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ABSTRACT. The elastoplastic frontiers of the plastic zones (pz) ahead of the crack fronts is obtained by 
incremental elastoplastic finite element three-dimensional calculations performed for cracked components with 
relatively high and low transversal constraints. Such detailed calculations consider all effects associated with the 
actual cracked component geometry and its loading conditions. From the numerical results, it is shown that, 
contrary to what is assumed in Fracture Mechanics estimates, the size of the plastic zones can vary significantly 
for a given Stress Intensity Factor. Since damage ahead of the crack front depends on the pz that always form 
ahead of crack fronts, or is at least much affected by it, this fact cannot be neglected. Indeed, it can have a 
major importance in practical applications, including in fatigue and in elastoplastic fracture estimates. This work 
proposes a methodology for evaluating the pz volume based on a solid submodeling Finite Element (FE) 
analysis in which the smallest computation unit is the volume of influence of a plastified Gauss integration 
point, as opposed to considering an entire plastified FE as the smallest volume unit. Then, assuming that for 
tough metallic structural alloys their toughness can be obtained from the elastoplastic work needed to initiate 
crack tearing, the toughness is estimated from the stresses and strains inside the pz. In the continuation of this 
work, such estimates will be compared with toughness values measured at the threshold of crack tearing in 
highly and lightly constrained specimens following ASTM E1820 testing procedure and an estimation 
procedure of J-resistance curves, respectively. 
  
KEYWORDS. 3D finite elements; incremental elastoplastic calculations; 3D pz estimates; elastoplastic work; 
toughness estimates. 
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INTRODUCTION 
 
The calculation of stress and strain fields around the crack tip in cracked structural components must be accurate because 
the crack fronts act as 3D stress intensifiers and are the primary cause for crack propagation, stable tearing and unstable 
fracture in them. Hence, this sort of analysis is important in engineering problems that involve fatigue and fracture 
analyses. A number of detailed 3D numerical studies to characterize the plastic zones (pz) developed around crack fronts 
and to quantify their effects on the structural integrity of cracked mechanical components are available, see e.g. [1-3]. Such 
studies have shown that bilinear and trilinear elastoplastic material models provided almost identical results, when 
considering isotropic and kinematic hardening under monotonic loads [4]. In this work, a constitutive bilinear isotropic 
hardening model is used to numerically estimate the sizes and shapes of plastic zones in CT and SET specimens, as well as 
the elastoplastic (EP) stress/strain distributions inside them. A submodeling finite element (FE) technique [5] is adopted 
in the numerical calculations, using material properties taken from the literature [2]. First, the 3D EP submodeling FE 
technique was validated through direct comparison with recent numerical and experimental results [2, 3]. Then, the EP 
frontiers of the pz ahead of the crack fronts and the stress/strain distributions inside them were obtained by careful 
incremental 3D EP submodeling FE analyses performed for some cases of cracked components with relatively high and 
low transversal constraints around the crack front. These constraints were varied changing the crack size and loading 
conditions. Geometry parameters are represented by crack length/specimen width (a/W) and specimen width/specimen 
thickness (W/B). Loading conditions are represented by nominal stress/yield strength (n/SY) ratios for constant Stress 
Intensity Factors (SIF) KI. 
 
 
STUDY OF THE 3D PLASTIC ZONE 
 
One of the main objectives of this work is to show that, contrary to what is usually assumed in most Fracture Mechanics 
estimates, the size of the plastic zones can vary significantly for a given Stress Intensity Factor. Since both the material 
toughness and its resistance to fatigue crack growth depend on plastic work performed inside the pz, this fact can have a 
major importance in many engineering estimates. Therefore, several numerical FE analyses are performed, varying the 
parameters of the specimen models, but keeping a constant KI SIF value. For each simulated geometry, a 3D EP global 
FE model was generated and meshed using more refined elements around the crack and increasing their size in regions 
away from the crack. Middle tension (MT), compact tension (CT) and Single Edge Tension (SET) specimens were used in 
this study. From the solution of the global model, the EP frontiers of the pz in terms of the equivalent Mises strain was 
mapped in order to ensure that the total volume of the pz is entirely within the submodel with meshes of uniform element 
size for the final solution. The properties of the materials used in all simulations are presented in Tab. 1. 
 

Material E [GPa]  [1] SY [MPa] H [MPa] h[1] H' [MPa] H/E [1] 

2024-T3 73.1 0.33 345 - - 984 - 

2024-T351 73.5 0.33 425 685 0.073 220.5 0.003 
 

Table 1: Materials and properties [2, 3]. 
 
For all the traditional specimens selected for this study, there are well-known expressions for KI available in the literature: 
KI = P/(B√W)f(a/W)Specimen, where f(a/W)Specimen is a geometry function that depends on the crack size (a) to specimen width 
(W) ratio. The equations 1-3 present these functions for the cracked components CT [6], MT [7] and SET [7]. 
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Numerical validation 
To validate the FE numerical analysis, a comparison is made to two recent three-dimensional results taken from the 
literature [2, 3] for MT and for CT specimens. Geometry and loading of these specimens are summarized in Tab. 2. 
References [2, 3] used 3D SOLID185 elements with 8 nodes each, 8 Gaussian integration points per element and 3 
degrees of freedom per node. In this work, the ANSYS software was used. For comparison, the same type of element of 
those references was adopted in the submodel that contains the pz. In the global model, since a less refined mesh is 
required, it uses larger 3D SOLID186 elements with 20 nodes each, 8 Gaussian integration points per element. A mesh 
convergence study (not shown here) was performed based on evaluations of the total volume (Vt) of the pz developed 
around the crack front for different mesh sizes. For a local analysis of stress and strain fields, it is recommended to apply a 
denser mesh at least around the crack front, as already suggested in many studies [1, 8, 9]. 
 

Specimen a/W [1] a [mm] W [mm] W/B [1] P [kN] KI  [MPa√m] n/SY  [%] 

MT 0.25 20.00 80.00 16.00 92.14 30.00 33.00 

    40.00 36.86   

    16.00 61.43 20.00 22.00 

    40.00 24.57   

CT 0.74 54.00 72.50 12.08 1.49 25.00 80.50 

    24.17 0.75   

    7.25 1.77 17.82 57.38 
 

Table 2: Cases published in the literature [2, 3]. 
 
Figure 1 shows the shapes and volumes of only 1/4 of the pz on a MT specimen for KI = 30MPa√m for two thickness 
conditions. Reference [2] estimates the size of the pz based on the FEs that have Mises stress higher than SY in one of its 
integration points. The same criterion was adopted here and a similar value for Vt (19.96mm³) for the specimen MT with 
thickness B = 5mm was obtained. Figure 2 shows the numerical vertical displacements around the crack front on a CT 
specimen with 10mm thickness for KI = 17.82MPam at three different vertical levels, and compares these results with 
those obtained from reference [3]. 
 

  
a) b) 

 

Figure 1: 1/4 shape and volume of the pz developed around the crack front on MT component for KI = 30MPa√m: a) B = 5mm; e b) 
B = 2mm. 
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In spite of the good agreements with those references results, the criterion for selection of the smallest unit considered in 
the pz can be improved. The smallest unit of volume considered in the pz was the volume of the element (Ve) adopted in 
the modeling. In this case, even when only one Gauss integration point was plastified (eq ≥ Y) at the elastoplastic 
frontiers of the pz, the entire element was counted in the pz volume. This methodology adopted to calculate the volume of 
the pz can lead to different values when using linear elements and coarse meshes. This verification was carried out through 
numerical experiments performed using a simply supported beam uniformly loaded, which has an analytical solution [10]. 
Quadratic elements were in these FE simulations, and only the fractions of the volumes corresponding to their plastified 
Gauss integration points were counted as part of the pz around the crack tips. Thus, the smallest unit of volume treated in 
the pz models became Ve/8.  
All numerical simulations were performed considering only 1/4 of the modeled specimens due to their symmetries, and 
using the following geometric and material parameters: L = 300mm, L/B = 10, B/H = 1, E = 210GPa, SY = 300MPa, 
= 0.3, P0 = 4BSY, and = (P/P0)(L/H)2, where P is the uniformly applied load, defines the percentage of the cross 
section plastification and 2L, 2B and 2H are the beam length, thickness and height, respectively. Figure 3 shows the 
variations of the relative errors between the analytical (Va) and numerical (Vn) plastic volumes as a function of the number 
of elements along B. Fig. 4 shows the analytical and numerical elastoplastic frontiers of the plastic volumes considering a 
partial ( = 0.8) and a fully plastic cross section ( = 1.05). Comparisons between numerical analysis and analytical 
solutions indicate good correlations when the smallest unit of volume treated in the pz is Ve/8. The relative error between 
Va and Vn is reduced from 35% to 6% using the improved criterion, as can be seen in Fig. 3. 
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Figure 2: Numerical vertical displacement on CT component for KI = 17.82MPam at the crack plane, 1.20mm and 2.90mm from the 
crack plane. 
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Figure 3: Errors between the analytical (Va) and numerical (Vn) plastic volumes counting the entire volume of the element (Ve) and its 
fraction (Ve/8) in the pz volume for a partial cross section ( = 0.8). 
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Figure 4: Elastoplastic frontiers for a partial ( = 0.8) and a fully plastic cross section ( = 1.05). 
 
 
HIGHLY AND LIGHTLY CONSTRAINED SPECIMENS 
 
To verify the proposed methodology of evaluating pz based on the volume of influence of each plastified Gauss point, 
such estimates should be compared with toughness values measured at the threshold of crack tearing in highly (CT) and 
lightly (SET) constrained specimens following ASTM E1820 testing procedure and an estimation procedure of J-
resistance curves, respectively. For CT and SET specimens with KI = 30MPa√m, Fig. 5 shows the variation along B of 
the dimensionless ratio between the volume distribution of pz in slices of constant thickness and the volume of the 
element (Vs/Ve), for 6 cases represented by a SET (a/W = 0.2; n/SY = 0.3) and a CT (a/W = 0.4; n/SY = 0.8), varying 
W/B (8, 12 and16). Besides the cases presented in Fig. 5, there are 21 more cases as can be seen in Fig. 6, which shows 
that the volume of the pz ahead of the crack front represented by the dimensionless ratio between the total volume of pz 
and the volume of the element (Vt/Ve) can vary significantly for a given KI. A remarkable difference in this ratio can be 
seen through a comparison between two cases: a SET specimen with geometry and loading ratios W/B = 8, a/W = 0.4, 
and n/SY = 0.3 and a CT specimen with W/B = 8, a/W = 0.4, and n/SY = 0.8. A surprisingly large factor of 9.6 was 
observed between them. Hence, based on damage arguments ahead of the crack front, it is possible to argue that JIC 
measured toughness values may also dramatically change in those specimens. 
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Figure 5: pz volumes along the thickness. 
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Figure 6: Total pz volumes ahead of the crack front for several simulated cases. 
 
 
CONCLUSIONS 
 
This work presents 3D pz estimates using a 3D EP submodeling FE technique. The results obtained using this technique 
were validated through direct comparison with numerical results found in the literature that also contain experimental 
results for pz sizes and displacements measured on the surface of the specimens using Digital Image Correlation (DIC) 
techniques. In addition, the methodology for the calculation of pz volumes considering Ve/8 as the smallest unit of 
volume treated in the pz simulation was verified through numerical experiments validated by analytical solutions. Finally, it 
was observed from the results that for a given KI the pz volumes are considerably different for several cases, which also 
implies different values of elastoplastic work in these volumes and, consequently, probably in their fracture toughnesses as 
well. In conclusion, estimation of fracture toughness from measured pz, both numerically and experimentally, is the major 
objective of this ongoing work, and it will be further discussed elsewhere. 
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