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Numerical prediction of the propagation of branched fatigue cracks
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Abstract

A specialized finite element (FE) program is used to predict the propagation behavior of asymmetrically bifurcated
cracks, which can cause crack growth retardation and arrest. The branched crack propagation path and associated stress
intensity factors (SIF) are obtained for several bifurcation angles. It is found that very small differences between the branch
lengths are enough to cause the shorter one to eventually arrest due to shielding effects. The SIF of the longer crack branch
is also reduced due to the deflections, but it returns to the original non-bifurcated value as the crack propagates away from
the influence of the (arrested) shorter branch. It is verified that crack bifurcation may provide an alternate mechanistic

explanation for overload-induced crack retardation.
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1. Introduction

Fatigue cracks tend to propagate in mode I in both brittle
and ductile solids, curving their paths if necessary to avoid
rubbing their faces. Such cracks can significantly deviate
from their mode I growth direction due to the influence of
overloads, see Fig. 1. Since the stress intensity factors (SIF)
associated to deflected or branched fatigue cracks can be
considerably smaller than that of a straight crack with the
same projected length, such deviations can cause retarda-
tion or even arrest of crack growth. However, it is generally
recognized that the propagation behavior of a branched
crack is a very difficult problem to develop accurate an-
alytical solutions [1-4]. Therefore, numerical calculations
provided by, for instance, finite element (FE) software are
usually the only means to predict such retardation effects.
Analytical solutions have been obtained for kinked and
symmetrically branched cracks (b = ¢ in Fig. 1); however,
there are very few results available for the real case of
bifurcated cracks with different branch lengths (b > c). The
study of asymmetrically branched cracks is a very impor-
tant issue, since very small differences between the b and
¢ lengths are enough to cause the shorter branch to arrest
as the larger one propagates reaching its (approximately)
pre-overload SIF and growth rate. This typical propagation
behavior has been observed in many structural components,
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Fig. 1. Bifurcated crack geometry and associated nomenclature
(adapted from [7]).

e.g. on a branched crack on an aircraft wheel rim made of
2014-T6 aluminum alloy [5].

To predict the path of a branched crack and to calcu-
late the associated modes I and II stress intensity factors
(SIF), an interactive graphical program named Quebra2D is
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used. This program simulates two-dimensional fracture pro-
cesses based on a finite-element (FE) self-adaptive mesh-
generation strategy, using appropriate crack tip elements
and crack increment criteria. It has been validated through
experiments on several modified CT specimens and from
comparisons with analytical solutions for kinked cracks [6].
In the next section, this FE software is used to calculate the
propagation behavior of bifurcated (branched) cracks.

2. Propagation of branched cracks

The propagation of branched cracks is studied using a
FE model of a standard CT specimen with width w = 32.0
mm and crack length ¢ = 14.9 mm, with a bifurcation at
the crack tip with branch lengths b =11 pm and ¢ = 10
pm (see Fig. 1). The bifurcation angles 2« considered in
this study vary between 60° and 150°, which are character-
istic values for experimentally obtained overload-induced
branched cracks [7].

To calculate the propagation path in the Quebra2D pro-
gram, three criteria are used for the numerical computation
of the crack incremental growth direction in the linear-
elastic regime: the maximum circumferential stress (4 max),
the maximum potential energy release rate (Ggmax), and the
minimum strain energy density (Sgmin) [6]. Bittencourt et
al. [8] have shown that if the crack orientation is allowed to
change in automatic fracture simulation, the three criteria
basically provide the same numerical results. A fixed crack
growth step of 3 wm is considered for the propagation of
the longer branch, calculated in the direction defined by
the oymax criterion (which is the criterion adopted in this
simulation due to its simplicity and to the availability of
closed form solutions). However, due to the differences in
the crack growth rate, a smaller growth step is expected for
the shorter branch. This smaller step is obtained assuming
a crack propagation law that models the first two growth

regimes,
4 _ 4 (AK —AK,)" (1
dN - th

where A and m are material constants and AK,, is the
propagation threshold. If AK and AK' are respectively the
stress intensity ranges of the longer and shorter branches,
then the growth step Aa of the shorter branch should be

AK' —AKp\"
AK — AK,

Interestingly, the ratio between the propagation rates of
the two branches is independent of the material constant
A. In this analysis, AK,, and the exponent m are as-
sumed to be respectively 10 MPa/m and 3.0, which are
representative values for steels at low R ratios.

It must be noted however that linear-elastic FE calcu-
lations can only lead to accurate solutions if the lengths
of the crack branches (b and c in Fig. 1) are significantly

Aa=3 um-( 2)

larger than the size scale of both the microstructure and the
near-tip plastic (or process) zone. But as the crack branches
grow further, the FE method can give a reasonable esti-
mate of their behavior, in special for brittle or semi-brittle
materials with small process zones. In addition, the growth
of branched cracks is typically transgranular, as verified
from optical microscope observations performed by Shi et
al. [9], which is one of the requirements to allow for the
simulation of fatigue behavior in an isotropic linear-elastic
regime.

3. Results

Fig. 2 shows the mode I SIF k; at the tip of each
crack branch (normalized by the mode I SIF K; of a
straight crack) as a function of the length b of the longer
branch, measured along the propagation path. Because of
the different crack lengths, the SIF at the larger crack tip
is much higher than that at the shorter branch. Assuming
ki to be the crack driving force, it can be seen from Fig. 2
that the longer branch reaches its minimum propagation
rate right after the bifurcation occurs, returning to its pre-
overload rate as the crack tip advances away from the
influence of the (probably arrested) shorter branch. Also,
the mode I SIF of the shorter branch is progressively
reduced due to shielding effects, resulting in crack arrest
as the propagation threshold AK,, is reached. Note that
even small differences between the branch lengths (such
as 1 wm) are sufficient to cause subsequent arrest of the
shorter branch (Fig. 3). In addition, the retardation effect
lasts longer for larger bifurcation angles (Fig. 3), not only
because the associated mode I SIF is smaller, but also
because the shielding effect is weaker since both branch
tips are further apart, delaying the arrest of the shorter one.

Another interesting conclusion is that the initial prop-
agation direction of the longer branch is always between
25° and 30° (with respect to the pre-overload growth direc-
tion), independently of the considered bifurcation angle 2«.
Therefore, for larger values of 2w, a sharp deflection can
be clearly noted in the beginning of the propagation. This
deflection has been confirmed experimentally by Lankford
and Davidson [7], who carried out overload fatigue crack
tests on a 6061-T6 aluminum alloy in a scanning electron
microscope using a special in-situ servo-controlled hy-
draulic loading stage, obtaining growth retardation caused
by crack bifurcation. They have found that the bifurcated
crack would grow only a short distance in the same di-
rection of the overload-induced bifurcation before a sharp
deflection in the crack path would occur, see Fig. 1. This
deflection causes a sudden increase in k; almost immedi-
ately after the propagation begins (Fig. 2), resulting in a
significantly smaller retardation effect if compared to sim-
plistic predictions based on symmetrically branched crack
solutions found in the literature. However, if the SIF of
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Fig. 2. Normalized mode I stress intensity factors for the longer (top) and shorter (bottom) branches of a bifurcated crack during its

propagation.
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Fig. 3. Crack lengths of both branches of a bifurcated crack during its propagation, always resulting in crack arrest for the shorter branch.

both branches is below AK,;,, then the entire crack arrests
and therefore no sharp deflection has the chance to be
developed.

Finally, Fig. 4 shows the propagation results for a bi-
furcated crack with angle 2« = 150°. In this figure, the

deformations are amplified to better visualize the crack
path. Note that the crack path deviates from the origi-
nal branch angles, deflecting from £75° to approximately
+28°. In addition, the originally shorter branch arrests af-
ter propagating to (only) 39 wm, while the longer branch
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Fig. 4. Propagation simulation of a bifurcated crack on a CT specimen (left), with a close-up of the two original 11 pm and 10 um

branches with angle 2«0 = 150° (right).

returns to the pre-overload growth direction and SIF (even
though the subsequent crack growth plane may be offset
from the pre-overload one, see Fig. 4).

4. Conclusions

In this work, a specialized FE program was used to
calculate the propagation path of bifurcated cracks, which
can cause crack retardation or even arrest. It was shown
that asymmetrically bifurcated cracks have a very differ-
ent behavior than symmetrical ones, causing arrest of the
shorter branch as the longer one returns to the pre-overload
propagation conditions. From these results, it is found that
crack bifurcation may provide an alternate mechanistic ex-
planation for overload-induced crack retardation, in special
to explain retardation under high R ratios, since no crack
closure would be detected in these cases. In addition, crack
arrest can also be explained by this approach, happening
when the mode I SIF k; of both branches are reduced to
levels below the propagation threshold.
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