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Abstract— Simultaneous Localization and Mapping (SLAM)
is one of the most important problems in mobile robotics, as
it is a crucial step to achieve autonomy. It consists in creating
a map of the environment using only sensor information, and
simultaneously using this information to estimate the pose of the
robot. This problem needs a probabilistic formulation to handle
the uncertainty present in sensor measurements and robot
motion. The Graph-SLAM is a popular probabilistic approach
for SLAM based on maximum likelihood estimation and non-
linear least squares optimization. This work is subdivided into
two main parts. First, this paper presents the development of
a pose-graph optimization tool for MATLAB that works for
both 2D and 3D problems. Second, it presents the development
of a full RGB-D SLAM system for indoor environments,
implemented as a Robot Operating System (ROS) package. The
proposed methodology is evaluated using benchmark datasets
available in the literature and compared with state-of-the-art
methods.
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I. INTRODUCTION

Autonomous mobile robots have a wide range of applica-
tions, including autonomous vehicles, industrial robots and
unmanned aerial vehicles. Autonomous mobile navigation is
a challenging subject due to the high uncertainty and nonlin-
earity inherent to unstructured environments, robot motion
and sensor measurements. In several situations the robot
needs a map of the environment to perform autonomous
navigation, such as indoor scenarios where there is no GPS
information available. The robot also needs to estimate its
own pose with respect to the global coordinate system.
However, usually there is no prior information about the
environment and the robot needs to create the map, using
only sensor measurements, and simultaneously estimate its
pose. This problem is known as Simultaneous Localization
and Mapping (SLAM), and is one of the most important
subjects in mobile robotics.

For many years the laser range-finders were the most pop-
ular sensor for SLAM, due to its high range and precision.
However, RGB-D sensors are an interesting alternative, due
to a lower price and for the availability of color and depth
information [19]. In 2011, Huang et al. [1] developed FOVIS,
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a visual odometry system for RGB-D sensors, tested in a
micro air vehicle. However, the first published SLAM system
for RGB-D sensors was proposed by Henry et al. [26] in
2012.

Due to the high urcertainty inherent to sensor measure-
ments, a probabilistic formulation of the SLAM problem is
necessary. Probabilistic algorithms deal with this uncertainty
explicitly representing it using probability theory.

There are three main probabilistic approaches for SLAM:
kalman filters, particle filters and graph-based. The Graph-
SLAM method consists in representing the states of the
robot with a graph, that is optimized using a non-linear
least squares formulation to generate a maximum likelihood
solution for the trajectory of the robot, which minimizes the
errors caused by motion estimation. It has several advan-
tages in comparison with kalman filters and particle filters,
including performance and accuracy [12] [32].

The Graph-based approach for SLAM was proposed in
1997 by Lu and Milios [10]. However, their approach was
infeasible to perform in real-time [29] [12], and it was
heavily dependent on the initial estimate [16]. Several real-
time implementations were developed afterwards, such as
TORO [11] and g2o [29], implemented in C++, that have
both computational speed and precision. Wagner et al. [31]
implemented in 2011 a MATLAB framework to make the
technique accessible to non C++ developers, the Manifold
ToolKit. Their framework is extended to multi-sensor cal-
ibration problems, with a SO(3) exponential map for 3D
optimization.

One of the most important steps in a SLAM system is
the loop closure problem, which consists in detecting if the
robot is in a previously visited region [26], enabling the graph
optimization and allowing the robot to understand the real
topology of the environment [4]. Henry et al. [26] introduced
the concept of keyframes for loop closure detection.

This work has two main contributions. First, the devel-
opment of a standalone pose-graph optimization tool for
MATLAB that can work for both 2D and 3D SLAM prob-
lems, specifically designed to pose-graph optimization with
a pose-quaternion representation, using advanced algebraic
concepts to assure efficiency and convergence. Second, the
development of a full RGB-D SLAM system for static
indoor environments, combining the robust visual odometry
of FOVIS with a efficient keyframe-based loop closure
detector, implemented as a Robot Operating System (ROS)
[25] package. The proposed methodology is evaluated using
benchmark datasets available in the literature and compared
with state-of-the-art methods.



The paper is organized as follows. The section 2 presents
the formal definition of the SLAM problem. In Section 3
is presented the development of the pose-graph optimization
tool with the respective numerical evaluation. The Section 4
details the proposed RGB-D SLAM system. Section 5 details
the experiments and results. In Section 6 is shown the results
of the numerical evaluation using real world datasets and a
comparison between the proposed methodology and state-
of-the-art methods. Finally, in section 7 are shown the final
remarks.

II. PROBLEM DEFINITION

The SLAM problem is divided into two main steps:
front-end and back-end [4]. The front-end processes sensor
information and creates a graph using a motion estimation
method, such as visual odometry. The back-end uses prob-
ability theory to optimize the graph given the measurement
errors. In Fig. 1 is shown the diagram of a Graph-SLAM
system.

Fig. 1. Graph-SLAM system

In the Graph-SLAM formulation, the nodes of the graph
are the state variables x = [x1, . . . , xT ] that represent the
poses of the robot in a plane or in space, depending if the
problem is two-dimensional or three-dimensional. The edges
are measurement relations locally affected by Gaussian noise.
It is assumed that the robot has odometry information and
range measurements. The relative transformation between
two poses xi and xj is called the predicted measurement
ẑij . The real observations are represented by zij . The error
function is computed by the difference between the measure-
ment prediction and the real measurement [12].

When the robot performs a movement, going from position
i to position j, a node xj is created and also an edge
eij between xi and xj . An edge is also created if the
robot detects a loop, in other words, revisits a previous
known location. The front-end is heavily sensor-dependent.
Different techniques are used if the robot has laser scanners
or RGB-D sensors, for example.

Once the graph is constructed, the objective of the back-
end is to find the trajectory of the robot (the configuration of
the nodes) that best explains these measurement constraints
created by visual odometry and loop closures. Therefore, the
objective is to find maximum belief of the state x, given the
measurements z [4], as stated by Eq. (1).

x̂ = argmax
x

p(x|z) (1)

Using Bayes’ theorem, it becomes the likelihood of mea-
surements given the state:

x̂ = argmax
x

p(z|x)p(x)

p(z)
(2)

Assuming that is not prior information and the measure-
ments are independent, the problem factorizes into:

x̂ ∝ argmax
x

n∏
k=1

p(zk|x) (3)

Assuming that every measurement is locally Gaussian, the
likelihood of the measurements will also be Gaussian:

x̂ = argmax
x

∏
exp(−eTij(xi, xj , zij)Ωijeij(xi, xj , zij))

(4)
where eij is the error vector that states the difference between
the measurement predicted by odometry and the actual
measurement, and Ω is the information matrix associated
with each measurement. Taking the logarithm to transform
the product into a sum:

x̂ = argmin
∑
ij

eTij(xi, xj , zij)Ωijeij(xi, xj , zij) (5)

Therefore, the graph-based probabilistic formulation is
analogous to a non-linear least squares optimization problem
[18]. A first order Taylor expansion around the initial guess
x̌ is applied to approximate the error function, as stated in
eq. (6).

eij(x̌+ δx) ≈ eij + Jijδx (6)

where Jij is the Jacobian of the error function computed
in x̌. Thus, the cost function F of an observation between
nodes i and j can be obtained rewriting a parcel of the sum
in Eq. (5) with the local approximation of Eq. (6).

Fij(x̌+ δx) ≈ (eij + Jijδx)TΩij(eij + Jijδx) (7)

The global cost function can be found with the sum of all
local approximations:

F (x̌+ δx) =
∑

Fij(x̌+ δx) ≈∑
(eTijΩijeij + 2eTijΩijJijδx + δTx J

T
ijΩijJijδx)

(8)

Eq. (8) can be minimized solving the following linear
system:

Hδx = −b (9)

where

H =
∑

JTijΩijJij = JTΩJ (10)

b =
∑

JTijΩijeij = JTΩe (11)



The solution for one iteration is then obtained by adding
the increments to initial guess, as stated in Eq. (12).

x∗ = x̌+ δx (12)

III. A POSE-GRAPH OPTIMIZATION TOOL FOR MATLAB

This section details the implementation of a graph-based
back-end framework developed for MATLAB.

A. 2D Implementation

The poses of the robot are given by a translation vector
ti = [xi, yi] and a rotation angle θi, which represents the
orientation of the robot.

p = [ti, θi] (13)

Each measurement between the nodes i and j is given by
zij , stated in Eq. (14):

zij = [tij , θij ] (14)

The rotations of the robot are expressed with 2x2 rotation
matrices, as shown in Eq. (15).

Ri =

(
cos(θi) −sin(θi)
sin(θi) cos(θi)

)
(15)

The error function is given by Eq. (16).

eij = z−1ij

(
RTi (tj − ti)
θj − θi

)
(16)

The Jacobian matrix, composed by the derivate of the error
function in terms of each pose, is naturally sparse, because
the error function of each measurement only depends on the
values of two nodes, as shown in Eq. (17).

Jij =

(
0 . . . 0

∂eij
∂xi

0 . . . 0
∂eij
∂xj

0 . . . 0

)
(17)

The formulation is described using pseudocode notation
in algorithm 1.

B. 2D Dataset Evaluation

The implementation was evaluated using datasets available
in the literature. The Intel Dataset, chosen for the 2D
evaluation, is a benchmark dataset with real data acquired
at the Intel Research Lab in Seattle, consisting of a graph
with 1228 poses and 1505 constraints created from raw
measurements of wheel odometry and laser range finder. All
nodes are represented by an ID, x, y and θ values, which
correspond to the initial odometry poses.

All edge lines have the format: ”IDfrom IDto x y θ I11
I12 I22 I33 I13 I23”. The first two numbers ”IDfrom IDto”
correspond respectively to the ID of observing and observed
nodes i and j. The x and y values compose the translation
vector between nodes, and θ correspond to the rotation angle
between nodes. The numbers ”I11 I12 I22 I33 I13 I23”
are the 6 top triangular elements of the 3x3 information
matrix corresponding to each measurement. The symmetric
information matrix is stated in Eq. (18).

Algorithm 1 Pose Graph Optimization
1: procedure READ GRAPH
2: x← vertices
3: z ← edges
4: Ωij ← information matrices
5: endprocedure
6: while not converged do
7: preallocate H and b
8: for all measurements do
9: compute error function eij

10: compute Jacobians of the error function with
respect to the nodes i and j

11: compute the contribution of this measurement to
H

12: compute b
13: endfor
14: δx ← solve(Hδx = −b)
15: x += δx
16: endwhile

Ωij =

I11 I12 I13
I12 I22 I23
I13 I23 I33

 (18)

In Fig. 2 is shown the corrupted initial pose-graph. The
poses of the robot are represented by the blue dots, and the
red lines are the measurement constraints, derived from loop
closures. Fig. 3 shows that the graph converges to the real
trajectory of the robot after the optimization. In Fig. 4 is
shown a comparative image of the same dataset optimized
by a method called MOLE2D, developed by Carlone and
Censi [22].

Fig. 2. Intel - Initial corrupted pose-graph

In Fig. 5 is shown the logarithmic global error per
iteration. In only four iterations the system was able to
optimize the entire graph, which shows the robustness of
this implementation.



Fig. 3. Intel Optimized pose-graph

Fig. 4. MOLE 2D Optimization
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Fig. 5. Intel dataset - Global error per iteration

The objective of the second 2D test is to evaluate if the
system is able to optimize a graph with oversized number
of constraints. This dataset contains 10000 poses and 64311
constraints. The initial corrupted configuration is shown in
Fig. 6. In Figs. 7 and 8 is shown a comparison between
the result of the present work and the result obtained with
LAGO, an algorithm developed by Carlone et al. [23]. The
global error is shown in Fig. 9. Even with a larger number
of constraints, the system is able to optimize the graph.

Fig. 6. Initial corrupted pose-graph

C. 3D Implementation

The orientation of the robot is easily represented in the 2D
case with a single normalized angle. In other hand, it is more
problematic in the three-dimensional case due to the variety
of possible parameterizations and their corresponding draw-
backs. For instance, orientation can be represented by euler
angles, rotation matrices or unit quaternions. Euler angles
are subject to singularities. When two of the three rotation
axes are aligned, a DOF is lost, which is called the gimbal
lock problem. To overcome this problem, a solution would
be the use of an over-parametrized representation, such as
unit quaternions or rotation matrices. Rotation matrices are
problematic for imposing six non-linear constraints in the
optimization to ensure orthogonality and unit length of the
columns. In other words, to ensure it remains in SO(3) [9].

Quaternions are more suitable for optimization problems
than rotation matrices due to the number of constraints that
need to be maintained at every iteration. First described by
W. R. Hamilton in 1843 [34], quaternions can be seen as
a generalization of complex numbers, with a real part and
three different imaginary parts [21]. In Eq. (19) is shown a
general form of a quaternion.

q = qxi+ qyj + qzk + qr (19)

where

i2 = j2 = k2 = ijk = −1 (20)
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Fig. 7. Optimized pose-graph

Fig. 8. LAGO’s pose-graph
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Fig. 9. Global error per iteration

and qx, qy, qz, qr ∈ R. Thus, it is a sum of a scalar qr and a

vector part qv = [qx, qy, qz].
The unit quaternions, given by Eq. (21), are a sub group of

quaternions that are used to represent rotations. They satisfy
the condition ‖qu‖ = 1. A full quaternion belongs to the R4

space. However, the unit quaternion belongs to a subspace
of R4 called S3, which represents the unit sphere in R4 [15]
[2].

qu =
q

‖q‖
=

1√
q2w + q2x + q2y + q2z

q (21)

A unit quaternion just need to maintain its unit lenght
throughout the optimization process. However, the addition
of this constraint degrades the performance of the algorithm
[9]. The problems about the quaternion parameterization
occur because rotations have three DOF and the quaternion
can change in four directions. Since estimation algorithms,
in general, expect variables from euclidean vector spaces [5],
the goal is to use a representation with three parameters, such
as euler angles, but without singularities. However, there is
no SO(3) parameterization with only three parameters that
has no singularities [5].

To overcome these problems, the state is globally repre-
sented by a unit quaternion, but local perturbations around
the current state have a minimal representation, ideally
behaving as an euclidean space [5]. This parametrization is
related to manifold theory and exponential maps [18].

A manifold is a mathematical space that, in a global scale,
is not an euclidean space, but can be locally approximated
by one [17]. In other words, ”every point of a manifold has
a neighborhood that can be mapped bidirectionally to Rn”
[6].

The space of rotations and S3, the unit quaternions, are
manifolds and can be locally mapped to a euclidean space.
Therefore, the parameterization problem can be dealt with
using unit quaternions to represent the orientation of the
state, and defining a operator � that maps a local variation
in the euclidean space to a variation on the manifold [12].

The �-method, developed by Hertzberg [5], defines the
mapping functions between the manifold and the euclidean
spaces, which are called the exponential and logarithmic
maps [18]. The operator �, stated in Eq. (22), represent the
exponential map, which performs a rotation around axis δ
with an angle ‖δ‖, accoding to Hertzberg et al. [6].

p� δ = p exp
(δ

2

)
(22)

The operator �, stated in Eq. (23), represent the loga-
rithmic map, which computes the rotation from p to q. The
global difference in manifold space is mapped to a local
perturbation in euclidean space [12].

q � p = 2 · log(p−1q) (23)

The exponential and logarithmic functions are given by
the Eqs. (25) and (27), respectively, considering a quaternion
with real part w and vector part u [2] [5].



The exponential map function maps a vector v into a unit
quaternion q:

exp : R3 → S3 (24)

exp(v) = q =

{ [
sin(‖v‖) v

‖v‖ , cos(‖v‖)
]

for ‖v‖ 6= 0

[0,0,0,1] for v = 0
(25)

The logarithmic map function maps a unit quaternion q
into a vector v:

log : S3 → R3 (26)

log(q) = v =


0 for u = 0

atan(‖u‖/w)
‖u‖ u for u 6= 0, w 6= 0

π/2
‖u‖u for w = 0

(27)

Thus, the pose of the robot is represented by a translation
vector and a unit quaternion:

xi = [x, y, z, qx, qy, qz, qr] (28)

The error function can be approximated as:

eij = eij(x̌� δx) w eij + Jijδx (29)

where eij is the difference between the predicted and the
actual measurement, as stated in Eq. (30)

eij = ẑij � zij (30)

The Jacobian is given by Eq. 31.

Jij =
∂eij(x̌� δx)

∂δx
(31)

However, now the Jacobian matrix is computed numeri-
cally, according to [5]. A small perturbation is applied for
each degree of freedom.

Jij =
eij(x� dvj)− eij(x)

d
(32)

where eij is the error function, d is a small positive scalar
and vj is the unitary vector corresponding to the DOF.

Thus, the incremental addition to the initial guess is
defined by the exponential map:

x∗ = x̌� δx (33)

The operator � first converts the rotational part of δx to a
full quaternion and then apply the transformation to x̌ [12]
[3]. The formulation is described using pseudocode notation
in algorithm 2.

Algorithm 2 3D Pose Graph Optimization
1: procedure READ GRAPH
2: x← vertices
3: z ← edges
4: Ωij ← inf matrices
5: endprocedure
6: while not converged do
7: preallocate sparse J
8: preallocate e
9: given scalar d

10: for all measurements m do
11: compute error function eij
12: eij ← Ωijeij
13: zij ← measurement m
14: procedure COMPUTE THE JACOBIAN
15: for each dependant random variable rv do
16: for k = 1 : dof(e) do
17: xie ← xi � dek
18: ed ← (x−1ie xj)� zij
19: ed ← Ωijed
20: J +=

ed−eij
d

21: endfor
22: endfor
23: endprocedure
24: e += eij

25: endfor
26: H ← JT J
27: b← JT e
28: δx ← sparsesolve(Hδx = −b)
29: x = x� δx
30: endwhile

D. 3D Dataset Evaluation

For the 3D evaluation, the nodes are listed in the format
”ID x y z qx qy qz qw”, which corresponds to the number of
the pose and its respective 3D position and orientation in unit
quaternion representation. All edge lines have the format:
”IDfrom IDto x y z qx qy qz qw I11 ... I66”. The first two
numbers ”IDfrom IDto” correspond to the ID of observing
and observed nodes i and j. The x, y and z compose the
translation vector between nodes, and qx, qy , qz , qw is the
unit quaternion corresponding to the rotation between the
two nodes. The numbers I11 ... I66 are the 21 top triangular
elements of the 6x6 information matrix, stated in Eq. (34).

Ωij =



I11 I12 I13 I14 I15 I16
I22 I23 I24 I25 I26

I33 I34 I35 I36
I44 I45 I46

... I55 I56
I66


(34)

The evaluated dataset for the 3D case represents the
movement of a robot on a surface of a sphere. The graph



has 2500 poses and 4949 contraints. Fig. 10 shows the initial
graph configuration, a sphere corrupted by noise. Figure. 11
shows that the system is able to correctly optimize the graph,
displaying the optimized sphere. Figure 12 shows the global
error per iteration of the evaluation in logarithmic scale.

Fig. 10. Initial pose-graph

Fig. 11. Optimized pose-graph

IV. RGB-D SLAM SYSTEM

This section presents the implementation of a complete
RGB-D SLAM system, detailing the proposed methodology
and software libraries used.

A. Proposed Methodology

The ROS [25] framework is built as a large number
of small programs, called nodes, that communicate one
another through messages, carried by topics [19]. Each node
either subscribes to topics or publishes them. The proposed
SLAM system is implemented as a ROS package, with a
C++ main ROS node and auxiliary header files. The final
output of the system is the global point cloud map and
the optimized trajectory of the robot. Fig. 13 shows the
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Fig. 12. Sphere dataset - Global error per iteration

schematic overview of the proposed approach. The RGB-
D data is used to estimate visual odometry using FOVIS,
to create point clouds, and to detect loop closures for graph
construction. The g2o framework is used to store the nodes
and edges of the graph and to perform the optimization.

B. Data Acquisition

An RGB-D camera is composed by two sensors: a color
camera and an infrared camera, both modeled as a pinhole
camera, shown in Fig. 14. The camera model is used to map
information from world coordinates to image coordinates,
and to define the position of the camera in world coordinates.

The center of the camera is the point C, which is the center
of the euclidean coordinate system [Xc, Yc, Zc], showed in
Fig. 14. The image plane is located at Zc = f , which is the
focal length of the camera. The principal point P is where
the image plane meet the Z axis, and has the coordinates cx
and cy in the image plane.

This model is used to map a point in space with coordi-
nates X’ = [X ′, Y ′, Z ′] to a point [fX ′/Z ′+cx, fY

′/Z ′+cy]
on the image plane [28], which can be written as stated in
Eq. (35).

uv
1

 =

f 0 cx 0
0 f cy 0
0 0 1 0



X ′

Y ′

Z ′

1

 (35)

where the matrix carrying the focal length and principal
point parameters is called the calibration matrix, or intrinsic
matrix, and [u, v, 1] are the coordinates of the mapped point
in the image plane, written in homogeneous coordinates.

The extrinsic parameters are composed by a 3x3 rotation
matrix and a translation vector, defined in Eq. (36), and de-
fine where the camera is located in world frame coordinates,
mapping a point [X,Y, Z, 1] in world frame homogeneous
coordinates to the camera coordinate frame.



Fig. 13. Schematic overview of the proposed approach

Fig. 14. Pinhole Camera Model
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1

 =

[
R t
0 1

]
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Z
1

 (36)

Both extrinsic and intrinsic parameters are obtained
through calibration, and are used to register the depth images
to the same coordinate system of the RGB images.

The main ROS node receives color and depth images
provided by the RGB-D sensor in form of ROS topics. A
point cloud is generated combining color and depth images,
using the ROS library depth image proc [27] and the Eqs.
(37) (38) and (39). These equations map a point (v, u) in
the image plane of the camera to a 3D coordinate of the
scene. The Point Cloud Library (PCL) [30] is used to store,
visualize and manipulate the point clouds.

Z = depth image[v, u] (37)

X = (u− cx)
Z

fx
(38)

Y = (v − cy)
Z

fy
(39)

A voxel grid filter from PCL is applied to reduce the
number of points used to create the global map due to
the large amount of memory required by the point cloud
representation. In Fig. 15 is shown a point cloud with the
full set of measured points and in Fig. 16 is shown the same
point cloud after the filtering process.

Fig. 15. Point Cloud Fig. 16. Downsampled Cloud

C. Visual Odometry

The FOVIS library [1] is used to obtain a pose estimation.
The FOVIS ROS node subscribes to the corresponding
topics: rgb camera information, depth camera information,
depth image and color image. Afterwards, it publishes the
odometry topic, sent to the main node. Each pose i of the
robot has the format stated in Eq. (40).

xi = [xi, yi, zi, qx, qy, qz, qr] (40)

where xi, yi, zi are the euclidean coordinates of the robot and
qx, qy, qz, qr compose the unit quaternion that represents the
orientation of the robot.

D. Keyframe selection and Loop Closure

Ideally, to detect a loop closure, it would simply require
a comparison between the current frame and all past frames.
However, it is computationally infeasible [26]. To overcome
this problem, only a subset of frames, called keyframes, is
selected to be compared.

The first frame is sellected as a keyframe and is matched
against the next frames. When the number of matched



inliers is below a threshold, it means the robot has made a
significant movement and a new keyframe is chosen. Every
new keyframe is matched againt the previous ones. However,
two keyframes are only compared if their global pose is close
enough, given a threshold.

Every time a new keyframe is detected, a node is added to
the graph with the corresponding position and orientation. If
the number of matched inliers between the current keyframe
and a past keyframe is above a threshold, called loop closure
inliers threshold, then a loop is detected and an edge is added
to the graph. This edge is composed by the transformation
between the two frames and the associated information
matrix, that comprises the uncertainty of the measurement
[19].

The ORB features [7] are used in this methodology.
Besides their efficiency, they provide good invariance to
changes in illumination and motion. The implementations
from the OpenCV library [13] are used for the feature
detection and matching. In Fig. 17 is shown the matched
points between two keyframes. To be robust againt outliers,
an rejection filter is applied using the fundamental matrix
and the RANSAC method [24].

Fig. 17. Feature Matching

The PCL implementation of the ICP algorithm is used to
determine the relative transformation between two keyframes
with near global pose, using their corresponding point clouds.
The Algorithm 3 details the procedure of keyframe selection
and loop closure detection in pseudocode notation.

E. Graph Optimization
The g2o framework [29] is used to register the graph

and perform the optimization when a loop is detected. The
information matrix for every measurement is the identity
matrix multiplied by the number of inliers.

F. Global Map
The global map is constructed through the alignment of

all stored point clouds. The PCL function ”transformPoint-
Cloud” applies a given transformation to a point cloud. This
function is used to align all keyframe point clouds with their
respective optimized poses. Finally, each one is added to the
global map at the same coordinate system. This formulation
is described using pseudocode notation in algorithm 4.

V. EXPERIMENTS
This section presents the qualitative results obtained with

the proposed methodology, using a differential drive com-
mercial robot iRobot Create, equiped with a Microsoft Kinect

Algorithm 3 Keyframe Selector and Loop detection
1: for every new frame i do
2: Pi ← ith fovis pose
3: detect features
4: feature match(features i, features i-1)
5: n inliers← outlier rejection
6: if n inliers < threshold then
7: keyframej ← currentframei
8: graph vertex j← Pj
9: compute Tj−1,j between keyframes (FOVIS)

10: add edge
11: compare current and past keyframes
12: if loop detected with keyframe k then
13: compute Tk,j between keyframes (ICP)
14: add edge
15: endif
16: endif
17: endfor

Algorithm 4 Global Map Construction
1: initialize global map
2: keyframes← get keyframes
3: poses← get poses
4: for all keyframes do
5: pointcloudk ← get keyframe pointcloud
6: aligned cloud = transform(keyframek, pose)
7: global map += aligned cloud

8: endfor

v2 and a laptop. All the experiments were conducted in the
Robotics Laboratory from the Pontifical Catholic University
of Rio de Janeiro. In Fig. 18 is shown the assembled robot
performing SLAM.

Fig. 18. Robot performing SLAM

In the following experiment, the robot maps a entire room
at once. The Figs. 19 and 20 are parts of the same map.
The robot was able to create a map of the laboratory in real



time. Some problems were encountered with high motion
speed or rough movements. However, the graph optimization
overcome major misalignment problems caused by odometry
drift. Despite some misalignments, the map is still consistent
due to the loop closure detection and optimization.

Fig. 19. Point cloud map

Fig. 20. Point cloud map 2

VI. NUMERICAL EVALUATION

To numerically analyze the proposed methodology with
experimental data, it is necessary to have the ground truth
trajectory of the robot in the environment. However, this
would require motion detector systems or other external
measurement device. Thus, the numerical evaluation of the
system is made using the RGB-D benchmark [20] from Tech-
nical University of Munich, which provides datasets of color
and depth image sequences of a kinect sensor, under different
conditions. All sequences have a corresponded ground-truth
trajectory, obtained with a high precision motion capture
system. All tests were conducted in a notebook with an Intel
Core i7 6700 HQ processor with 2.60 GHz and 16 GB of
RAM, running Ubuntu Linux 14.04 LTS and ROS Indigo.

A. Evaluation Metrics

This evaluation employs the Absolute Trajectory Error
(ATE) to compare the estimated trajectory with the pro-
vided ground-truth trajectory. The ATE compares absolute
distances between both trajectories and evaluates the global
consistency [20].

The mean, minimum, maximum and root mean square
errors are evaluated for each Dataset. Given the trajectory
estimate with translational components x̂ = [x̂1, · · · , x̂n],
and the ground truth trajectory with translational components

x = [x1, · · · , xn], the root mean square error (RMSE) is
given by Eq. (41).

RMSE =

(
1

n

n∑
i=1

‖x̂i − xi‖2
)1/2

(41)

The ground truth trajectories have the format ”timestamp
tx ty tz qx qy qz qw”, where timestamp is the time of
each pose in unix epoch time, ”tx, ty, tz” is the translation
vector, and ”qx qy qz qw” is a unit quaternion. The estimated
trajectories and the ground truth trajectories are aligned using
the timestamps of each pose [20].

B. Dataset Evaluation

The first sequence is called ”fr1 room” and corresponds
to a movement of 15.989m of ground-truth trajectory length,
0.334m/s of average translational velocity and 29.882deg/s
of average angular velocity. In Fig. 21 is shown the compar-
ison between the estimated trajectory and the ground-truth
trajectory. In Fig. 22 is shown the resulted global point cloud
map, and in Tab. I is shown the comparison between the ATE
error using only the visual odometry of FOVIS and using the
proposed methodology.

Fig. 21. fr1-room - Optimized

TABLE I
ATE EVALUATION OF THE FR1 ROOM DATASET

Error (m) FOVIS This work
RMSE 0.2807 0.1987
Mean 0.2432 0.1722
Min 0.0256 0.0159
Max 0.6446 0.4072

The second evaluation is the ”fr3 long office household”
sequence, with 21.455m of ground-truth trajectory length,
0.249m/s of average translational velocity and 10.188deg/s
of average angular velocity. In Fig. 23 is shown the com-
parison between the estimated trajectory and the ground-
truth trajectory. In Figs. 24 and 25 is shown, respectively,



Fig. 22. fr1-room - Point Cloud Map

the initial point cloud and the resulted global point cloud
map. In Tab. II is shown the comparison between the ATE
error using only the visual odometry of FOVIS and using
the proposed methodology.

Fig. 23. fr3-long-office - Optimized

TABLE II
ATE EVALUATION OF THE FR3 LONG OFFICE DATASET

Error (m) FOVIS This work
RMSE 0.2717 0.1238
Mean 0.2329 0.1101
Min 0.0381 0.0156
Max 0.5375 0.2685

Both results showed that the system was able to create
consistent maps of indoor environments, and the loop closure
and graph optimization provided a considerable improvement
of the FOVIS trajectory estimation. The root mean square,
maximum, minimum and mean errors were all minimized.
The errors in the first evaluation are larger than the second
one due to the higher translational and angular velocities of

Fig. 24. fr3-long-office: Initial Point Cloud

Fig. 25. fr3-long-office: Point Cloud Map

the camera.
The Tables III and IV show comparisons between the pro-

posed implementation and other methods from the literature,
using the ATE RMSE metric and the datasets freiburg room,
with 3Hz of frame rate, and freiburg long office household,
with 30 Hz of frame rate. The first comparison, shown in Tab.
III, is made with the first version of the rgbdslam method,
developed by Endres et al. [8] and FOVIS [1]. This work
outperformmed both methods.

TABLE III
COMPARATIVE RESULTS FOR THE FR1 ROOM DATASET

Method ATE RMSE (m)
This work 0.1987

RGB-D SLAM 0.2190
FOVIS 0.2807

The present system is also compared with FOVIS and
LSD-SLAM [14], a keyframe-based SLAM system for
monocular cameras developed by Engel et al. in 2014. This
work showed satisfatory results for a real time performance,



achieving lower errors than both methods.

TABLE IV
COMPARATIVE RESULTS FOR THE FR3 LONG OFFICE DATASET

Method ATE RMSE (m)
This work 0.3064

LSD-SLAM 0.3853
FOVIS 0.5144

VII. CONCLUSIONS
This work presented a pose-graph optimization tool for

MATLAB for 2D and 3D trajectories, and an RGB-D SLAM
system for mobile robots. The pose-graph tool was able to
optimize graphs with a large number of constraints and a con-
siderable initial error in both 2D and 3D cases. The SLAM
system was able to perform real-time, creating consistent
maps and achieving an acceptable global error in localization.
The SLAM implementation was tested in a low cost platform,
using only open source software and affordable hardware,
and it has a vast applicability. The system also outperformed
state-of-the-art methods from the literature.

Future works include a C++ implementation of the pose-
graph optimization tool, to allow its use in real time SLAM
implementations. For the RGB-D SLAM system is proposed
the use of a bag of words formulation for place recognition in
the loop closure problem. Another important improvement is
to extend the implementation to the use in dynamic environ-
ments, which would considerably increase the applicability
of the system.
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