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Abstract— Simultaneous Localization and Mapping (SLAM)
is a fundamental problem in mobile robotics. However, the
majority of Visual SLAM algorithms assume a static sce-
nario, limiting their applicability in real-world environments.
Dealing with dynamic content in Visual SLAM is still an
open problem, with solutions usually relying on direct or
feature-based methods. Deep learning techniques can improve
the SLAM solution in environments with a priori dynamic
objects, providing high-level information of the scene. This
paper presents a new approach to SLAM in human populated
environments using deep learning-based techniques. The system
is built on ORB-SLAM2, a state-of-the-art SLAM system. The
proposed methodology is evaluated using a benchmark dataset,
outperforming other Visual SLAM methods in highly dynamic
scenarios.

I. INTRODUCTION

The Simultaneous Localization and Mapping (SLAM)
problem is a fundamental step for several mobile robotics
applications, such as navigation. It consists of creating a map
of the environment using only sensor measurements without
external aid, while estimating the pose of the robot in the
created map.

A camera is a common choice as the main sensor in a
SLAM system due to its low cost and richness of informa-
tion. RGB-D cameras have an extra advantage of providing
dense depth information. There are several Visual SLAM
systems in the literature, with high precision and efficiency,
for instance, ORB-SLAM2 [1], LSD-SLAM [2], Henry et
al. [3], rgbdslam [4], and RTAB-Map [5]. However, their
majority assume a static environment, which imposes a
limitation of their applicability in real-world scenarios.

ORB-SLAM2 is a state-of-the-art graph-based Visual
SLAM system that can work with RGB-D, Stereo, or Monoc-
ular cameras. However, it does not work properly in dynamic
environments. Fig. 1 shows an example of the point cloud
map generated by the ORB-SLAM2 system, using data from
an RGB-D dataset containing people moving in the scene.
The map was corrupted by their movement.

The main challenges of performing SLAM in dynamic
environments are: to detect dynamic objects in the scene, to
prevent those objects from being tracked and to exclude them
from the map. Most SLAM systems that work in dynamic
environments rely on classic approaches, such as optical
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Fig. 1: Corrupted point cloud map

flow, to detect moving objects. However, they usually fail to
detect the presence of a priori dynamic objects, e.g., people,
when they are initially static. Deep Learning techniques, on
the other hand, have high-level information that allows the
recognition of such objects. The focus of this work is to
propose a SLAM system that uses deep learning techniques
to enable its applicability in scenarios with a priori dynamic
objects.

This paper proposes a complete SLAM system for human
populated environments based on ORB-SLAM2 using two
different approaches, both relying on deep learning tech-
niques to detect and filter people in the scene. It is discussed
the trade-off between them in terms of speed and accuracy.
The proposed methodologies are evaluated using the TUM
RGB-D dataset [6] and compared with other SLAM systems.
The main contributions of this paper can be summarized as
follows:

• Two new approaches for performing SLAM in human
populated environments are proposed

• The proposed methodologies outperform the accuracy
of ORB-SLAM2 and other state-of-the-art systems in
highly dynamic environments

• The achieved run-time performance is superior compar-
ing with approaches with similar accuracy

The paper is organized as follows. Section II discusses
related work, section III details the proposed methodology,
section IV shows the results and section V presents conclu-
sions and suggestions for future work.

II. RELATED WORK

A. SLAM in dynamic environments

Most state-of-the-art SLAM systems are not able to handle
dynamic scenarios, as they were designed with a static



environment assumption. The Visual SLAM systems that
deal with dynamic content in the scene usually treat it as
noise, and filter it using feature-based or direct methods, such
as Wang and Huang [7] and Kim et al. [8].

Dib and Charpillet [9] proposed a dense visual odometry
system in dynamic environments using RANSAC. Alcantar-
ila et al. [10] proposed a dense scene flow representation
to detect moving objects using stereo cameras. Cheng et
al. [11] proposed a method based solely on optical flow to
perform localization in dynamic environments, integrating it
with ORB-SLAM.

The previous approaches, however, are unable to detect
a priori dynamic objects in the scene, such as people
or cars. The DS-SLAM [12] system deals with dynamic
objects combing the optical flow method with a semantic
segmentation network, which allows the detection of people.

DynaSLAM [13] uses the Mask R-CNN [14] instance
segmentation to obtain the pixel-wise information of people
in the scene, using it to filter the outlier keypoints. Despite
being accurate and robust, DynaSLAM cannot perform real-
time due to the high computational requirement of the Mask
R-CNN algorithm.

Object detection, on the other hand, can achieve real-
time performance using GPU and also gives high-level
information. This work proposes the use of a deep-learning
based object detection module to detect a priori dynamic
objects in the environment, claiming that the trade-off be-
tween accuracy and speed against instance segmentation is
advantageous.

B. Object Detection

Object detection is the task of determining the location
and class of objects in an image. There are different types
of deep learning-based object detection algorithms. The R-
CNN detectors, for example, such as Fast R-CNN [15] and
Faster R-CNN [16], are known as two-stage detectors. They
use an algorithm to find potential regions to contain objects
and then use a convolutional neural network (CNN) in those
regions.

Despite being accurate, these algorithms are slow due to
their complex pipelines, and do not work in real time. On
the other hand, the YOLO (You Only Look Once) technique
proposed by Redmon et al. [17] can run at 45 frames per
second using a GPU. YOLO is fast because it uses a single
convolutional network for the whole image at once. This
work uses YOLO for the object detection task.

III. METHODOLOGY

Fig. 2 shows the flowchart of the proposed methodology,
composed of four main modules: Object Detection, Instance
Segmentation, Outlier Removal, and SLAM. The RGB-D
frames are sent to the object detection and instance segmen-
tation modules. The high-level information given is used in
an outlier removal system to filter the information submitted
to the SLAM module.

Two approaches are considered in this work. In the first
approach (a), the object detection module is active when

there are no people detected in the scene. Once a person
appears, the object detection module switches to instance
segmentation. The objective is to use the segmentation only
when it is necessary, to increase computational speed. In
the second approach (b), only object detection is used to
filter the dynamic features in the image. The objective of the
second approach is to evaluate if object detection alone is
sufficient for keypoint filtering, without the need of instance
segmentation. The following section details each module.

A. SLAM

This work uses ORB-SLAM2 as the global SLAM solu-
tion. ORB-SLAM2 has three main threads: tracking, loop
closing, and local mapping. In this work, both loop closing
and local mapping threads are the same as in ORB-SLAM2.
However, the tracking thread was modified to include the
outlier removal module. This work also adds a thread for
the deep learning stages.

The raw RGB images are processed in the deep learning
thread and are sent to the outlier removal filter inside the
tracking thread, which extracts ORB features [18] from the
images and remove the dynamic ones.

ORB-SLAM2 works using a keyframe-based methodol-
ogy. The tracking thread decides whether every new frame
is a new keyframe and saves the corresponding depth images.
The loop closing system searches for closed loops of every
new keyframe with past keyframes. The place recognition
algorithm DBoW2 [19] is used in the loop closing process.
Once a loop is detected, the graph is optimized with g2o [20]
to assure a consistent trajectory. The output of ORB-SLAM2
are a sparse point cloud map, and the optimized trajectory
of the camera.

B. Object Detection

YOLO provides the classes of the detected objects, 2D
bounding boxes with their corresponding positions and a
confidence number for each box.

This work uses the OpenCV implementation of YOLO,
trained with the COCO dataset [21]. Fig. 3 shows an image
with detected objects of different classes, with their respec-
tive bounding boxes and confidence numbers.

C. Instance Segmentation

Instance segmentation is a combination of object detection
and semantic segmentation. The Mask R-CNN [14] is used to
perform instance segmentation in the color frames. It gives
the pixel-wise information of the detected classes and the
bounding boxes with the respective location of the objects.
Fig. 4 shows a color frame from a dataset with the pixel-wise
information of two persons and a chair.

D. Outlier Removal

Once the images pass through the object detector or
instance segmentation, the keypoints that belong to people
are removed from the image. For the instance segmentation
approach, only the keypoints in pixels that represent people
are removed. In the object detection approach, every keypoint
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Fig. 2: Flowchart of the proposed approach

Fig. 3: YOLO Object Detection

Fig. 4: Mask R-CNN Instance Segmentation

inside the people bounding boxes are removed. Figs. 5a,
5b and 5c show the keypoint detection of ORB-SLAM2
without filter, with the Mask R-CNN filter and with the object
detector filter, respectively. The filters successfully erased all

keypoints in the regions with people. However, using only
object detection, the keypoints appearing in the left chair are
also erased, for being merged with the person bounding box,
resulting in an indirect filtering of potential dynamic objects.

In the approach using only object detection, a large
number of people in the scene can reduce the information
available drastically for the SLAM system, causing lost
tracking. To overcome this issue, the number of features
per image is variable, depending on the number of people
in the detected image. If there are no people, the number
of features is reduced to decrease the computational time
without jeopardizing the accuracy.

E. Point cloud mapping

The ORB-SLAM2 system generates an optimized trajec-
tory of the camera and a sparse map. To generate a dense
point cloud map, a post-processing tool is used. During the
tracking thread, for each keyframe added, the corresponding
depth image is altered in the regions filtered after the object
detection or instance segmentation steps and saved. The
modified depth images are combined with the RGB images
to create colored point clouds, using the camera intrinsic
parameters. The point clouds are, then, transformed into a
common coordinate frame using the optimized trajectory
resulted from the SLAM process. To prevent any occasional
false negative in people detection, a keyframe is used for the
map only if the number of people remained constant in the
past three frames.

IV. RESULTS

The system was numerically evaluated using the TUM
RGB-D dataset [6]. It contains sequences of RGB and
depth images obtained from a Microsoft Kinect camera, with
their corresponding ground-truth trajectories. The data was
recorded at 30Hz with a 640 x 480 resolution.

The walking (fr3 w) sequences were chosen for the evalu-
ation. In the sequences, two people are walking in the room,
moving behind a desk, passing in front of the camera and
sitting in chairs. This dataset is, therefore, highly dynamic.

There are four types of camera motion considered: xyz,
rpy, half and static. For the motion xyz, the camera is moved



(a) ORB-SLAM (b) With Mask R-CNN filter (c) With object detection filter

Fig. 5: Feature detection comparison

along the three axes, keeping the same orientation. In the rpy
sequence, the camera is rotated over roll, pitch and yaw axes.
In the half sequence, the camera follows the trajectory of a
half sphere. In the static sequence, the camera is manually
kept in the same position and orientation. Tab. I shows the
duration, length and average translational velocity of the
camera for every sequence.

TABLE I: Details of each dataset sequence

Sequence Duration [s] Length [m] Avg. Transl. Vel. [m/s]

fr3 w static 24.83 0.282 0.012

fr3 w xyz 28.83 5.791 0.208

fr3 w rpy 30.61 2.698 0.091

fr3 w half 35.81 7.686 0.221

A. Evaluation Metrics

The Absolute Trajectory Error (ATE) [6] is used to
evaluate the global consistency of the estimated trajectory,
comparing the absolute distances between the translational
components of the estimated and ground-truth trajectories.

All the tests were made five times and the median results
were used for the evaluation, as proposed by Mur-Artal and
Tardós [1], to consider the non-deterministic nature of the
system.

B. Quantitative Results

Tab. II shows the comparison between ORB-SLAM2 [1]
and the proposed methodology using the ATE metric [m],
with both instance segmentation (IS) and object detection
(OD) approaches, for the fr3 walking xyz sequence. Both
approaches achieved similar results and both considerably
improved the results of ORB-SLAM2. Thus, the OD ap-
proach is more advantageous for having a better run-time
performance, maintaining the accuracy obtained by the IS
approach.

Figs. 6 through 9 show the ATE plots from ORB-SLAM2
and the proposed methodology with object detection for the
fr3 w xyz and fr3 w rpy sequences. The proposed method-
ology significantly reduced the trajectory errors of ORB-
SLAM2.

TABLE II: ATE [m] Comparison between the proposed
system and ORB-SLAM2 for the fr3 walking xyz sequence

Error ORB-SLAM2 Prop. system (IS) Prop. system (OD)

RMS 0.9083 0.0165 0.0169

Mean 0.7699 0.0143 0.0145

Median 0.7091 0.0128 0.0128
Min 0.0654 0.0003 0.0003
Max 1.9977 0.0532 0.0556

The proposed system was also compared with two state-
of-the-art systems: DS-SLAM and DynaSLAM. Their error
values were taken from their respective papers [12] and [13].
Tab. III shows the ATE comparison between ORB-SLAM2,
DS-SLAM, DynaSLAM, and the proposed methodologies.
The OD approach outperforms DS-SLAM in three of four
sequences.

DynaSLAM, has better results than the OD approach in
three sequences. However, the maximum difference between
their results is approximately 3 mm for a sequence with
7.686 m of length.

Despite this work not explicitly handling movable ob-
jects such as chairs or notebooks, it filters their small
displacements when they are inside people’s bounding boxes.
However, this work does not handle long-term object dis-
placements, which would need an object tracking system,
for example.

C. Qualitative Results

Fig. 10 shows the final point cloud map for the sequence
fr3 walking xyz using the object detection approach. Com-
paring to the final map obtained using ORB-SLAM2, shown
in Fig. 1, it can be stated that the method was successful in
erasing the people from the map.

D. Implementation and Run-time Analysis

All tests were performed on a laptop with an Intel Core
i7 6700 HQ 2.60 GHz and 16 GB of RAM running Ubuntu
Linux 16.04 LTS. The overall system is implemented using
C++. Using the object detection approach, the total aver-
age run-time performance was 550 ms per frame for the



TABLE III: Comparison of the RMSE of ATE [m] of the proposed system against DS-SLAM, DynaSLAM and ORB-SLAM2

Sequence ORB-SLAM2 DS-SLAM DynaSLAM Prop. system (OD) Prop. system (IS)

fr3 w static 0.3900 0.0081 0.0060 0.0086 0.0070

fr3 w xyz 0.9083 0.0247 0.0150 0.0169 0.0150

fr3 w rpy 0.8705 0.4442 0.0350 0.0332 0.0303

fr3 w half 0.5071 0.0303 0.0250 0.0274 0.0260

Fig. 6: Ground truth and trajectory estimated by ORB-
SLAM2 in the sequence fr3 walking xyz

Fig. 7: Ground truth and trajectory estimated by the proposed
methodology in the sequence fr3 walking xyz

fr3 w rpy sequence. Most of the computational effort comes
from the object detector.

DynaSLAM, on the other hand, takes an average time of
335 ms per frame to process their Multi-view Geometry and
tracking stages for the fr3 w rpy sequence. However, the
Mask R-CNN runs at more than 2 seconds per frame in
a CPU. Even using a NVidia Tesla M40 GPU, the Mask
R-CNN alone would run at 195 ms per frame [13].

Fig. 8: Ground truth and trajectory estimated by ORB-
SLAM2 in the sequence fr3 walking rpy

Fig. 9: Ground truth and trajectory estimated by the proposed
methodology in the sequence fr3 walking rpy

According to Redmon et al. [17], the average computa-
tional time of the YOLO object detection is 45 fps running
on a GPU. Therefore, the second proposed approach can
achieve real-time performance.

V. CONCLUSIONS

This work presented two new approaches to perform
SLAM in dynamic environments based on the ORB-SLAM2



Fig. 10: Filtered point cloud map of fr3 w xyz sequence

system. The object detection approach proved to be more
advantageous than the instance segmentation one, due to
its better run-time performance, maintaining the accuracy.
Dataset tests indicate that the proposed methodology is
successful, with a lower computational time and a better
accuracy compared to other methods in the literature. The
major drawback of this work is to not explicitly consider
other moving objects besides people. Future works include
the addition of an object tracking system to filter those
moving objects.
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[2] J. Engel, T. Schöps, and D. Cremers, LSD-SLAM: Large-scale direct
monocular SLAM, In European conference on computer vision, 2014,
pp. 834-849.

[3] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, RGB-D mapping:
using kinect-style depth cameras for dense 3D modeling of indoor
environments, The International Journal of Robotics Research, vol.31,
2012, pp. 647-663.

[4] F. Endres, J. Hess, J. Sturm, D. Cremers and W. Burgard, 3D mapping
with an RGB-D camera, IEEE transactions on robotics, v. 30, n. 1,
2013, pp. 177-187.
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