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Abstract—The SLAM problem is currently one of the most
important topics in mobile robotics, due to the high number
of applications that need its solution. This work proposes a
methodology to perform SLAM in indoor environments with
RGB-D data. The robot motion is estimated using FOVIS, a
robust visual odometry system, and a graph-based probabilistic
approach is used to minimize the errors caused by the drift
in visual odometry. A keyframe selection approach is used
to construct the graph and the g2o framework is used for
the optimization. The proposed methodology is implemented
as a Robot Operating System (ROS) package, and it is
evaluated using benchmark datasets available in the literature.
A comparison is made with state-of-the-art methods.
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I. INTRODUCTION

The simultaneous localization and mapping (SLAM)

problem is one of the most researched topics in mobile

robotics. It consists in creating a map of the environment

and, concurrently, estimating the pose of the robot in a global

coordinate system, assuming no prior knowledge about the

environment. It has several applications, specially in indoor

problems, with the abscence of GPS information [1].

For many years the laser range-finders were the most pop-

ular sensor for SLAM, due to its high range and precision.

However, RGB-D sensors are an interesting alternative, due

to a lower price and for the availability of color and depth

information.

Usually the robot does not have prior information about

the environment and has only sensor information, such

as images, range measurements and odometry. However,

sensor information is inherently urcertain and a proba-

bilistic formulation is needed to reduce the errors caused

by the accumulated drift in the motion estimation. There

are three main probabilistic approaches for SLAM: kalman

filters, particle filters and graph-based. First presented by

Lu and Milios [2], the graph-based approach uses a graph

to represent the trajectory of the robot, in which the poses

are represented by the nodes, and measurement constraints

between the poses are represented by the edges [3]. The

graph is optimized using a least-squares formulation and the

measurement errors are minimized.

The fundamental step that enables the graph optimization

is the loop closure problem, which consists in detecting if

the robot is in a previously visited region [4], allowing the

robot to understand the real topology of the environment [1].

This work proposes a methodology that combines the

information of a robust visual odometry system with a

keyframe selection method to detect loop closures, and a

state-of-the-art graph optimizer to solve the SLAM problem.

The implementation is made on the ROS framework

[5]. ROS is built as a large number of small programs

that communicate one another through messages, carried

by topics. It works with a graph architeture, where each

program is a node and the topics are the edges.

The paper is organized as follows. In section 2 is presented

the related work. The section 3 details the proposed SLAM

algorithm. Section 4 presents the results of the evaluation

using real world datasets and a comparison between the

proposed methodology and state-of-the-art methods. Finally,

in section 5 is shown the final remarks.

II. RELATED WORK

The use of RGB-D cameras for robotics research is

relatively recent. Henry et al. [4] developed in 2012 a

RGB-D SLAM system combining sparse visual features

with Iterative Closest Point (ICP) to create and optimize

a pose-graph, using the concept of keyframes [6] for graph

construction and loop detection.

In 2011, Huang et al. [7] implemented a visual odometry

system, named FOVIS, in a micro air vehicle with an RGB-

D camera for localization and mapping using sparse visual

features, but without a probabilistic formulation. Another

visual odometry formulation for RGB-D sensors was de-

veloped by Whelan et al. [8] in 2013, integrating FOVIS

and other visual odometry estimation methods with a GPU-

based implementation, also without a probabilistic approach

or loop closure detection.

In 2014, Silva and Gonçalves [9] developed a visual

odometry and mapping system for RGB-D cameras in indoor

environments using only CPU.

Another RGB-D SLAM system was developed by Endres

et al. [10] in 2012, using sparse visual features and graph op-
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timization. In 2014, Engel et al. [11] presented an algorithm

called LSD-SLAM, also based on keyframes and pose-graph

optimization, with, however, a monocular camera.

In 2017, Mur-Artal and Tardós [12] developed ORB-

SLAM2, a complete SLAM system for monocular, stereo

and also RGB-D cameras, using graph optimization. ORB-

SLAM2 has good accuracy and performance. However, it

creates a sparse representation of the environment. A dense

map is achievable only with post-processing.

This work combines a keyframe loop detection approach

and the robust visual odometry estimation of FOVIS to

create a pose-graph. The graph is optimized using g2o [13],

a state-of-the-art framework for pose-graph optimization, to

create a consistent trajectory and, consequently, an aligned

dense point cloud global map.

III. RGB-D SLAM

A. Problem Definition

The graph approach for the SLAM problem can be

subdivided into two main parts: front-end and back-end. The

front-end is responsible to process sensor information and

construct the graph. In the back-end the graph is optimized

[3]. Fig. 1 shows the diagram of a Graph-SLAM system.

Figure 1. Graph-SLAM system

Every time a new pose is estimated with visual odometry,

a node is added to the graph and an edge is created

between the past and the current node, with their relative

transformation. An edge is also created between two nodes

if the system detects that the robot is in a previously visited

location, what is called loop closure.

Once the graph is constructed, the objective of the graph-

based SLAM methodology is to find the configuration of

the poses that best explains these measurement constraints

created by visual odometry and loop closures. Therefore, the

objective is to find maximum belief of the state x, given the

measurements z [1], as stated by Eq. (1).

x̂ = argmax
x

p(x|z) (1)

Using Bayes’ theorem, it becomes the likelihood of mea-

surements given the state:

x̂ = argmax
x

p(z|x)p(x)
p(z)

(2)

Assuming no prior information and independent measure-

ments, the problem factorizes into:

x̂ ∝ argmax
x

n∏
k=1

p(zk|x) (3)

Every measurement is assumed to be locally Gaussian:

x̂ = argmax
x

∏
exp(−eTij(xi, xj , zij)Ωijeij(xi, xj , zij))

(4)

where Ω is the information matrix associated with each mea-

surement, and eij is the error vector that states the difference

between the measurement predicted by odometry and the

actual measurement. Taking the logarithm to transform the

product into a sum:

x̂ = argmin
∑
ij

eTij(xi, xj , zij)Ωijeij(xi, xj , zij) (5)

Therefore, the graph-based probabilistic formulation is

analogous to a non-linear least squares optimization problem

[14].

B. Proposed SLAM Methodology

Fig. 2 shows the schematic overview of the proposed

approach. The RGB-D data is used to create point clouds and

to construct the graph. The graph is constructed using the

poses estimated by FOVIS and the relative transformations

between two poses, calculated in the loop detection process.

The g2o framework is used to store the nodes and edges

of the graph and to perform the optimization. The final

output of the system is the global point cloud map and the

optimized trajectory of the robot.

Pose Graph

Loop
detection

Depth Images

Color Images

FOVISRGB-D data

Point Clouds

Front-end

Graph
OptimizationTrajectory

Global Map
Back-end

Keyframe Selector

Figure 2. Schematic overview of the proposed approach

C. Data Acquisition

A point cloud is generated combining color and depth

images provided by the RGB-D sensor, using the Eqs. (6)

(7) and (8). These equations map a point (v, u) in the image

plane to a 3D coordinate, and the variables cx, cy , fx and

fy are intrinsic parameters of the RGB-D camera.
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Z = depth image[v, u] (6)

X = (u− cx)
Z

fx
(7)

Y = (v − cy)
Z

fy
(8)

Due to the large amount of memory required by the point

cloud representation, a voxel grid filter is applied to reduce

the number of points used to create the global map. Fig. 3

shows a point cloud with the full set of measured points and

in Fig. 4 is shown the same point cloud after the filtering

process.

Figure 3. Point Cloud Figure 4. Downsampled Cloud

D. Visual Odometry

The FOVIS library [7] is used to obtain a pose estimation.

FOVIS uses the camera parameters, depth images and color

images to estimate the current pose of the robot. Each pose

i has the following format:

xi = [xi, yi, zi, qx, qy, qz, qr] (9)

where xi, yi, zi are the euclidean coordinates of the robot

and qx, qy, qz, qr compose the unit quaternion that represents

the orientation of the robot.

E. Keyframe selection and Loop Closure

The incremental frame-to-frame alignment of FOVIS ac-

cumulates drift over time, due to sensor noise, which is

the reason to use the Graph-SLAM formulation. The loop

closure detection is crucial for graph optimization, as it

defines the error constraints that will be optimized. Also,

the loop detection allows the robot to understand the real

topology of the environment. Otherwise it would see the

world as an “infinite corridor”.

Ideally, to detect a loop closure, it would simply require a

comparison between the current frame and all past frames.

However, it is computationally infeasible [4]. To overcome

this problem, only a subset of frames is selected to be

compared. They are called keyframes.

The first frame is selected as a keyframe and is matched

against the next frames. The ORB features [15] are used

in this methodology for the matching process. Besides

their efficiency, they provide good invariance to changes in

illumination and motion. Fig. 5 shows the matched points

between two keyframes.

Figure 5. Feature Matching

The matching process is prone to wrong associations,

called outliers. To overcome this problem, an outlier re-

jection filter is applied using the fundamental matrix. The

fundamental matrix is the 3x3 matrix that relates two sets of

matched points x and x′ from two frames, as stated in Eq.

(10). The matrix is computed using the RANSAC method

[16], that detects the outliers and select the inliers, the cor-

rect associations, applying Eq. (10) for each correspondence,

using a random sampling of the data. If the result is below a

threshold close to zero, then the correspondence is an inlier.

x′iFxi = 0, i = 1 . . . n (10)

When the number of matched inliers between two frames

is below a threshold, it means the robot has made a signif-

icant movement and a new keyframe is chosen. Every new

keyframe is matched againt the previous ones. However, two

keyframes are only compared if their global pose is close

enough, given a threshold.

Every time a new keyframe is detected, a node is added to

the graph with the corresponding position and orientation. If

the number of matched inliers between the current keyframe

and a past keyframe is above a threshold, called loop closure

inliers threshold, then a loop is detected and an edge is added

to the graph. This edge is composed by the transformation

between the two frames and the associated information

matrix, that comprises the uncertainty of the measurement.

The information matrix is created based on the number of

inlier features detected in the loop.

The ICP algorithm is used to determine the relative

transformation between two keyframes with near global

pose, using their corresponding point clouds. The following

algorithm details the procedure of keyframe selection and

loop closure detection in pseudocode notation.

1: for every new frame i do
2: Pi ← ith fovis pose

3: detect features

4: feature match(features i, features i-1)

5: n inliers← outlier rejection

6: if n inliers < threshold then
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7: keyframej ← currentframei
8: graph vertex j ← Pj

9: compute Tj−1,j between keyframes (FOVIS)

10: add edge

11: compare current and past keyframes

12: if loop detected with keyframe k then
13: compute Tk,j between keyframes (ICP)

14: add edge

15: end if
16: endif
17: end if
18: endif
19: end for
20: endfor

F. Graph Optimization

The g2o framework is used to register the graph and

perform the optimization when a loop is detected. Every time

a keyframe is selected, a node is created with the format ”ID

x y z qx qy qz qw”, corresponding to the pose number and

the respective 3D position and orientation in unit quaternion

representation. When a loop is detected, an edge is created

with the format ”IDfrom IDto x y z qx qy qz qw I11 ... I66”,

corresponding to the numbers of observing and observed

nodes i and j, the translation vector between them and the

unit quaternion rotation. The numbers ”I11 ... I66” are the 21

top triangular elements of the 6x6 information matrix. The

graph is optimized with the Levenberg-Marquardt algorithm.

G. Implementation Details

The system is implemented as a C++ ROS package

with auxiliary header files. The implementations from the

OpenCV library [17] are used for the feature detection and

matching. The Point Cloud Library (PCL) [18] is used to

store, visualize and manipulate the point clouds.

IV. RESULTS

This implementation is numerically evaluated using the

TUM benchmark dataset [19], from the Technical University

of Munich, consisting of several sequences of RGB and

depth images, with their corresponding ground-truth trajec-

tories. The two chosen sequences are effective to evaluate

the hability of the system to detect loop closures, according

to Sturm et al. [19].

All tests were conducted in a notebook with an Intel Core

i7 6700 HQ processor with 2.60 GHz and 16 GB of RAM,

running Ubuntu Linux 14.04 LTS and ROS Indigo.

A. Evaluation Metrics

The Absolute Trajectory Error (ATE) metric is used

for the numerical evaluation. It consists in a comparison

between the absolute distances of the estimated and ground-

truth trajectories, evaluating the global consistency [19].

For each dataset is evaluated the mean, minimum, max-

imum and root mean square errors. Given the trajectory

estimate with translational components x̂ = [x̂1, · · · , x̂n],
and the ground truth trajectory with translational components

x = [x1, · · · , xn], the root mean square error (RMSE) is

given by Eq. (11).

RMSE =

(
1

n

n∑
i=1

‖x̂i − xi‖2
)1/2

(11)

The ground truth trajectories have the format ”timestamp

tx ty tz qx qy qz qw”, where timestamp is the time of each

pose in unix epoch time, ”tx, ty, tz” is the translation vector,

and ”qx qy qz qw” is a unit quaternion. The estimated

trajectories and the ground truth trajectories are aligned

using the timestamps of each pose [19].

B. Dataset Evaluation

The first sequence is called ”fr1 room” and corresponds to

a movement of 15.989m of ground-truth trajectory length,

0.334m/s of average translational velocity and 29.882deg/s
of average angular velocity. Fig. 6 shows the comparison

between the estimated trajectory and the ground-truth tra-

jectory. Fig. 7 shows the resulted global point cloud map,

and in Tab. I is shown the comparison between the ATE

error with and without graph optimization.

Figure 6. fr1-room - Optimized

Table I
ATE EVALUATION OF THE FR1 ROOM DATASET

Error (m) FOVIS This work
RMSE 0.2807 0.1987
Mean 0.2432 0.1722
Min 0.0256 0.0159
Max 0.6446 0.4072

The second evaluation is the ”fr3 long office household”

sequence, with 21.455m of ground-truth trajectory length,
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Figure 7. fr1-room - Point Cloud Map

0.249m/s of average translational velocity and 10.188deg/s
of average angular velocity. Fig. 8 shows the comparison

between the estimated trajectory and the ground-truth tra-

jectory. In Figs. 9 and 10 is shown, respectively, the initial

point cloud and the resulted global point cloud map. In Tab.

II is shown the comparison between the ATE error with and

without graph optimization.

Figure 8. fr3-long-office - Optimized

Table II
ATE EVALUATION OF THE FR3 LONG OFFICE DATASET

Error (m) FOVIS This work
RMSE 0.2717 0.1238
Mean 0.2329 0.1101
Min 0.0381 0.0156
Max 0.5375 0.2685

Both results showed that the system was able to pro-

duce consistent maps of indoor environments, and the loop

Figure 9. fr3-long-office: Initial Point Cloud

Figure 10. fr3-long-office: Point Cloud Map

closure and graph optimization provided a considerable

improvement in the FOVIS trajectory estimation. The root

mean square, maximum, minimum and mean errors were all

minimized. The errors in the first evaluation are larger than

the second one due to the higher translational and angular

velocities of the camera.

In Tables III and IV is shown comparisons between the

proposed implementation and the aforementioned methods

from the literature. The comparisons are made using the

ATE RMSE metric and the datasets freiburg room, with

3Hz of frame rate, and freiburg long office household, with

30 Hz of frame rate. For the freiburg room dataset, the

comparison, shown in Tab. III, is made with the first version

of the rgbdslam method, developed by Endres et al. [10] and

FOVIS [7]. This work outperformmed both methods.

For the freiburg long office household dataset, the com-

parison, shown in Tab. IV, is made with LSD-SLAM [11]

and FOVIS. This work showed satisfatory results for a real

time performance, achieving lower errors than both methods.
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Table III
COMPARATIVE RESULTS FOR THE FR1 ROOM DATASET

Method ATE RMSE (m)
This work 0.1987

RGB-D SLAM 0.2190
FOVIS 0.2807

Table IV
COMPARATIVE RESULTS FOR THE FR3 LONG OFFICE DATASET

Method ATE RMSE (m)
This work 0.3064

LSD-SLAM 0.3853
FOVIS 0.5144

V. CONCLUSION

In this paper an RGB-D SLAM algorithm for mobile

robots in indoor environments was proposed. A visual

odometry system combined with a keyframe loop closure ap-

proach was used to create a pose-graph, further optimized by

a state-of-the-art framework. The dataset evaluation proved

that the system is robust to solve the SLAM problem,

reducing odometry errors and generating cohesive 3D maps.

Furthermore, the implementation was compared with other

methods from the literature, outperforming their results.

Future improvements include the use of new methods to

increase the performance of the loop closure system.
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