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Abstract 
Models are proposed to predict the fatigue crack growth (FCG) process using crack initiation 

properties and critical damage concepts. The crack is modelled as a sharp notch with a very small 

but finite tip radius to remove its singularity, using a strain concentration rule. In this way, the dam-

age caused by each load cycle and the effects of residual stresses can be calculated at each element 

ahead of the crack tip using the correct hysteresis loops caused by the loading, without the need for 

adjustable parameters. A quite good agreement between the εN-based crack growth predictions and 

experiments is obtained both for constant and for variable amplitude load histories.  

 
Introduction 

Since the pioneer work of Majumdar and Morrow in 1974 [1], several models have been pro-

posed to correlate the oligocyclic fatigue crack initiation process, controlled by the strain range ∆ε, 

with fatigue crack propagation rates, controlled by the stress intensity range ∆K. Some of this so-

called critical damage models consider the width of the volume element in the crack propagation di-

rection as being the distance that the fatigue crack propagates on each cycle da. Others consider the 

fatigue crack propagation rate as being the element width divided by the number of cycles that the 

crack would need to cross it. However, most models do not properly deal with the supposed stress 

field singularity at the crack tip, which implies that all damage would be caused by this very last 

event. Recently, an improved model that deals with the actual elastic-plastic stresses at the crack tip 

has been proposed [2], using εN parameters and expressions of the HRR type to represent the elas-

tic-plastic strain range inside the plastic zone ahead of the crack tip, which is modeled as a sharp 

notch with a very small but finite tip radius to remove the singularity issues. The origin of the HRR 

field is shifted from the crack tip to a point inside the crack, located by matching the HRR strain at 

the blunt crack tip with the strain predicted at that point by a strain concentration rule. 
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The models consider that the damage zone ahead of the crack tip is composed by a sequence of 

very small volume elements, each one under a different strain range, which are being broken se-

quentially as the crack propagates. Each of these volume elements will be submitted to elastic-

plastic hysteresis loops of increasing amplitude as the crack tip approaches it. Any given volume 

element suffers damage in each load cycle, caused by the amplitude of the loop acting in that cycle, 

which in turn depends on the distance ri between the i-th volume element and the fatigue crack tip. 

Fracturing of the volume element at the crack tip (which causes fatigue crack growth) occurs when 

its accumulated damage reaches a critical value, due to the sum of the damage suffered in each cy-

cle, quantified by a damage accumulation rule, see Fig. 1.  

 
Fig.1: Schematics of the FCG assumed to be caused by the sequential fracture of volume elements 

(or tiny εN specimens) at every load cycle, loaded by an increasing strain history as the 
crack tip approaches them. 

The idea that FCG is caused by the sequential failure of volume elements ahead of the crack tip 

can be extended to deal with the variable amplitude loading case. However, there are many mecha-

nisms that can retard or accelerate the growth of a fatigue crack after significant load amplitude 
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variations [3-6]. Moreover, these mechanisms generally can act simultaneously, with their relative 

importance in any problem depending on several factors such as crack and piece sizes, dominant 

stress state at the crack tip, microstructure of the material, mean load, and environment. These load 

interaction mechanisms can act behind, at or ahead of the crack tip, and among them: 

• crack closure (behind the crack tip), which can be caused by plasticity, oxidation or roughness 

of the crack faces, or even by strain induced phase transformation, e.g.; 

• crack tip blunting, kinking or bifurcation (at or close to the crack tip); and 

• residual stress and strain fields (ahead of the crack tip). 

Most models of load sequence effects in fatigue crack growth (FCG) are still based on Elber’s 

plasticity-induced crack closure, despite some important limitations. However, there are several im-

portant problems that cannot be explained by the effective stress intensity range ∆Keff concept. For 

example, a strong objection against crack closure is based on convincing experimental evidence 

such as fatigue crack growth threshold values ∆Kth that are higher in vacuum than in air [7]. An-

other very important problem that cannot be explained by the Elber mechanism is the crack delays 

or arrests after overloads under high R = Kmin/Kmax ratios, when the minimum value Kmin of the 

applied stress-intensity range ∆K = Kmax − Kmin always remains above Kop, the (measured) load 

that opens the fatigue crack [8]. In this case there is no closure nor before nor after the overloads. 

 
The Non-Singular Damage Model  

The damage ahead of a fatigue crack tip can be estimated using simple but sound hypotheses 

and standard fatigue calculations, supposing that fatigue cracks grow by sequentially breaking small 

volume elements (VE) ahead of their tips, which fracture when the crack tip reaches them because 

they accumulated all the damage the material can support. In this way, εN procedures can be com-

bined with fracture mechanics concepts to predict FCG, using the cyclic properties of the material 

and the strain distribution ahead of the crack tip. These models can consider the VE width in the 

FCG direction as being the distance that the crack grows on each cycle, or the FCG rate as being the 

VE width divided by the number of cycles that the crack would need to cross it.  
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Critical damage models are not new [1, 9-10], but still need improvements. Most models as-

sume singular stress and strain fields ahead of the crack tip (concentrating in this way all the dam-

age next to the tip), and thus need some adjustable constant to fit the FCG da/dN data, irreversibly 

compromising their prediction potential in this way. However, the supposed singularity at the crack 

tip is a characteristic of the mathematical models that postulate a zero radius tip, not of the real 

cracks, which have a blunt tip when loaded. In other words, real cracks must have finite strains at 

their tip under load, or else they would be unstable. To avoid this problem, the actual finite strain 

range at the crack tip ∆εtip can be estimated using the stress concentration factor Kt for the blunt 

crack [11] and a strain concentration rule. The strain range field ahead of the crack tip can then be 

upper-bounded by ∆εtip (e.g., by assuming ∆εtip constant where the singular solution would predict 

strains greater than ∆εtip, or by translating the singular strain field, as discussed later).  

Some models suppose that all fatigue damage occurs inside this region next to the tip, and use 

the number of cycles N* associated with ∆εtip (which can be obtained from Coffin-Manson’s rule, 

e.g.) to calculate the FCG rate can as the length of this region divided by N*. But such models have 

two shortcomings. First, neglecting the fatigue damage elsewhere concentrates it in the very last N* 

cycles, a non-conservative hypothesis. Second, assuming intermittent and not a cycle-by-cycle fa-

tigue-induced increments in the crack length, although valid in some cases of crazing in polymers, 

is certainly not true for most metallic structures, as evidenced by their striated cracks surfaces.  

To avoid these limitations, the model used here uses Schwalbe’s modification [9] of the HRR 

field to represent the strain range distribution ahead of the crack tip, and removes the crack tip sin-

gularity by shifting the origin of the strain field from the crack tip to a point inside the crack, lo-

cated by matching the tip strain with ∆εtip predicted by a strain concentration rule, such as Neuber 

[12], Molsky and Glinka [13], or the linear rule [14]. This approach recognizes that the strain range 

∆ε(r, ∆K) in all unbroken VE increases and causes damage in each load cycle as the crack tip ap-

proaches them, see Fig. 1. Therefore, the VE closest to the tip breaks due to the sum of the damage 

induced by all previous load cycles (which under constant amplitude load increases as the distance 
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of the VE to the crack tip decreases while the crack grows), and not only by the damage induced in 

the very last load cycle. In this way, the fatigue crack growth rate under constant ∆K can be mod-

eled by the sequential failure of identical VE ahead of the crack tip.  

This model is then extended to deal with the variable amplitude loading case, which has idio-

syncrasies that must be treated appropriately. First, the VE that breaks in any given cycle has vari-

able width, which should be calculated by locating the point ahead of the crack tip where the accu-

mulated damage reaches a specified value (e.g. 1.0 when using Miner’s rule). Load sequence ef-

fects, such as overload-induced crack growth retardation, are associated with mean load effects 

caused by elastic-plastic hysteresis loop shifts, and can be calculated using the powerful numerical 

tools available in the ViDa software [15]. Moreover, this model can recognize an opening load, and 

thus can separate the cyclic damage from the closure contributions to the crack growth process. 

 
Constant Amplitude Loading 

In every load cycle, each VE ahead of the crack tip suffers strain loops of increasing range as 

the tip approaches it, and a damage increment that depends on the strain range in that cycle, thus on 

ri, the distance from the i-th VE to the tip and on the load ∆Kj at that event. The fracture of the VE 

at the crack tip occurs because it accumulated its critical damage, e.g. by Miner when Σnj/Nj = 1, 

where nj is the number of cycles of the j-th load event and Nj is the number of cycles that the piece 

would last if loaded solely by that event. If under constant ∆K (or ∆Keff) the fatigue crack advances 

a fixed distance δa in every load cycle, and if, for simplicity, the damage outside the cyclic plastic 

zone zpc is neglected, there are thus zpc/δa VE ahead of the crack tip at any instant. Since the plas-

tic zone advances with the crack, each new load cycle breaks the VE adjacent to the crack tip, in-

duces an increased strain range in all other unbroken VE, and adds a new element to the damage 

zone, thus nj = 1. Moreover, since the VE are considered as small εN specimens, they break when: 

c c

i

zp / a zp

c ii 0 r 0

1 1 1N(zp i a) N(r )

δ

= =

= =
− ⋅δ∑ ∑              (1) 
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where N(ri) = N(zpc − i⋅δa), the fatigue life corresponding to the plastic strain range ∆εp(ri) acting 

at a distance ri from the crack tip, can be calculated using the plastic part of Coffin-Manson’s rule:  

1/ c
p i

i
c

(r )1N(r ) 2 2
∆ε⎛ ⎞= ⎜ ⎟ε⎝ ⎠

             (2) 

∆εp(ri) in its turn can be described by Schwalbe’s [9] modification of the HRR field: 

c
1

1 hcYcp i
i

zp2S(r ) rE
+⎛ ⎞∆ε = ⋅⎜ ⎟

⎝ ⎠
            (3) 

where SYc is the cyclic yield strength, hc the Ramberg-Osgood cyclic hardening exponent, and zpc 

is the cyclic plastic zone size in plane strain, which can be estimated, by (ν is Poisson’s coefficient): 

( )22
c

c Yc

(1 2 ) Kzp 4 (1 h ) S
− ν ∆= ⋅

π⋅ +
⇒ c

1/ c1
1 hcYci

c i

zpS1N(r ) 2 E r
+⎡ ⎤⎛ ⎞⎢ ⎥= ⋅⎜ ⎟ε ⎝ ⎠⎢ ⎥⎣ ⎦

       (4)

The HRR field describes the plastic strains ahead of an idealized crack tip, thus it is singular 

at r = 0. But an infinite strain is physically impossible (which does not mean that singular models 

are useless, but only that the damage close to the crack tip is not predictable by them). To eliminate 

this unrealistic strain singularity, the origin of the HRR coordinate system is shifted into the crack 

by a small distance X, copying Creager and Paris idea [11]. Approximating the VE width δa by a 

differential da at a distance dr ahead of the crack tip and the Miner’s summation by an integral, 

which is easier to deal with [2]: 

c
1

1 hcYcp
zp2S(r X) E r X

+⎛ ⎞∆ε + = ⋅⎜ ⎟+⎝ ⎠
           (5) 

czp

0

da dr
dN N(r X)=

+∫          (6)

To determine X and N(r + X) two paths can be followed. The first uses Creager and Paris’  

X = ρ/2, ρ being the actual crack tip radius, estimated by ρ = CTOD/2, thus 

2max
Yc c

K (1 2 )CTOD 1X 2 4 E S 2(1 h
⋅ − νρ= = = ⋅

π⋅ ⋅ + )          (7)
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The second path is more reasonable. Instead of arbitrating the strain field origin offset, it de-

termines X by first calculating the crack (linear elastic) stress concentration factor Kt [11]: 

t nK 2 K (= ∆ ∆σ ⋅ πρ )            (8)

For any given ∆K and R it is possible to calculate ρ and Kt from (7) and (8), and then the strain 

range ∆εtip at the crack tip using a strain concentration rule. Assuming that the material stress-strain 

behavior is parabolic with cyclic strain hardening coefficient Hc and exponent hc, with a negligible 

elastic range, the Linear, Neuber and Molsky and Glinka concentration rules give, respectively: 

t ntip
K 2 K

E E CTOD/ 2
⋅∆σ ∆∆ε = =

π⋅
         (9)

c

2 2t n
tip tip

1/ h
tip

tip
c

(K ) 8 K
E E CTO

2 2H

⎧ ∆σ ∆∆σ ⋅∆ε = ⋅ =⎪ ⋅π⋅⎪
⎨ ∆σ⎛ ⎞⎪∆ε = ⎜ ⎟⎪ ⎝ ⎠⎩

D         (10)

c

c

2 1/ h2 tip tip tip

c c
1/ h

tip
tip

c

2 K
E CTOD 4E 1 h 2H

2 2H

⎧ ∆σ ∆σ ∆σ⎛ ⎞∆ = + ⋅⎪ ⎜ ⎟⋅π⋅ +⎪ ⎝ ⎠⎨
∆σ⎛ ⎞⎪∆ε = ⎜ ⎟⎪ ⎝ ⎠⎩

       (11)

After calculating ∆εtip at the crack tip using one of these rules, the shift X of the HRR origin is 

obtained by:   

c
c

1 1 h
1 hcYc Yctip c

tip

zp2S 2SX zpE X E

+
+ ⎛ ⎞⎛ ⎞∆ε = ⋅ ⇒ = ⋅⎜ ⎟ ⎜ ⎟∆ε⎝ ⎠ ⎝ ⎠

    (12) 

The strain distribution at a distance r ahead of the crack tip, ∆εp(r + X), without the singularity 

problem at the crack tip, can now be readily obtained by: 

czp 1/ c
c

p
0

2da 2dN (r X)
⎛ ⎞ε= ⋅⎜ ⎟∆ε +⎝ ⎠∫ dr          (13) 

This prediction was experimentally verified in SAE1020 and API 5L X-60 steels and in a 7075 

T6 Al alloy, using (13) to obtain the constant of a McEvily-type da/dN equation, which describes 

the da/dN×∆K curves using only one adjustable parameter: 

 7



[ ] ( )2 cth
c

Kda A K K (R)dN K [ K /(1 R)]= ∆ −∆
− ∆ −

       (14) 

where Kc and ∆Kth(R) are the material fracture toughness and crack propagation threshold at the 

load ratio R. To guarantee the consistence of this experimental verification, Kc, ∆Kth(R), the εN 

and the da/dN data were all obtained by testing proper specimens manufactured from the same 

stock of the 3 materials, following ASTM standards. The API 5L X-60 da/dN×∆K experimental 

curves is compared with this simple model predictions in Fig. 2 (see [2] for the other materials, all 

of which followed a similar behavior). Both the shape and the magnitude of the data are quite rea-

sonably reproduced by this critical damage model, with the Linear rule generating better predictions 

probably because the tests were made under predominantly plane-ε conditions. Moreover, since this 

model does not use any adjustable constant, this performance is certainly no coincidence. 

 
Fig.2: da/dN×∆K behavior measured and predicted by the various strain concentration rules used 

in the critical damage model, for API-5L-X60 pipeline steel at R = 0.1 and R = 0.7. 

Despite this encouraging performance, some remarks are still required. First, the damage be-

yond zpc was neglected to simplify the numerical calculations, but as it accumulates at all points 
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ahead of the crack tip, it is wiser to choose the damage origin by numerically testing its influence on 

da/dN, or better by comparing the predictions with FCG tests, as done later on. Second, FE calcula-

tions [16] indicate that there is a region adjacent to the blunt crack tip with a strain gradient much 

lower than predicted by the HRR field. These problems can be avoided by shifting the origin away 

from the tip by x2 and assuming the crack-tip strain range ∆εtip constant over the region I of length 

x1+x2 shown in Fig. 3, where x1 can be obtained equating ∆εtip and the HRR-calculated strain range, 

and the crack-tip stress range ∆σtip from: 

c c
c

h h
1 h tipc

tip Yc Yc1
Yc1

Ezp(r x ) 2S 2Sx 2
+ ⋅∆ε⎛⎛ ⎞∆σ = ∆σ = = ⋅ = ⋅⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠S

⎞
⎟       (15) 

Then, following Irwin’s classical idea, the value of the shift x2 is obtained by integrating the 

stress field σ(r), enforcing equilibrium of the applied force: 

1 2 1 1 2

1

x x x x x

tip tip
0 0 x 0 0

(r)dr dr (r)dr      (r)dr dr
+ +∞ ∞

∆σ = ∆σ + ∆σ ⇒ ∆σ = ∆σ∫ ∫ ∫ ∫ ∫     (16) 

Since x1 < zpc, ∆σ(r) in the above integral can still be described by the HRR solution, resulting in 

c1
c

hx
1 hc

Yc tip c tip c2 21 1
0

zp2S dr x (1 h ) (x x ) x x hr
+⎛ ⎞⋅ = ∆σ ⋅ ⋅ + = ∆σ ⋅ + ⇒ = ⋅⎜ ⎟

⎝ ⎠∫ 1    (17) 

These simple tricks generate a more reasonable strain distribution model (Fig. 3):  

tip(r)∆ε = ∆ε , 0 ≤ r ≤ x1 + x2 (region I)         (18) 

c
1

1 hcYc
2

zp2S(r) E r x
+⎛ ⎞∆ε = ⋅⎜ ⎟−⎝ ⎠

, x1 + x2 < r ≤ zpc + x2 (region II, shifted HRR)   (19) 

c 2 cYc
c

zp x r zp2S(r) (1 )E r zp z
+ −∆ε ≅ ⋅ ⋅ +ν

− p , zpc + x2 < r < zp (region III, interpolation)   (20) 

K (1 )(r)
E 2 (r zp/2)
∆ ⋅ +ν∆ε =

κ π −
, r ≥ zp (region IV, shifted Irwin)     (21) 

where κ = 1 for plane stress and κ = 1/(1 − 2ν) for plane strain, and 

( )2max
2 Yc

K1zp S= ⋅
πκ

 and ( )2c 2 Ycc

1zp S4 (1 h )
∆= ⋅

πκ ⋅ +
K       (22) 
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Fig.3: Proposed strain range distribution, divided in 4 regions to consider both the elastic and the 
plastic contributions to the damage ahead of the crack tip. 

Both constant (CA) and variable amplitude (VA) FCG can then be calculated using equations 

(18-22), which consider all the damage ahead of the crack tip and provide a more realistic model of 

the FCG process. But (2), (5) and (13) must be modified to include elastic parameters σc and b, and 

to account for the mean load σm effects on the VE life using Morrow elastic, Morrow elastic-plastic 

or Smith-Topper-Watson equations. But the life N in these equations cannot be explicitly written as 

a function of the VE strain range and mean load and thus must be calculated numerically, a pro-

gramming task that, despite introducing no major conceptual difficulty, is far from trivial. 

 
Variable Amplitude Loading 

The da/dN×∆K curve predicted for CA loads could be used with a FCG load interaction model 

for treat VA problems [17]. But the idea here is to directly quantify the fatigue damage induced by 

the VA load considering the crack growth as caused by the sequential fracture of variable size VE 

ahead of the crack tip. Since the Linear strain concentration rule generated better predictions above, 

it is the only one used here, and as load interaction effects can have a significant importance in 

FCG, they are modeled by using Morrow elastic equation to describe the VE fatigue life: 

( )
1/ cc / bp m

c c

(r X)1N(r X) 12 2
−⎛ ⎞∆ε + σ+ = −⎜ ε σ⎝ ⎠

⎟         (23) 
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To account for mean load effects, a modified stress intensity range can be easily implemented 

for R > 0 to filter the loading cycles that cause no damage by using: 

PRPRmaxeff KR1
KKKK −
−
∆=−=∆         (24) 

where KPR is a propagation threshold that depends on the considered retardation mechanism, such 

as Kop or Kmax
* from the Unified Approach [7]. The damage function for each cycle is then: 

( ) ( )
ii i

i i

nd r X N r X+ =
+

          (25) 

If the material ahead of the crack is supposed virgin, then its increment δa1 caused by the first 

load event is the value r = r1 that makes Equation (30) equal to one, therefore: 

( )1 1 1 1 1d r X 1      a r+ = ⇒ δ =         (26) 

In all subsequent events, the crack increments account for the damage accumulated by the pre-

vious loading, in the same way it was done for the constant loading case. But as the coordinate sys-

tem moves with the crack, a coordinate transformation of the damage functions is necessary: 

i i 1

i j p
j 1 p j

D d r a
−

= =

⎛ ⎞
⎜= + δ
⎜ ⎟
⎝ ⎠

∑ ∑ ⎟           (27) 

Since the distance r = ri where the accumulated damage equals one in the i-th event is a vari-

able that depends on ∆Ki (or ∆Keffi) and on the previous loading history, VE of different widths 

may be broken at the crack tip by this model. This idea is illustrated in Fig. 4. 

 
Experimental Results  

FCG tests under VA loading were performed on API-5L-X52 steel 50×10mm C(T) specimens, 

pre-cracked under CA at ∆K = 20MPa√m until reaching crack sizes a ≅ 12.6mm. These cracks 

were measured within 20µm accuracy by optical methods and by a strain gage bonded at the back 

face of the specimens. The basic monotonic and cyclic properties, measured in computer-controlled 

servo-hydraulic machines using standard testing procedures, are E = 200⋅103, SU = 527, SY = 430, 

SYc = 370, Hc = 840, and σc = 720 (all in MPa), hc = 0.132, εc = 0.31, b = -0.076 and c = -0.53.   
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Fig.4: Schematics of the critical damage calculations, which under variable amplitude loading rec-

ognize variable crack increments by forcing the crack to grow over the region where D = 1. 

About 50 εN specimens were tested under deformation ratios varying from R = −1 to R = 0.8 

(at least 2 specimens were tested at each strain range) to measure the mean load effect on the (fa-

tigue crack initiation) εN curve, see Fig. 5. Morrow’s strain-life equation (25), which includes the 

mean stress effect only in Coffin-Manson’s elastic term, best fit this experimental data. The basic 

da/dN curve, measured using the same equipment, was well fitted by a modified Elber-type equa-

tion da/dN(R = 0.1) = 2⋅10−10(∆K − 8)2.4 (da/dN in m/cycle and ∆K in MPa√m), using the crack 

propagation threshold ∆Kth(R = 0.1) = 8MPa√m to replace Kop. 

 12



 
Fig.5: API 5L X52 steel strain-life data, and Morrow elastic model that best fitted this data. 

FCG tests were then conducted under several VA histories. The history shown in Fig. 6 had 

50,000 blocks containing 100 reversals each. Note the high mean stress levels, which were chosen 

to avoid crack closure effects (the crack was always opened during the loading). The load history 

was counted by the sequential rain-flow method, using the ViDa software [15]. The damage calcu-

lation was made using a specially developed code following all the procedures discussed above. 

 The crack growth predictions based solely on εN parameters are again quite reasonable, see 

Fig. 7. The prediction assuming no damage outside the cyclic plastic zone zpc underestimated the 

crack growth. However, when the small (but significant) damage in the material between the cyclic 

and monotonic plastic zone borders is also included in the calculations, an even better agreement is 

obtained. Note also that crack growth is slightly underestimated after 1.8⋅106 cycles, probably be-

cause these calculations neglected the (small) elastic damage and its mean stress effects. 

A similar VA fatigue crack propagation test was conducted on a specimen of AISI 1020 steel, 

with measured properties E = 205GPa, SU = 491, SY = 285, SYc = 270, Hc = 941 and σc = 815MPa, 

hc = 0.18, εc = 0.25, b = −0.114, and c = −0.54. The best FCG curve fitted to this material was slight  

more complex [17], da/dN = 5⋅10−10⋅(∆K − ∆Kth)2⋅{Kc/[Kc − ∆K/(1 − R)]}, where ∆Kth = 11.6 and 

Kc = 277 (∆K, ∆Kth and Kc in MPa√m and da/dN in m/cycle).  
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The VA load history is this case was a series of blocks containing 101 peaks and valleys, as 

shown in Fig. 8. Fig. 9 compares the prediction with the measured data. This prediction was again 

quite reasonable. Therefore, one can claim that these tests indicate that the ideas behind the pro-

posed critical damage model make sense and deserve to be better explored. 

 
Fig.6: Variable amplitude load block applied to the API-5L-X52 steel. Note the high mean R-ratio. 

 
Fig.7: Comparison between the crack growth measurements and the εN-based predictions for the 

variable amplitude load presented in Fig. 6 (API-5L-X52 steel). 
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Fig.8: VA load block applied to the SAE 1020 steel C(T). Again a high mean R-ratio was used in 

this test, to avoid the interference of possible significant closure effects which could mask 
the model performance. 

 

 

Fig.9: Comparison between the crack growth measurements and the εN-based predictions for the 
variable amplitude load presented in Figure 46 (SAE 1020 steel). 
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Conclusions 

Several mechanisms can cause load sequence effects on fatigue crack growth, and they may act 

before, at or after the crack tip. Plasticity-induced crack closure is the most popular of them, but it 

cannot explain sequence effects in various important problems. A damage accumulation model 

ahead of the crack tip based on εN cyclic properties, which can explain those effects in the absence 

of closure, was proposed for predicting fatigue crack propagation under variable amplitude loading. 

The model treats the crack as a sharp notch with a small but finite radius to avoid singularity prob-

lems, and calculates damage accumulation explicitly at each load cycle. Experimental results show 

a good agreement between measured crack growth both under constant and variable amplitude load-

ing and the predictions based purely on εN data. 
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