
circular path from Fig. 5 should be associated with an 
equivalent Mises much larger than the L range proposed by 
the ASME B&PV code, typically between L2 and L3. Since 
such larger equivalent Mises values are of course associated 
with much shorter fatigue lives, the ASME B&PV code 
procedures are indeed non-conservative, hence they probably 
should be reviewed. The elliptical stress paths in Fig. 5 should 
have Mises in-between the circular path value and the value 
Mises  L from the proportional horizontal path shown in the 
figure, however this effect is completely ignored by the ASME 
code procedures as well. 

It can be concluded that since the procedure used by the 
ASME B&PV code does not take into account the shape of the 
multiaxial stress path, it only considers the maximum stress 
range within it. Hence, it can be regarded as a “longest chord” 
approach. This simplistic approach searches for the longest 
straight line joining two points from the stress path represented 
in the deviatoric stress space, whose length L would be 
assumed as the equivalent stress range Mises  L without any 
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correction to account for the path shape. The same conclusions 
can be drawn for ASME’s Mises estimates, which would 
search for the longest chord in the strain path represented in the 
deviatoric strain space.  

These non-conservative ASME B&PV code predictions are 
almost identical to the ones obtained from the pioneer Dang 
Van’s Minimum Ball procedure (8), which would circumscribe 
the same circle with diameter L to all four load paths from Fig. 
5, regardless of their different proportional or NP natures, 
wrongfully estimating like the ASME code the same equivalent 
stress range Mises  L for all of them. 

For NP histories, it is thus recommended to adopt some 
path-equivalent procedure such as the MOI method (6) to 
calculate Mises for distributed-damage materials. On the other 
hand, for NP histories on directional-damage materials (such as 
most metallic alloys), a combination of the MOI and the critical 
plane approach is required to consider the directional nature of 
initiating cracks. Details on the implementation of the critical 
plane approach can be found in (4) and (9-10). 

Finally, the ASME B&PV code procedures assumes that all 
loads are CAL, since no cycle counting method is adopted or 
proposed to account for fatigue damage. However, to deal with 
VAL histories it is also necessary to apply a multiaxial rainflow 
counting procedure before calculating fatigue damage, such as 
the one detailed in (3). This is an important issue that probably 
should also be reviewed in the calculation routines adopted by 
the ASME code.  

 
CONCLUSIONS 

In this work, some multiaxial fatigue procedures proposed 
by the ASME Boiler and Pressure Vessel Code were critically 
reviewed. It was concluded that the ASME method should only 
be used for proportional or nearly proportional multiaxial load 
histories. Moreover, it should only be applied with invariant-
based fatigue damage estimations, since Mises or Mises mix 
all stress or strain components without considering the 
direction of the plane where the microcrack initiates at the 
critical point. Such invariant-based calculation procedures 
should not be used for directional-damage materials like the 
metallic alloys used in the vessels, because they do not account 
for the physics of the cracking problem in such materials, 
which fail by fatigue by the propagation of a dominant crack, 
not by distributed damage. Indeed, the von Mises equivalent 
ranges proposed by the ASME code mix stresses or strains 
from different planes, a procedure that is incompatible with the 
critical-plane approaches needed to describe fatigue damage in 
such materials. 
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