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Abstract: A new generation of robots that work in cooperation with humans (called collabora-
tive robots) needs some flexibility to adapt to the environment and activities with people. That
is why the Series Elastic Actuator (SEA) has been a breakthrough in actuator technologies.
The idea of inserting an elastic element in series with a motor allows a lower output impedance,
consequently a flexible behavior in the manipulator, in addition to providing torque feedback
to better compensate disturbances caused e.g. by friction losses. This article presents a four-bar
mechanism with SEA for the purpose of robotic manipulation. Its kinematics and dynamics
are studied, as well as its regulation and trajectory control. The behavior of the decoupled
four-bar mechanism and the characteristics of the SEA are also analyzed. Then the regulation
control of the complete system is carried out using LQR control. Finally, a circular trajectory
is controlled in a simulation to validate the proposed control strategy. The simulation results
show the effectiveness of the proposed controller for the mechanism in the presence of SEAs
estimating torque and providing the desired compliance for human interaction.

Keywords: Robot Control, Human-Robot Interaction, Series Elastic Actuator, Four-Bar
Mechanism, Linear Control

1. INTRODUCTION

Safety is one of the main topics for robots to be able to
work collaboratively in activities with human beings. This
involves refined force control in robotic systems, requiring
more accurate but more expensive force sensors. The Series
Elastic Actuator (SEA) has proven to be a low cost and
high potential improvement used not only in industrial
robots, but also in many research robots.

The SEA adds flexibility through an elastic element con-
nected between the motor side and the link side. It allows
better force/torque control, low impedance, and impact
tolerance on the motor side. This type of performance has
been widely used in mechatronic applications, especially
in humanoid robots.

This form of mechanical compliance guarantees an inertial
decoupling between the actuator and the driven robot link,
thus reducing the kinetic energy involved in undesired
collisions with humans. Also, the motor and disturbance
torques become physically collocated, an important char-
acteristic for the rejection of vibrations (De Luca and
Book, 2016). However, the hysteresis of the spring element
may cause relevant inaccuracy in the SEA measurement.

Despite these difficulties, several SEA applications – e.g.
for quadruped robots, biped robot, dual-arm robots, and
wearable robots – have demonstrated that it is a promising
actuator system. (Lee et al., 2017)
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Several examples of systems that use SEA can be found
in the literature, mainly in areas such as Rehabilitation
Robots (Chen et al., 2019; DeBoon et al., 2019; Miyata
and Ahmadi, 2019; Lee et al., 2018), and Exoskeletons
and Prostheses (Alamdari et al., 2019; Bianchi et al., 2018;
Chen et al., 2019; Convens et al., 2019; Freitas et al., 2019;
Woo et al., 2017). Other major areas where this type of
actuator can also be found are in the study of locomotion
of robotic platforms (Knabe et al., 2015; Lee and Oh, 2019;
Ruppert and Sprowitz, 2019; Schumann et al., 2019; Zhang
et al., 2019), and in Physical Human-Robot Interaction
(pHRI) (Lee et al., 2019; Shi et al., 2020).

In Shi et al. (2020) for example, SEA was used with
a collision detection algorithm to work safely with both
humans and plants. The article proposed a method to
describe the magnitude and position of the impact that
occurs on the manipulator while it performs the picking
process.

There are several physical implementations of the elements
that connect the motor and the link, as discussed in
(Lin et al., 2017; Leal-Junior et al., 2018; Cummings
et al., 2016), where a rigid element with specific geometry
can achieve the desired deflection. In Cappello et al.
(2019), e.g., a compliant element with multiple equilibrium
positions is presented for use in assistive robotics. In
addition to these, Jarrett and McDaid (2019); Kim and
Oh (2019); Kakogawa and Ma (2018) feature elastomers
performing the spring function.

Some well-known dual-arm robots that use the SEA should
also be mentioned, namely the Valkyrie robot (Radford
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Figure 1. Series Elastic Actuator. a) One-Link SEA model.
b) SEA 2D Representation

et al., 2015) and the Baxter Robot (Guizzo and Ackerman,
2012).

This work presents the modeling of a 4-bar mechanism
that uses a series elastic actuator for robotic manipulation,
as well as its regulation and trajectory control using full
state feedback. The 4-bar mechanism features a closed
kinematic chain that allows it to perform 2D trajectories
with two degrees of freedom (DOF), with both drive
motors placed on the robot base. It is widely used in several
industrial applications due to lower cost, higher precision
when following a particular trajectory, greater force rates,
and simplicity compared to serial mechanisms due to the
simpler motor placement (for the first joints) on the base
instead of the links. (Rodŕıguez-Molina et al., 2019).

2. SERIES ELASTIC ACTUATOR PRINCIPLES

Pratt and Williamson (1995) introduced the SEA concept,
which was later detailed by Pratt et al. (2002), where
possible applications for the actuator are described. A
precise analysis of the three types of SEA was made in
Paine et al. (2013) and Lee et al. (2017), where they
compare each category with respect to force sensitivity,
compliance and transmissibility.

A schematic is represented in Fig.1, where the position of
the motor axis (θ) and the link position (q) are considered
as measured quantities, the spring elastic constant is K,
and the output force F can be calculated by Hooke’s law:

F = K(θ − q) (1)

Let’s assume small deformations and therefore a linear
elastic behavior of the SEA system. Based on Fig.1, one
can write the dynamic equation for a link with SEA in the
form:

Iq̈ +mglsin(q) +Ks(q − θ) = 0 (2)

Jθ̈ +Bθ̇ +Ks(θ − q) = τ (3)

where I, m and l correspond to the inertia, mass, and
length of the link, respectively, J and B are the motor
inertia and friction coefficient, g is gravity acceleration,
and τ is the motor torque.

Note that the systems are coupled by the term K(θ −
q), while the actuation occurs only on the motors. The
torque is then transmitted by the elastic element and thus
induces the movement on the link. In the next section, the

Figure 2. Planar Four-Bar Mechanism

dynamics of the considered 4-bar mechanism manipulator
is developed, to be used along with the SEA model.

3. DYNAMICS OF FOUR-BAR MECHANISM WITH
SEA

At first, the mechanism is modeled with rigid connections
between links and their drive motors. The model is repre-
sented by Fig.2.

The manipulator acts on the XY Cartesian plane and the
coordinates of the end effector are given by:

x = l1.cos(q1)− l4.cos(q2) (4)

y = l1.sin(q1)− l4.sin(q2) (5)

where l1 and l4 are the lengths of links 1 and 4, respec-
tively, and q1 and q2 are the link angles with respect to
the horizontal (using absolute coordinates).

The Jacobian of the manipulator, which relates the joint
velocities to the end-effector velocities, is given by:

J =

[
−l1.sin(q1) l4.sin(q2)
l1.cos(q1) −l4.cos(q2)

]
(6)

Following the Lagrangian approach, the energy contribu-
tions are:

L = T (q, q̇)− U(q) (7)

where T (q, q̇) and U(q) are respectively the kinetic and po-
tential energies, and q the joint position vector [q1 q2]T .
The kinetic energy is calculated by:

T =
1

2

n∑
i=1

mi|vci|2 + Ii|wi|2 (8)

where n is the number of links, mi, vci, Ii e ωi are the mass,
linear velocity of the center of mass, moment of inertia with
respect to the center of mass, and angular velocity of the
i-th link, respectively.

To calculate the kinetic energy, all linear and angular
velocities of the center of mass of the links are computed:



vc1 =

[
lc1.sin(q1) 0
lc1.cos(q1) 0

]
.

[
q̇1
q̇2

]
(9)

vc2 =

[
0 lc2.sin(q2)
0 lc2.cos(q2)

]
.

[
q̇1
q̇2

]
(10)

vc3 =

[
−lc3.sin(q1) −l2.sin(q2)
lc3.cos(q1) l2.cos(q2)

]
.

[
q̇1
q̇2

]
(11)

vc4 =

[
−l1.sin(q1) lc4.sin(q2)
l1.cos(q1) −lc4.cos(q2)

]
.

[
q̇1
q̇2

]
(12)

w1

w2

w3

w4

 =

 1 0
0 1
1 0
0 1

 . [ q̇1q̇2
]

(13)

Equation (8) can be written as:

T =
1

2
q̇THq̇ (14)

where H is the manipulator inertia matrix. This positive-
definite matrix contains the main inertia characteristics of
the manipulator, resulting in:

H =

[
H11 H12

H21 H22

]
(15)

Where:

H11 = m1l
2
c1 +m3l

2
c3 +m4l

2
1 + I1 + I3 (16)

H22 = m2l
2
c2 +m3l

2
2 +m4l

2
c4 + I2 + I4 (17)

H12 = H21 = (m3l2lc3 −m4l1lc4)cos(q1 − q2) (18)

From the manipulator inertia matrix, it is possible to
calculate terms directly related to centrifugal and Coriolis
effects:

C =

[
h122 = (m3l2lc3 −m4l1lc4)sin(q1 − q2)
h211 = −(m3l2lc3 −m4l1lc4)sin(q1 − q2)

]
(19)

Since the manipulator is assumed to work on an horizontal
plane, gravity effects can be neglected. Thus the potential
energy term only needs to consider the SEA elastic poten-
tial

Ue =
1

2
(q − θ)TK(q − θ) (20)

Where K = diag(K1,K2) is a diagonal matrix with
elements equal to the stiffness Ki of the SEA from each
joint (i = 1, 2).

From the previous equations, it is possible to obtain the
equations of motion from the Lagrangian approach:

λ1q̈1 + σc12q̈2 + σs12q̇
2
2 +Ks(q1 − θ1) = 0 (21)

σc12q̈1 + λ2q̈2 − σs12q̇21 +Ks(q2 − θ2) = 0 (22)

J1θ̈1 +B1θ̇1 +Ks(θ1 − q1) = τ1 (23)

J2θ̈2 +B2θ̇2 +Ks(θ2 − q2) = τ2 (24)

Where:

λ1 = m4l
2
1 +m1l

2
c1 +m3l

2
c3 + I1 + I3

λ2 = m3l
2
2 +m2l

2
c2 +m4l

2
c4 + I2 + I4

σ = m3l2lc3 −m4l1lc4
c12 = cos(q1 − q2)
s12 = sin(q1 − q2)

As seen in Eqs. (21)-(24), there are twice as many gener-
alized coordinates compared to the 4-bar mechanism with
rigid motor couplings, to accommodate the compliances of
each of the two SEAs. For state feedback this will require
the use of 4 position sensors instead of the usual 2 from
the rigid version. In addition, note that no Coriolis terms
are present, only centrifugal acceleration terms.

4. LINEAR SYSTEM ANALYSIS - DECOUPLED
MECHANISM

One way to linearize this system is making the coupling
terms of matrix H to be null, forcing σ = 0 in any
configuration. This can be done in the design phase by
assuring that:

m3

m4
=
l1lc4
l2lc3

(25)

Therefore, Eqs. (21)-(22) become:

λ1q̈1 +Ks(q1 − θ1) = 0 (26)

λ2q̈2 +Ks(q2 − θ2) = 0 (27)

which can be represented in linear form in a space state
representation:

ẋ = Ax+Bu (28)

y = Cx+Du (29)

x =
[
θ1 θ̇1 q1 q̇1 θ2 θ̇2 q2 q̇2

]T
(30)

The state matrix (A) of the resulting linearized and
decoupled manipulator is:

A =

[
A1 04x4
04x4 A2

]
(31)

Where:

A1 =


0 1 0 0

−Ks

J1
− (B1 +Bs)

J1

Ks

J1

Bs

J1
0 0 0 1
Ks

λ1
0 −Ks

λ1
0

 (32)

A2 =


0 1 0 0

−Ks

J2
− (B2 +Bs)

J2

Ks

J2

Bs

J2
0 0 0 1
Ks

λ2
0 −Ks

λ2
0

 (33)



B =



0 0
1

J1
0

0 0
0 0
0 0

0
1

J2
0 0
0 0


(34)

C =

 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

 (35)

Also, for the control project, it is necessary to know
whether the system is fully controllable. It means that
the system can have its poles allocated in the desired
positions to make the system stable and meet performance
specifications.

Knowing that the closed-loop poles of the system are
equivalent to the eigenvalues of state matrix A, it is
possible to calculate the system control matrix from:

Pc = [B AB A2B . . . An−1B] (36)

where n = 8 is the order of the system. Since the resulting
Pc matrix is full rank, the system is completely controlable.

5. SIMULATION

The motor parameters used in the simulations are shown
in Table 1. Table 2 shows the adopted manipulator param-
eters.

Table 1. Motors and Springs Parameters

Element Value Unit

Ks 0.48 Nm/rad
J1 3.7e-3 kg.m2

J2 3.7e-3 kg.m2

B1 4.6e-2 Nm/m/s
B2 4.6e-2 Nm/m/s

Table 2. Manipulator Parameters

Element Value Unit

l1 160e-3 m
l2 160e-3 m
l3 160e-3 m
l4 140e-3 m
I1 5.0213e-4 kg.m2

I2 5.0213e-4 kg.m2

I3 5.0213e-4 kg.m2

I4 4.3937e-4 kg.m2

m1 235.4e-3 kg
m2 235.4e-3 kg
m3 235.4e-3 kg
m4 269e-3 kg

Figure 3 presents the root locus of the four-bar system with
the two SEAs. The transfer functions θ1/τ1 and θ2/τ2 are
stable, as expected for a collocated system. For the root
locus of q1/τ1 and q2/τ2, as the gain value is increased the

system becomes unstable, as expected for a non-collocated
system with significant compliance between the sensor and
actuator (the SEA compliance).

Figure 3. Root Locus of Four-Bar System with SEA

5.1 Regulation Control

In this section, results are presented for the position con-
trol of the manipulator to a constant desired configuration.
For the initial and desired configurations, the following
values are assumed:

Θinitial =

 θ1q1θ2
q2

 =

 π/2π/2
π
π

 (37)

Θdesired =

 θ1q1θ2
q2

 =

 3π/4
3π/4
5π/4
5π/4

 (38)

Full state feedback is assumed in this work, made possible
by 4 encoders to estimate the motors and links positions
together with predictive observers to estimate the corre-
sponding velocities, resulting in the linear control law:

u(t) := −K.x(t) (39)

where K is the gain matrix and x the state vector.

To calculate the feedback gains K it is possible to use
the pole allocation method, where the designer chooses
the poles to obtain the desired performance. In cases with
many states this technique becomes laborious to obtain a
desired performance.

Alternatively, an optimal control design can be conducted,
aiming to minimize a performance index. Considering the
system equation and control law, the LQR control theory
aims to minimize

J =

∫ ∞
0

(xTQx+ uTRu)dt (40)



where Q and R are positive-definite symmetric real ma-
trices that determines the relative importance (weight) of
the state error and of the control effort (Ogata, 2011).

To calculate an optimal feedback matrix K, it is necessary
to solve the Riccatti equation for a positive-definite matrix
P:

ATP + PA− PRB−1BTP +Q = 0 (41)

and then the K gains are calculated by:

K = R−1BTP (42)

For the considered 4-bar system the following weight
matrices are (arbitrarily) adopted, aiming to minimize
position errors, from which K is obtained:

Q = diag([0.2 0 10 0 0.2 0 10 0]) (43)

R = diag([0.4 0.4]) (44)

KT =



1.0033 0
0.0021 0
4.0465 0
1.4310 0

0 1.0215
0 0.0022
0 4.0282
0 1.3670


(45)

Note that the weights from matrix Q that penalize the
states of the links were chosen much greater than the
elements that penalize the states of the motors (i.e. 10 >>
0.2), since a precise link control is our main goal, regardless
of the required motor oscillations.

Figure 4 shows the step response for the position control of
the system using the above calibrated gain matrix K. Note
how the link angles (q1 and q2) are successfully controlled
with little overshoot, while the motor angles (θ1 and θ2)
suffer high-oscillations needed to control such links. This
is an expected behavior of systems with SEAs due to their
high compliance, as verified in Camino and Fioravanti
(2018).

Figure 4. Regulation Control for Joint Positions

The differences (q1−θ1) and (q2−θ2) between the link and
motor angles depend on the SEA elastic element between
them: the higher the stiffness, the lower the difference. If
the SEA stiffness is extremely high, then each joint behaves
as a rigid body.

5.2 Trajectory Control

For trajectory control, it is necessary to calculate the
inverse kinematics of the manipulator. This is because
the trajectory is given in the end-effector space, while
joint control requires the positions (and velocities) of the
manipulator joints.

Using trigonometric relations and observing Fig. 5, it is
possible to arrive at the inverse kinematics equations:

Figure 5. Inverse Kinematics

q1 = β′ + θd (46)

q2 = θd + β + β′ (47)

Where:

AE =
√

(y2d + x2d)

θd = tan−1
(
yd
xd

)
β = cos−1

(
l21 + l24 −AE

2

2.l1.l4

)

β′ = sin−1
(
l4

AE
.sin(β)

)
The desired end-effector path is a circumference of radius
50mm, tracked using the same control law as before.

Figure 6 depicts the manipulator and its end-effector
trajectory. Figure 7 shows the desired (dashed line) and
actual (solid line) end-effector trajectories. It is possible
to see that the manipulator was able to carry out the
trajectory with errors of at most 1 mm, except during its
initial depart from the circumference center.

It is worth considering that, in order not to saturate
the motor, the feedback gain K was adjusted using LQR
(through the weight matrix R) so that the maximum
motor torque during this trajectory is between ±2 Nm,



which is the saturation limit of the motors that will be
used, in future work, to build the experimental system. As
confirmed in Fig. 8, both motors do not exceed this range.

Figure 6. Four-bar Mechanism with SEA Performing a
Circular Trajectory

Figure 7. Desired Circular Trajectory

Figure 8. Control Signal of Four-Bar Mechanism with SEA

6. CONCLUSION

In this paper, the kinematics and dynamics of a 4-bar
mechanism with series elastic actuators (SEAs) were ob-
tained and an LQR control was used for trajectory control

along a circular path. Numerical simulations were per-
formed, showing that position errors converged to zero less
than 1s for a step response of π/4 in all joints. As in any
system with flexible elements, control gain calibration to
ensure performance and stability are a greater challenge.
The presented design and control strategy will be used in
future works in a system consisting of two independent
manipulators working on a coordinated task involving in-
ternal forces.
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