
Autonomous Navigation System for a Wall-painting Robot based on
Map Corners

João Carlos Virgolino Soares1, Gabriel Fischer Abati1, Gustavo Henrique Duarte Lima2

and Marco Antonio Meggiolaro1

Abstract— Wall-painting is an important task in construction
that has an increasing necessity for automation. This paper
presents a navigation system for a wall-painting robot based
on map corners. Using an occupancy grid map as input of
the system, the proposed method is able to generate a path
following the walls of the environment. The main advantage of
the proposed methodology is the ability to work in non-convex
and open maps. The system is implemented as a ROS package
and is integrated with the ROS navigation stack. The method
is tested in a simulator developed using ROS and Gazebo, a
virtual environment that simulates the physics and dynamics
of robotic systems.

I. INTRODUCTION
Autonomous mobile robots are becoming each day more

essential in different scenarios, such as industrial environ-
ments, hospitals, and offices. Wall-painting, for instance, has
a high demand for automation. In general, painting work is
a handmade process, and it is physically demanding to the
workers, due to repetitive actions and chemicals in the paint
that can cause health problems. Besides overcoming these
issues, a wall-painting robot can also optimize the use of
material and decrease the total work time.

A mecanum-wheeled robot [1] has high maneuverability
for being holonomic, i.e., the robot is able to move in any
direction in the plane while changing its rotation. Therefore,
is highly suitable for the wall-painting task.

There are several wall-painting robots in the literature.
However, their majority either follow a pre-designed path,
which imposes a necessity to structure the environment and
does not account for unwanted obstacles, or use a wall-
following algorithm that cannot deal with complex maps. We
propose a navigation system for autonomous wall-paining,
designed for mecanum-wheeled robots, that works in un-
structured environments and deals with non-convex and open
maps.

The ROS Navigation Stack (RNS) [2] is a powerful tool
that allows robot navigation with reliability, using an Adap-
tive Monte Carlo Localization (AMCL) system, a global
planner, and a local planner.

1J. C. V. Soares, G. F. Abati and M. Meggiolaro are with
the Department of Mechanical Engineering, Pontifı́cia Universidade
Católica do Rio de Janeiro, R. Marquês de São Vicente 225, Gávea,
Rio de Janeiro, RJ - Brazil virgolinosoares@gmail.com /
fischerabati@gmail.com / meggi@puc-rio.br

2G. H. D. Lima is with the Department of Naval Engineering, Uni-
versidade Federal do Rio de Janeiro, Av. Pedro Calmon, 550, Cidade
Universitária, Rio de Janeiro, RJ - Brazil ghduarte@poli.ufrj.br

978-0-7381-1153-7/20/$31.00 c©2020 IEEE

The RNS needs a desired goal as input. We propose
an automatic goal generator based on the occupancy grid
map of the environment. It allows the robot to follow a
path through every corner, therefore going along the walls.
Efficient computer vision techniques are used to detect the
map corners and generate the goals with an offset, in order
for the robot to maintain a distance to the wall. The proposed
methodology is tested with Gazebo, an open-source 3D
robotics simulation tool with a robust physics engine.

This paper is organized as follows. Section II presents
related work, Section III details the proposed methodology,
Section IV show simulated results and Section V presents
the conclusions and propositions for future work.

II. RELATED WORK

There are several wall-painting robots proposed in the
literature. Madhira et al. [3] developed a 2-DOF fixed robot
for wall painting. Teoh et al. [4] developed a wall-painting
robot supported by cables. The user defined a wall area to be
painted with an interface, and the robot remained in a fixed
place by two hanging points. The operation area was limited
by the cables length.

Sorour [5] developed a differential drive painting robot
with ten sonars sensors, being six for obstacle avoidance, and
four for navigation. Despite having an obstacle avoidance
system, it could not operate in non-convex maps. Me-
galingam et al. [6] proposed a mecanum robot with ultrasonic
sensors to keep a constant distance from the wall. However,
its wall-following navigation method could not deal with wall
discontinuities, i.e., open maps.

Wall-following is a well-known navigation method [7],
with several advantages for autonomous wall-painting. It
does not need an operator, does not require construction site
adaptation, and has a low computational cost.

There are several methods to perform wall-following.
Wei et al. [8] proposed a wall-following algorithm based
on virtual walls, using a differential drive robot with a
LiDAR laser scanner. They created virtual walls using laser
information to simplify inner and outer corners. As a result,
this simplification increased the average speed and still
guaranteed obstacle avoidance. However, without a robust
navigation system, the robot was susceptible to lose track
due to obstacles and walls discontinuities.

Lo et al. [9] developed an indoor surveillance robot with
a wall-following method based on a fuzzy logic controller.
The controller uses range sensors and a set of fuzzy laws.
With this method, the robot was able to navigate through an

Authorized licensed use limited to: PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO. Downloaded on August 25,2021 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

indoor environment. However, without a global localization
system, the robot would struggle to return to its course in
case of losing track of the wall.

Lee et al. [10] proposed a behavior-based fuzzy controller,
composed of three sub-fuzzy controllers, each one referring
to the directions of the robot. Such controller could get
the robot through convex and concave maps. However, this
algorithm cannot deal with unexpected obstacles that can
cause the robot to lose the wall reference. Huang [11]
developed a wall-following method using Lyapunov-based
control with a corner detection algorithm, based on geometric
relations of infrared sensor readings. The method was only
tested on closed and convex maps.

We propose a method that can work autonomously in
complex environments such as open non-convex maps, and
deal with unexpected obstacles during the painting process.

III. METHODOLOGY

This work is performed under three main assumptions: (i)
the map is given to the robot a priori; (ii) the map walls are
perpendicular, and (iii) the robot has four mecanum wheels,
a range-based sensor, and wheel encoders.

Figure 1 shows the flowchart of the proposed methodol-
ogy. First, a goal generator algorithm receives the occupancy
grid map and generates the goals that are sent to the
navigation system, which also receives sensor information
and localization estimation. Finally, the navigation system
sends movement commands to the base controller. The
object detection module constantly evaluates if there is an
unmapped object in the path of the robot.

Occupancy
Grid Map

Navigation Stack
global planner
local planner

Goal generator

Base
Controller

Laser Scans

AMCL

Wheel
Odometry

Object
Detector

Fig. 1: Flowchart of the proposed methodology

A. Occupancy Grid Map

Occupancy grid map is a discrete representation of the
environment by an evenly spaced grid. Each cell represents
the presence or absence of an obstacle. The white color
represents an empty space, black represents an occupied
space, and gray represents unknown information. The grid
map is created by a robot equipped with a laser scanner and
odometry, performing Simultaneous Localization and Map-
ping (SLAM). Fig. 3a shows an example of an occupancy
grid map used in this work, created using the ROS package
Gmapping.

B. ROS Navigation Stack

The ROS navigation stack is a robust navigation system
that receives as input odometry, range measurements, the
initial pose of the robot, and the desired goal, and outputs
velocity commands to the mobile base.

It uses the AMCL algorithm [12] to localize the robot
in the map, using as input the given initial pose, and the
sensor information. The output is the estimated pose of the
robot. AMCL uses a set of weighted particles to represent
the pose belief, which are updated when the robot receives
more information about the environment.

Figure 2a shows the initial estimated pose of the robot
together with the particles represented by red arrows. The
particles are spread due to the high uncertainty about the
pose. After several measurements, the system is more certain
about the pose and the particles are more concentrated, as
shown in Fig. 2b.

(a) AMCL - Initial estimation (b) AMCL - After resampling

Fig. 2: Robot localization

The RNS is composed of a global and a local planner.
The global planner analyses the map and the goal in order
to calculate the optimal trajectory, while the local planner
transforms the global trajectory into local strategies consid-
ering the robot constraints.

C. Map Erosion

Erosion is a basic operator in mathematical morphology.
A kernel is used to keep or discard pixels in the image, de-
creasing the size of the interior, and consequently, increasing
the thickness of the edges [13].

We use the erosion operation to create an offset of the map
edges, as shown in Figs. 3a and 3b. Figure 3a is the original
occupancy grid map generate by the SLAM process, and Fig.
3b is the same map after the erosion. Using this process, the
goal generator is able to create goals with a distance to the
walls.

D. Harris Corner Detector

The Harris Corner Detector was proposed by Harris and
Stephens [14] in 1988. It is an efficient method to find
corners, commonly used in computer vision.

Figure 4 shows the detected corners in the map of Fig.
3b. We use the detected corners as goals to be sent to the
navigation stack. Using this method, the robot can go through
every edge of the map, including openings, even if it is a
non-convex map.

Authorized licensed use limited to: PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO. Downloaded on August 25,2021 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

(a) Original Map (b) Eroded Map

Fig. 3: Difference between the original and eroded map

Fig. 4: Harris Corner Detection

If the map has an irregularity, some redundant points can
be detected. We propose a method to delete such points,
described in Algorithm 1.

Algorithm 1: Redundant point filter

Input: Points, distThreshold;
for i = 0 to size(Points) do

current point = Points[i];
for j = i+ 1 to size(Points) do

next point = Points[j];
dist =
euclidean dist(current point, next point);

if dist < distThreshold then
eliminate point(Points[i]);

end
end

end

E. Sorting goals

The Graham scan algorithm [15] is a method to find a
convex hull from a given set of points. It first localizes the
bottommost point as a reference. If there is more than one, it
chooses the rightmost point. Once found the reference point,
it is placed at the first position of the input list of points.
The remaining points are sorted based on their locations with

respect to the reference. After sorting, the graham scan filters
the points that do not fit in the resulting convex polygon.

We propose a modified version of the Grahan scan, shown
in Algorithm 2, to sort the navigation goals in order to the
robot always follow the edges of the map counterclockwise.

Algorithm 2: Sort Goals - Modified Graham

Input: list of pixel coordinate points;
for pi in list do

find min(pi.y) and min(pi.x);
p0 = pi;

end
swap p0 with list[0];
for idx = 1 to size(list) do

d1 = list[idx+ 1] distance to p0;
d2 = list[idx+ 2] distance to p0;
θ1 = list[idx+ 1] angle in relation to p0;
θ2 = list[idx+ 2] angle in relation to p0;
if θ1 < θ2 then

list[idx+ 1] comes before list[idx+ 2];
end
else if θ1 = θ2 then

if d1 < d2 then
list[idx+ 1] comes before list[idx+ 2];

else
list[idx+ 2] comes before list[idx+ 1];

end
end
else

list[idx+ 2] comes before list[idx+ 1];
end

end

Figure 5 show the result of the sorting algorithm. The
red numbers are the initial random corner order. The green
numbers represent the sorted order.

Fig. 5: Sorted goals

F. Goal generator
The goal generator module is described in Algorithm 3.

It combines the techniques of Harris Corner Detection and

Authorized licensed use limited to: PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO. Downloaded on August 25,2021 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

Map Erosion to find an offset of the map corners, in order
to generate goal coordinates that will be send to the RNS.
The goals are sorted in a counterclockwise manner using
the modified Graham scan algorithm, and their coordinates
are converted from pixel values to meters. After these pre-
processing steps, the robot navigates to each goal maintaining
its orientation towards the walls until it passes along every
edge of the map.

In order to decide the next orientation, the system uses
the coordinates of the current pose of the robot, the previous
and the next goal, to analyze if the current corner is open or
closed. Depending on the case the robot decides if it should
turn 90 degrees clockwise or counterclockwise.

Algorithm 3: Goal generator algorithm

Input: map image file;
Initialize ROS navigation stack;
Get map corners with Harris Corner Detector;
Redundant point filter;
Sort map corners with modified Graham scan;
Convert pixel coordinates to meters;
while Goals do

if goal = first goal then
move to goal;

else
stop robot;
evaluate next goal orientation;
if wrong orientation then

turn;
end
move to goal;

end
end

G. Object Detection

The object detection module receives the AMCL pose
estimation, laser scans, and the next goal of the robot.
It evaluates if the distance parallel to the movement of
the robot, measured by the laser scanner, is lower than a
threshold. If it is, then an unmapped object is in the path
and the robot stops the movement.

H. Implementation Details

The proposed navigation system is implemented as a C++
ROS package. The OpenCV library is used for the Harris
Corner Detection and morphological operations.

IV. RESULTS

The proposed methodology was tested using the ROS
package Rviz, a 3D visualization tool, and Gazebo, to
simulate the robot in the real world. Figures 6a and 6b shows
the mecanum-wheeled robot in the two worlds of the gazebo
environment used in this evaluation. All tests were performed
on a laptop with an Intel Core i7 2.60 GHz and 16 GB of
RAM running Ubuntu Linux 18.04 LTS.

(a) Rectangular World (b) L-shaped World

Fig. 6: Gazebo environment

Figure 7 shows the URDF (Unified Robot Description
Format) model of the mecanum-wheeled robot used in the
simulations. It has four independent mecanum wheels with
odometry and a LiDAR sensor. The painting system is
omitted.

Fig. 7: Mecanum-wheeled robot used in the simulations

Figures 8a and 8b show the maps of the worlds shown in
Figs. 6a and 6b. The rectangular map is open and convex,
and the L-shaped is open and non-convex.

(a) Rectangular Map (b) L-shaped Map

Fig. 8: Test maps

A. Convex Map

First, the method was tested in the convex rectangular map.
The robot starts from a generic pose in the map, goes to the
bottom-right goal, faces the wall and proceeds until it returns
to the first goal. Figure 9 shows the trajectory of the robot

Authorized licensed use limited to: PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO. Downloaded on August 25,2021 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

in the rectangular map. The robot was able to complete the
task.

Fig. 9: Trajectory in rectangular map

B. Non-convex Map

The method was also tested in an open L-shaped non-
convex map. Figure 10a shows the robot reaching the first
goal after leaving the initial pose. Figure 10b shows the robot
just after reaching the 4th goal. The red dot represents the
next goal. It is noticeable that the robot rotates after every
goal to always face the walls. Fig. 11 shows the complete
trajectory. The robot was able to successfully complete the
task.

(a) Reaching the first goal (b) Going to the 5th goal

Fig. 10: Trajectory in the L-shaped map

C. Unexpected Obstacle

To evaluate the effectiveness of our method against unex-
pected obstacles, we put a box in the path of the robot in
the L-shaped map. After the robot starts moving, the object
detection module discovers the presence of an unmapped
object and stops the robot. Figure 12 shows the interrupted
trajectory of the robot, and Fig. 13 shows the robot in the
gazebo environment in front of the object.

Fig. 11: Trajectory in the L-shaped map

Fig. 12: Interrupted task

Fig. 13: Obstacle in gazebo

D. Numerical Evaluation

Table I shows the numerical results in both maps. The ex-
ecution time corresponds to the time during motion, and the

Authorized licensed use limited to: PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO. Downloaded on August 25,2021 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

processing time is the time to generate the goals. The robot
achieved an average speed of 17.96 cm/s on the rectangular
map, and 10.96 cm/s on the L-shaped map, both feasible
results. The robot took longer on the L-shaped map due to the
higher number of edges, as the maximum rotational velocity
of the robot was set lower than the maximum translation
velocity.

TABLE I: Numerical results

Map Proc. time [s] Exec. time [s] Traj. length [m]

Rectangular 0.003 104.5 18.76

L-shaped 0.002 211.05 23.14

V. CONCLUSIONS
This work presented a navigation system for an au-

tonomous wall-painting mecanum-wheeled robot. The sys-
tem included a goal generator algorithm that made the robot
travel along every edge of the map, and an object detection
module that allowed the robot to deal with unexpected
objects. We tested our system in open convex and non-convex
maps, accomplishing the task in a feasible time in every
tested scenario.

However, the system has drawbacks that need further im-
provements. For instance, the need for perpendicular walls.
Despite being a reasonable assumption for the wall-painting
application, it is a restriction that can limit the applicability
of our system.

For future work, we aim to expand the methodology to
maps without perpendicular edges, and improve the obstacle
detection module to allow the robot to continue the process
after the obstacle is removed. Also, we plan to compare
different planners and parameters, and evaluate the optimal
for our application. Furthermore, we intend to test our
methodology in a real mecanum-wheeled robot, equipped
with wheel odometry and laser scanner.

REFERENCES

[1] J.C.V. Soares, G. F. Abati, G. H. D. Lima, C. L. M. de Souza Junior,
and M. A. Meggiolaro, Project and Development of a Mecanum-
wheeled Robot for Autonomous Navigation Tasks. In Proceedings
of the XVIII International Symposium on Dynamic Problems of
Mechanics, 2019.

[2] Quigley, M., ROS: an open-source Robot Operating System. 2009
IEEE International Conference on Robotics and Automation.

[3] K. Madhira, S. Mehta, R. Bollineni and D. Kavathia, AGWallP:
Automatic guided wall painting system, Nirma University International
Conference on Engineering (NUiCONE), Ahmedabad, 2017, pp. 1-5.

[4] B. E. Teoh and S. V. Ragavan, ”PAINTbot - FPGA based wall painting
service robot prototype,” 2011 IEEE Recent Advances in Intelligent
Computational Systems, Trivandrum, Kerala, 2011, pp. 777-782, doi:
10.1109/RAICS.2011.6069415.

[5] Sorour, M., RoboPainter: a detailed robot design for interior wall
painting. IEEE International Workshop on Advanced Robotics and its
Social Impacts (ARSO), 2015.

[6] Megalingam, R. K., Darla, V. P., Nimmala, C. S. K., Autonomous Wall
Painting Robot. International Conference for Emerging Technology
(INCET), 2020.

[7] P. van Turennout, G. Honderd, and L. J. van Schelven, Wall-following
control of a mobile robot, Proceedings 1992 IEEE International
Conference on Robotics and Automation, Nice, France, 1992, pp. 280-
285 vol.1.

[8] X. Wei, E. Dong, C. Liu, G. Han and J. Yang, A wall-following
algorithm based on dynamic virtual walls for mobile robots navigation,
2017 IEEE International Conference on Real-time Computing and
Robotics (RCAR), Okinawa, 2017, pp. 46-51.

[9] C. Lo, K. Wu and J. Liu, Wall following and human detection
for mobile robot surveillance in indoor environment, 2014 IEEE
International Conference on Mechatronics and Automation, Tianjin,
2014, pp. 1696-1702.

[10] C. Lee, C. Lin, and H. Lin, Smart robot wall-following control using
a sonar behavior-based fuzzy controller in unknown environments.
Smart Science, 5:3, 160-166, 2017.

[11] L. Huang, Wall-following control of an infrared sensors guided
wheeled mobile robot. IJISTA, 2009.

[12] D. Fox, KLD-sampling: adaptive particle filters. Advances in neural
information processing systems, pp. 713-720, 2002.
Fox, D. (2002). KLD-sampling: Adaptive particle filters. In Advances
in neural information processing systems (pp. 713-720).

[13] R. M. Haralick and L. G. Shapiro, Computer and robot vision, 1992.
[14] Harris, C. G., and Stephens, M. A combined corner and edge detector.

In Alvey vision conference, 1988, Vol. 15, No. 50, pp. 10-5244.
[15] Graham, R.L., An efficient algorith for determining the convex hull

of a finite planar set. Information Processing Letters, vol. 1, no 4, pp.
132-133, 1972.

Authorized licensed use limited to: PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO. Downloaded on August 25,2021 at 00:17:00 UTC from IEEE Xplore. Restrictions apply.

