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ABSTRACT. Elber assumed that the actual driving force for fatigue crack 
growth (FCG) is the effective stress intensity factor ΔKeff. His hypothesis is 
verified here by means of easily reproducible tests. To do so, both DC(T) and 
C(T) specimens are cut from a 6351-T6 Al alloy 76mm diameter circular bar 
with two different thicknesses, 2 and 30mm, tested under fixed ΔK and Kmax 
to simulated plane stress and plane strain FCG conditions. A strain-gage 
bonded on the back face of the specimens is used to measure the crack length 
and a custom-made Labview program is used to control the applied load, 
maintaining ΔK and Kmax constant along the crack path. Moreover, the crack 
opening load is redundantly measured during the FCG tests, using far field 
strains from the back face gage and near field strains from a series of gages 
bonded along the crack path, as well as an independent digital image 
correlation system to measure displacement/strain fields on the face of the 
specimens. These tests show that the Al specimens reproduce the behavior 
previously observed in similar tests in 1020 steel: a significant decrease of the 
opening load as the cracks grow along the specimens, while maintaining a 
FCG rate essentially constant under the fixed {ΔK, Kmax} loading, a behavior 
that cannot be explained by the ΔKeff hypothesis. 
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INTRODUCTION 
 
Monitoring the stiffness curve of a fatigue cracked plate during its loading cycle, Elber identified in the early 70’s that “as a 
consequence of the permanent tensile plastic deformation left in the wake of a fatigue crack, one should expect partial 
crack closure after unloading the specimen” [1], as illustrated in Fig. 1. Having clearly identified experimentally that fatigue 
cracks can remain partially closed even under tensile loads (“the crack will not be totally opened until reaching the 
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magnitude of the opening load (Pop)”), the so-called plasticity-induced crack closure (PICC) behavior, he then assumed 
that “the crack cannot propagate while it is closed at its tip” [2]. Therefore, based on this hypothesis, Elber suggested that 
the effective stress intensity factor (SIF) range ΔKeff should be the actual fatigue crack growth (FCG) driving force, instead 

of, for instance, {ΔK, Kmax} or the equivalent {ΔK, R} combinations. By definition, ΔKeff  Kmax – Kop if Kop > Kmin, or else 

ΔKeff ΔK if Kop < Kmin, where Kmax and Kmin are the maximum and the minimum values of the applied SIF, Kop is the SIF 
that completely opens the fatigue crack, and R = Kmin/Kmax.  
 

 
Figure 1: Load vs. displacement stiffness curve, used to determine the crack opening load Pop. 

 

In other words, Elber assumed that FCG rates da/dN should be a function of ΔKeff, da/dN = f(ΔKeff), because cracks could 
not grow before completely opening their tips, supposing that only under K > Kop they would be further exposed to the 
loads. This hypothesis certainly is reasonable. In fact, PICC can justify many load sequence effects in FCG, such as delays 
or arrests after overloads (OL), attenuation of OL-induced delay effects after subsequent underloads, and FCG threshold 
sensitivity to R, which can much affect fatigue life estimates under variable amplitude loads (VAL). Hence, it is not 
surprising that FCG models based on ΔKeff concepts still are very much used in practical applications [3-4]. 

However, although many experiments (including the data presented here) support the existence of PICC, see e.g. [5-7], its 
actual role in FCG is still controversial, to say the least. Indeed, albeit successful in explaining many FCG peculiarities, 
Elber’s hypothesis that ΔKeff is the FCG driving force cannot explain many other equally important FCG characteristics, 
such as: 

(i) delays or arrests after OLs under high-R base loads (when fatigue cracks remain always open, since for such loads 
Kmin > Kop) [8]. 

(ii) constant FCG rates induced by constant {ΔK, R} but highly variable ΔKeff loadings, observed in the data 
presented here for an Al alloy and in previous works for a low-C steel [9-10]. 

(iii) cracks arrested at R  0.3 that restart to grow at R  0 under the same ΔKeff [11]; or else.   
(iv) FCG threshold insensitivity to R in inert environments [12]. 

For further details in those and other ΔKeff limitations, see for instance [3-4, 8, 13]. Notice that such limitations are 
supported by plenty of experimental data, so they are not based only on heuristic or philosophical arguments. It is not the 
aim of this work to explore the many FCG idiosyncrasies that cannot be properly explained by the ΔKeff hypothesis, but it 
is not possible to ignore they exist. In fact, it is a truism to say that as dogmas have no place in science, all scientific 

hypotheses need proper experimental support, and Keff is no exception to this rule. Thus, it is not realistic to assume that 
PICC is the single or even the dominant mechanism in all FCG problems. Prudent structural designers should be aware 
that ΔKeff-based FCG life predictions can be questioned based on such issues. 

Anyway, for this work purposes, it suffices to say that ΔKeff limitations can be very important for practical FCG life 
estimates. Indeed, if the effective SIF is not the actual FCG driving force, predictions based on it might be highly 
unreliable, at least when not previously calibrated by suitable tests. Moreover, if an estimate needs previous experimental 
calibration, it cannot even be called a prediction, much less be safely used for such purposes under untested general load 
conditions. Structural engineers circumvent this issue using very generous safety factors in their designs (a factor of 10 or 
even 20 in desired fatigue lives is not uncommon), but this practice is at least uneconomical. Besides, it cannot be used in 
structural integrity evaluations, where actual safety factors must be calculated, not assumed. If PICC may not be the 
dominant FCG mechanism, this doubt alone certainly justifies the careful experimental verification of the actual relevance 
of ΔKeff in relatively simple and easily reproducible unambiguous FCG tests, like those presented in the following. 
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EXPERIMENTAL SETUP 
 
The objective of this work is to use simple and easily reproducible fatigue tests to identify if ΔKeff really is its FCG driving 
force. Needless to say, to measure ΔKeff properly, reliably, and accurately is a necessary condition to do so. This is the 
reason for choosing to propagate fatigue cracks in standard DC(T) and C(T) specimens [14] under fixed {ΔK, Kmax} 
conditions, continuously measuring FCG rates da/dN and opening SIFs Kop along the entire crack path. To calculate ΔK 
and Kmax, the crack length is measured by the traditional compliance technique, using a strain gage bonded on the back 
face of the specimens and standard ASTM SIF equations. Moreover, crack length measurements are frequently verified by 
optical means as the cracks grow during the FCG tests. The loads are controlled by a closed loop system to maintain 
quasi-constant {ΔK, Kmax} conditions (according to ASTM E647 procedures [15]). Finally, special care is taken to avoid 
any OLs during the entire FCG process in all tests. Hence, there is no mystery in such simple tests. They only need to use 
traditional laboratorial procedures with proper care. That is why it is claimed above that these tests are easily reproducible. 
Nevertheless, it is worth to mention some of the tricks used to improve the quality of the tests, as follows.  

To verify whether ΔKeff really controls FCG rates in any test, it is indispensable to measure directly the opening loads Kop, 
preferably using the very same compliance technique used by Elber to identify them (Fig. 2a). However, since there are 
controversies about where to measure Kop (some experts claim Kop should be measured by transducers located near the 
crack tip [16]), both near (to the crack tip) and far (from it) redundant strain measurements are used in this work. 
Traditional electrical resistance strain gages, the most reliable strain transducers, are used to measure Kop during the load 
cycle of the FCG specimens. The gage bonded to the back face of the specimen, used to measure crack length, is also 
used to measure the far-field compliance, and a strip with 10 parallel gages bonded along its residual ligament is used to 
measure the near-field strains (while the crack tip does not cut them).  

 

 
Figure 2: Methods used to measure the crack opening load Pop: (a) the classic Elber´s method, (b) the linearity subtractor technique, 

and (c) the ASTM method. 

 
To enhance the resolution of the opening loads and to improve the accuracy of such measurements, Paris and Hermann 
proposed to subtract the linear part of the compliance signal and then to amplify the resulting difference (Fig. 2b). Their 
idea was successfully used in the analog linearity subtractor described a long time ago, which could identify Kop within 1% 
of Kmax [17]. The same idea is digitally adapted to identify Kop in the tests reported here. Additionally, an independent 
digital image correlation (DIC) system is used to obtain two other types of redundant Kop measurements (and to verify the 
crack length). This precaution may be over-conservative and even unnecessary, but it is used here because ΔKeff issues are 
frequently treated in an emotional way in the literature, so it is better to be safe than sorry when dealing with them. 
Anyway, since the DIC system was already available and its operational cost involves only man-hours, these additional 
measurements certainly are at least an interesting way to verify the traditional compliance procedures.  

Such redundant testing methodology was first used to verify if ΔKeff controlled the FCG behavior of 1020 steel specimens, 
a body-centered cubic material, as reported in [9, 10]. The main conclusion of those tests was that FCG rates were not 
controlled by ΔKeff, since the measured Kop significantly decreased (and thus the applied ΔKeff increased) as the cracks grew 
longer, while the measured FCG rate (induced by fixed {ΔK, Kmax} loading conditions) remained essentially constant, see 
Fig. 3. It is interesting to point out that these experimental results support the procedures recommended by the ASTM 
E647 standard test method for measurement of fatigue crack growth rates under a fixed R, which assumes they are caused 
by ΔK, not by ΔKeff.  
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Figure 3: FCG rates da/dN and crack opening ratios Kop/Kmax continuously measured under quasi-constant loading conditions (namely 
{ΔK = 20MPa√m, R = 0.1}), by the four redundant techniques (near and far-field strain gages and DIC-based COD and strain fields) 

along the crack path in the thin DC(T) specimen (t = 2mm) of 1020 steel, supposedly under plane stress conditions [10]. 
 

Moreover, it is important to point out that such results are also very reassuring for structural engineers who must estimate 
residual FCG lives in practical applications. It is common practice to integrate FCG curves based on {ΔK, Kmax} driving 
forces to calculate such lives [18], a technique that would be inappropriate if ΔKeff was the actual cause for FCG. In fact, as 
discussed in [10], the main issue with the ΔKeff concept is how to use it in practice. Whereas SIFs and thus SIF ranges ΔK 
can be calculated by standard stress analysis techniques, there is no foolproof universal method yet to reliably calculate Kop 
and consequently ΔKeff in the complex structural components engineers must deal with. Indeed, while there are many 
catalogues of K-solutions, see e.g. [19], ΔKeff cannot be listed because they are not unique for a given cracked body 
geometry. Since only simplified models are available to estimate Kop values based on an idealized behavior of very simple 
geometries, this is indeed a major problem for ΔKeff-based FCG predictions. 

The purpose of this work is to verify whether the same “da/dN is not controlled by ΔKeff” conclusion observed in 1020 
steel specimens holds for a face-centered cubic material as well. To do so, FCG tests are made on 6351-T6 Al specimens 
of two different geometries: disk-shaped compact tension DC(T) and compact tension C(T) specimens with two different 
thicknesses, 2 and 30mm, to simulated plane stress and plane strain conditions, respectively. All specimens were cut from 

the same 76mm-diameter bar with yield and ultimate strengths SY  170 and SU  290MPa. The dimensions of these 
specimens are shown in Fig. 4, which lists as well the chemical composition of the Al 6351-T6 tested in this work. 
 

 
Figure 4: Dimensions of the (a) DC(T) and (b) C(T) specimens and the chemical composition of the tested 6351-T6 Al alloy. 
 

Since all specimens are loaded under quasi-constant ΔK  15MPa√m and R  0.1 conditions, their thicknesses t are 

chosen to have nominally plane stress conditions in the thin t  2mm specimens (making the plastic zone that always 
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follows the fatigue crack tips pz > t) and plane strain conditions in the thicker t  30mm ones. This choice assumes the 
classic ASTM E399 plane strain requirements can be used in FCG as well if t > 2.5∙(Kmax/SY)2 [14]. Indeed, using Irwin’s 
estimate for the pz ahead of the crack tip, assuming this traditional 2D view is appropriate to define a plane stress state in 

FCG too, then if t  2 mm, pzmax  (1/π)(Kmax/SY)2  (1/π)[15/(0.9170)]2  3.05mm > t. On the other hand, specimens 

with t  30mm have t > 2.5(Kmax/SY)2  2.5[15/(0.9170)]2  24mm, so they should grow their fatigue cracks under 
nominally plane strain conditions. This detail is important because if ΔKeff is the FCG driving force then one could expect 
lower Kop and thus higher da/dN FCG rates under plane strain conditions. If, on the other hand, {ΔK, Kmax} are the FCG 
driving forces, then no such difference is expected, since they are thickness-independent.  

A custom-made closed loop control system is used to maintain the quasi-constant {ΔK  15MPa√m, R  0.1} loading 
conditions in all tests (according to ASTM E647 procedures). As mentioned above, this system uses the compliance 
technique to measure crack sizes from the signal of a strain-gage bonded on the back face of the specimens. This gage is 

continuously monitored through a Labview program [20] especially developed to control the Pmax and Pmin  0.1∙Pmax 
loadings applied to the specimen. In addition, this program also generates the FCG rate charts in real time. The crack 
opening SIF Kop is redundantly measured using the strain gage bonded on the back face of the specimen, a strip with a 
series of 10 strain gages bonded along the crack growth path, and an independent commercial DIC system from 
Correlated Solutions. This system measures displacement/strain fields on the specimen surface, see Fig. 5. The 
stereoscopic system consisted of two 5-MP Point Grey GRAS-50S5M CCD cameras with high magnification lenses 
(Tamron SPAF180mm F/3.5), an adjustable double fiber-optic light source, calibration grids, a suitable data acquisition 
system, and the software VIC-3D [21-22]. The DIC analysis used a subset size of 31×31 pixels, a grid step of 7 pixels and 
a strain window of 15×15 displacement points. The pixel size was approximately 9.3 µm. To avoid any doubts, the crack 
opening load is obtained from the DIC data by two independent methods. First, from the strain values measured at a 
point located 1mm in front of the crack tip. Second, from the crack opening displacements (COD) measured above and 
below the crack faces at points located 2mm behind the crack tip, see Fig. 5. Moreover, the experimental data from the 
strain gages and from the DIC analyses are used to locate the crack opening load Pop by three methods: the classic Elber´s 
method [1], the linearity subtractor technique [17], and the ASTM method [15], see Fig. 2. Finally, the experimental setup 
is shown in Fig. 6. 
 

 
Figure 5: (a) Vertical displacement and (b) strain fields, obtained from the VIC 3-D DIC analysis. 

 

 
EXPERIMENTAL RESULTS AND DISCUSSION 

 

Figure 7 shows data obtained from two thin t  2mm DC(T) 6351-T6 Al specimens (Sp-1 and Sp-2), tested under 
nominally plane stress FCG conditions. It plots FCG rates da/dN and crack opening ratios Kop/Kmax measured along the 

crack path under quasi-constant {ΔK  15MPa√m, R  0.1} loading conditions by four redundant techniques, near and 
far-field strain gages (SG), and DIC-based COD and strain fields. Figure 8 is similar, but it presents data from two thick 

specimens (t  30mm) tested under nominally plane-strain FCG conditions.  
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Figure 6: Experimental setup used to measure displacement fields on the specimen surface with the DIC system, with a strain field 

resulting from it in the lower left figure. Four types of specimens are used in this work: (a) plane strain DC(T), (b) plane strain C(T), 
(c) plane stress DC(T), and (d) plane stress C(T). Notice the back face strain gages bonded on them. 

 
Figures 7 and 8 depict the evolution of the FCG rates and of the crack opening ratios Kop/Kmax measured along the crack 
growth process. Notice that the Kop results obtained from the strain gage readings and from DIC analyses have the same 
trend along the entire crack path. These experimental results clearly show that the crack opening ratio Kop/Kmax, like in the 
previous 1020 steel tests [9,10], significantly decreases as the crack length increases while the FCG rate remains practically 
constant during the entire tests. Thus, these data clearly contradict as well Elber’s hypothesis that the effective stress 
intensity factor ΔKeff would be the actual fatigue crack driving force. Moreover, these data suggest that this fact is material-
independent, a strong evidence the widespread belief in the ΔKeff hypothesis should be re-evaluated.   

To avoid any doubts about the property of testing non-standard FCG DC(T) specimens (such specimens are accepted by 
the ASTM E399 but not by the E647 standard), the same tests were also carried out in standard C(T) specimens under the 

same constant {ΔK  15MPa√m, R  0.1} loading conditions, see Figures 9 and 10.  
 

 
Figure 7: FCG rates da/dN and crack opening ratios Kop/Kmax measured under {ΔK  15MPa√m, R  0.1} quasi-constant 

loading conditions (according to ASTM E647 procedures) in two thin t  2mm Al 6351-T6 DC(T) specimens (Sp-1 and 
Sp-2), tested under nominally plane-stress FGC conditions. 



 

                                                               J.A.O González et alii, Frattura ed Integrità Strutturale, XX (20YY) qq-rr; DOI: 10.3221/IGF-

ESIS.tt.uu 
 

7 

 

 

 
Figure 8: FCG rates da/dN and crack opening ratios Kop/Kmax measured under {ΔK  15MPa√m, R  0.1} quasi-constant 

loading conditions (according to ASTM E647 procedures) in two thick t  30mm Al 6351-T6 DC(T) specimens (Sp-1 and 
Sp-2), tested under nominally plane-strain FGC conditions.  

 

 
Figure 9: Results obtained by testing one t  2mm Al 6351-T6 C(T) specimen under nominally plane-stress conditions. 

FCG rates da/dN and crack opening ratios Kop/Kmax measured under quasi-constant {ΔK  15MPa√m, R  0.1} loads. 
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Figure 10: Results obtained by testing one t  30mm Al 6351-T6 C(T) specimen under nominally plane-strain conditions. 

FCG rates da/dN and crack opening ratios Kop/Kmax measured under quasi-constant {ΔK  15MPa√m, R  0.1} loads. 
 

The difference in the specimen type should not be an issue, because in principle FCG rates could be measured in any type 
of specimen whose SIF is known, since they are intended to be used in any structural component. Anyway, the data 
obtained from the C(T) specimens show once again the very same behavior of the crack opening ratio Kop/Kmax. Indeed, it 
significantly decreases as the crack length increases, while the FCG rate remains practically constant during the entire tests, 
both in plane stress and in plane strain. Needless to say, these data once again clearly contradict Elber’s hypothesis that 
the effective stress intensity factor ΔKeff would be the actual fatigue crack driving force. Moreover, these results suggest 
that this conclusion is geometry-independent as well. 

It must be pointed out that the data presented in this and in the previous works [9-10] show that the measured Kop 
behavior is not identical in all tested specimens. This indicates that Kop is not a property of the geometry/load pair. 
Instead, it can vary in nominally identical specimens submitted to equal loading conditions not only with the relative crack 
size a/w, but it can also depend on local details along the crack path, probably because it is affected by non-plasticity 
induced closure mechanisms. This Kop variation is still another reason to question the blind use of FCG models that 
assume ΔKeff is the driving force in all fatigue problems. 

Finally, it is worth to mention that there is a small difference between the FCG rates obtained in DC(T) and C(T) 
specimens. There is also an even smaller difference between the FCG rates measured in thin and thick specimens. A 
similar behavior was reported by Forth et al. in FCG tests performed under constant load conditions, when they tested 
C(T), M(T), and ESE(T) specimens, using the same material as well as specimen width (w) and thickness (t) [23, 24]. They 
concluded that the differences observed in FCG rates were probably caused by environmental effects and roughness of 
the crack faces, which could explain the variation reported in these results. However, such hypotheses are beyond the 
scope of this paper, thus they are not checked in this work.  
 

CONCLUSIONS 

 

After reviewing the basic arguments that either support or question Elber’s classic hypothesis that FCG is driven by Keff, 
fatigue tests were performed to experimentally check it, in an attempt to verify whether ΔKeff can indeed be assumed as the 
driving force for FCG in all situations. To do so, FCG rates da/dN and crack opening loads Kop were redundantly 
measured on FCG tests under quasi-constant ∆K and R conditions, enforced by an especially designed closed loop control 
system, in thin and thick DC(T) and C(T) AA 6351-T6 specimens to simulate nominally plane-stress and plane-strain 
FCG conditions. The opening loads were measured by Elber’s compliance techniques, using as well the Paris and 
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Hermann linearity subtractor technique to enhance the Kop identification, and by the ASTM method. A series of strain 
gages bonded along the crack growth path, one strain gage bonded on the back face of the specimen, and COD and 
strain-based DIC techniques were all used to identify Kop by far and by near field measurements. The decreasing behavior 
of the crack opening ratio Kop/Kmax obtained by these 4 redundant methods showed no discrepancy in the testing results, 
confirming the reliability and repeatability of the data obtained in previous works. Since the ∆Keff measured along those 
tests augmented significantly with the crack size, whereas the measured FCG rates da/dN remained practically constant, it 
can be concluded that Elber’s effective stress intensity factor range is not the actual FCG driving force for the analyzed 
tests. 
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