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Abstract 

The stress intensity factors (SIF) associated to branched fatigue cracks can be considerably 

smaller than that of a straight crack with the same projected length, causing crack growth retarda-

tion or even arrest. This mechanism can quantitatively explain retardation effects even when plastic-

ity induced crack closure cannot be applied, e.g. in high R-ratio or in plane strain controlled fatigue 

crack growth. Analytical solutions have been obtained for the SIF of branched cracks, however nu-

merical methods such as Finite Elements (FE) or Boundary Elements (BE) are the only means to 

predict the subsequent curved propagation behavior. In this work, a FE program is developed to 

calculate the path and associated SIF of branched cracks, validated through experiments on 4340 

steel ESE(T) specimens. From these results, semi-empirical crack retardation equations are pro-

posed to model the retardation factor along the crack path. The model also considers the possible 

interaction between crack branching and closure. 

Introduction 

Fatigue cracks can significantly deviate from their Mode I growth direction due to the influ-

ence of overloads, multi-axial stresses, micro structural inhomogeneities such as grain boundaries 

and interfaces, or environmental effects, generating crack kinking or branching [1]. A fatigue crack 

deviated from its nominal Mode I plane induces mixed-mode near-tip conditions even if the far-

field stress is purely Mode I. For instance, a pure Mode I stress intensity factor (SIF) KI induces 

Modes I and II SIF k1 and k2 near the longer branch b of a bifurcated crack and k1’ and k2’ near the 

shorter one c. The equivalent SIF Kb and Kc of the longer and shorter branches, calculated respec-

tively from (k1, k2) and (k1’, k2’) using the σθmax criterion [2], can be considerably smaller than that 

of a straight crack with the same projected length, see Fig. 1. Therefore, such branching can retard 

or even arrest subsequent crack growth [3]. 



 
Fig. 1: Bifurcated crack propagation behavior. 

It is experimentally observed that very small differences between the crack branch lengths b 

and c are enough to cause the shorter branch c to arrest while the larger one b propagates, generally 

changing its curvature at a retarded rate until returning approximately to its pre-overload SIF and 

growth direction and rate, see Fig. 1. Therefore, although many branches can be developed along 

the main crack path, only the fastest branch continues to grow, while all others end by stopping due 

to a shielding effect. This typical propagation behavior has been observed in many structural com-

ponents, e.g. on a branched crack on an aircraft wheel rim made of 2014-T6 aluminum alloy [4]. 

Some analytical solutions have been obtained for the SIF of kinked and branched cracks, but it 

is generally recognized that it is very difficult to develop accurate analytical solutions to their com-

plex propagation behavior [5-9]. Therefore, numerical methods such as Finite Elements (FE) and 

Boundary Elements (BE) are the only practical means to predict the propagation behavior of 

branched cracks [10]. A summary of such SIF solutions as a function of the deflection angle and the 

length of the deflected part of the crack is presented in [11]. 

To predict the (generally curved) path of a branched crack and to calculate the associated 

Modes I and II SIF, a specially developed interactive FE program named Quebra (meaning fracture 



in Portuguese) is used [12]. This program simulates two-dimensional fracture processes based on a 

FE self-adaptive strategy, using appropriate crack tip elements and crack increment criteria. The 

adaptive FE analyses are coupled with modern and very efficient automatic remeshing schemes. An 

efficient meshing algorithm is fundamental to avoid elements with poor aspect ratio, since the ratio 

between the size of the larger and smaller elements can be above 1,000 in crack bifurcation calcula-

tions. To accomplish that, Quebra uses an innovative algorithm incorporating a quadtree procedure 

to develop local guidelines to generate elements with the best possible shape. The internal nodes are 

generated simultaneously with the elements, using the quadtree procedure only as a node-spacing 

function. This approach tends to give a better control over the generated mesh quality and to de-

crease the amount of heuristic cleaning-up procedures. Moreover, it specifically handles disconti-

nuities in the domain or boundary of the model. Finally, to enhance the mesh element shape quality, 

an a posteriori local mesh improvement procedure is used [13].  

Propagation of Branched Cracks 

The growth of branched cracks is studied using Quebra to model a C(T) specimen with width 

w = 32.0mm, crack length a = 14.9mm, and in its point a very small bifurcation having an angle 2θ  

ranging from 40o to 168o, initial longer branch length b0 = 10µm and shorter branch lengths ranging 

from c0 = 5µm to 10µm. A fixed crack growth step of ∆b = 3µm (or 1µm during the first propaga-

tion steps) is used for the propagation of the longer branch b, in the direction defined by the σθmax 

criterion [2]. Due to the differences in the SIF and, a growth step ∆c smaller than ∆b is expected for 

the shorter branch. This smaller step is obtained assuming an Elber-like fatigue crack propagation 

behavior, using ∆K − ∆Kth for the effective stress intensity range to get  

( m
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where ∆Kth is the propagation threshold at a given R = Kmax/Kmin ratio, and A and m are material 

constants. If ∆Kb and ∆Kc are respectively the stress intensity ranges of the longer and shorter 

branches, then the growth step ∆c of the shorter branch c should be 
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Interestingly, the ratio between the propagation rates of the two branches is independent of the 

material constant A. In this analysis, the exponent m is assumed to be 2.0, 3.0, and 4.0, which are 

representative for the range of the measured exponents for structural alloys. A similar expression 

can be obtained if other crack retardation mechanisms are considered, through Lang and Marci’s 

propagation threshold KPR [14], with A and m parameters fitted for each considered load ratio R: 
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where Kmax,b and Kmax,c are the maximum SIF of the longer and shorter branches respectively. This 

threshold KPR can be interpreted as the limiting value Kmax
* of the Unified Approach [15, 16]. 

Both the crack path and the associated SIF along each branch are obtained using the Quebra 

program. Several calculations were performed for different values of the exponent m, bifurcation 

angle 2θ, relation c0/b0, and SIF, considering or not the effect of KPR, as described next. 

First, the propagation behavior of branched cracks is studied using FE but neglecting any retar-

dation mechanism other than the bifurcation itself (i.e. assuming KPR = 0). Fig. 2 shows the contour 

plots of the normal stress component in the load direction axis and propagation results for a bifur-

cated crack with angle 2θ = 150o, obtained from the FE analysis for c0/b0 = 0.91, m = 2 and no clo-

sure. In this figure, the deformations are highly amplified to better visualize the crack path. Note 

that the crack path deviates from the original branch angles, deflecting from ±75o to approximately 

±28o. In addition, the originally shorter branch arrests after propagating (only) about 29µm, while 

the longer branch returns to the pre-overload growth direction and SIF (even though the subsequent 

crack growth plane may be offset from the pre-overload one, see Fig. 2). 

Fig. 3 shows the crack paths obtained from the FE analyses of bifurcated cracks with 2θ = 130o 

and c0/b0 = {0.5, 0.8, 0.95, 1}, considering m = 2 and KPR = 0. The dashed lines show the theoreti-

cal propagation behavior of a perfectly symmetric bifurcation (c0/b0 = 1). In this case, the retarda-



tion effect would never end because both branches would propagate symmetrically without arrest-

ing. Clearly, such behavior is not observed in practice, since the slightest difference between b0 and 

c0 would be sufficient to induce an asymmetrical behavior. 

 
Figure 2: Propagation simulation of a bifurcated crack on a C(T) specimen (left), and close-up view 

of the two original b = 11µm and c = 10µm branches with angle 2θ = 150o (right). 
 

Fig. 3 also shows that lower c0/b0 ratios result in premature arrest of the shorter crack branch, 

leading to smaller retardation zones. Also, the propagation path of the longer branch is usually re-

strained to the region within the dashed lines, while the shorter one is “pushed” outside that enve-

lope due to shielding effects. 

 
Figure 3: Bifurcated crack paths for several c0/b0 ratios (KPR = 0). 



The size of the retardation zone can be estimated from the ratio bf/b0, where bf is the value of 

the length parameter b of the longer branch (measured along the crack path) beyond which the re-

tardation effect ends. The ratio bf/b0 is then calculated through FE propagation simulations for all 

combinations of c0/b0 = {0.5, 0.8, 0.9, 0.95}, 2θ = {40o, 80o, 130o, 168o} and m = {2, 3, 4}, and fit-

ted by the proposed empirical function: 
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The FE-calculated SIF Kb and Kc of the longer and shorter branches are now evaluated along 

the obtained crack paths. Fig. 4 plots the crack retardation factors (defined as the ratios between Kb 

or Kc and the Mode I SIF KI of a straight crack) for 2θ = 130o and m = 2, as a function of the nor-

malized length (b – b0)/b0 of the longer branch. Because of the different crack branch lengths, the 

SIF at the longer one is much higher than that at the shorter branch. Assuming Kb and Kc to be the 

crack driving force, Fig. 4 shows that the longer branch reaches its minimum propagation rate right 

after the bifurcation occurs, returning to its pre-overload rate as the crack tip advances away from 

the influence of the shorter branch. As seen in that figure, the retardation behavior is misleadingly 

similar to closure-related effects, even though no closure is present in that case. In addition, as the 

length difference between both branches increases, it is expected that the propagation rate of the 

shorter one is reduced until it arrests, after which the larger branch will dominate. Note that even 

small differences between the branch lengths, such as in the case c0/b0 = 0.95 shown in Fig. 4, are 

sufficient to cause subsequent arrest of the shorter branch. 

An empirical expression is here proposed to model the SIF Kb of the longer branch during the 

transition between Kb0 (the value of Kb immediately after the bifurcation event) and the straight-

crack KI (after the retardation effect ends), valid for b0 ≤ b ≤ bf and 0.7 < c0/b0 < 1: 
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where bf is given in Equation (4), and Kb0 and Kc0 are obtained by: 
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Figure 4: Normalized equivalent SIF for the (a) longer and (b) shorter branch of a bifurcated 

crack during its propagation (2θ = 130o, m = 2, KPR = 0). 

The interaction between crack branching and other retardation mechanisms is studied next. 

This effect is easily accounted for in the FE calculations using Equation (3). The limiting value KPR 

is assumed to be the same at both branch tips and always larger than the minimum SIF of each 

branch. Further simulations are then conducted considering several KPR values, normalized by the 

maximum Mode I SIF KI of the straight crack, namely KPR/KI = {0.067, 0.08, 0.10, 0.13, 0.20, 

0.25, 0.40, 0.57}. A generalized version of Equation (4) is then proposed to fit the calculated proc-

ess zone sizes including the combined effects of other mechanisms: 
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Note that the ratio KPR/KI in Equation (7) should be replaced with zero if KPR is smaller than 

the minimum SIF of both branches. Note also that greater KPR levels result in shorter retardation 

zones, because the shorter branch is more easily arrested due to the reduction in its stress intensity 

range. Figure 5 shows the effect of KPR at the branch tips on the retardation factor for 2θ = 130o, 

c0/b0 = 0.9 and m = 2. Note that higher KPR levels reduce the size of the retardation process zone, 

due to premature arrest of the shorter branch. For example, the normalized size of the process zone 

in Figure 5 is reduced from 18 to 3.6 as KPR/KI approaches 0.74, a factor of 5. In this example, 0.74 

is the minimum KPR/KI level that prevents the shorter branch to even start propagating. Therefore, 

at any level above 0.74 the normalized process zone size will also be 3.6, because the propagation 

geometry will remain unchanged as long as the shorter branch remains arrested at c = c0. 

Note, however, that a smaller process zone does not necessarily mean fewer delay cycles, since 

the longer branch will also experience a reduction in the crack propagation rate due to other retarda-

tion mechanisms. Therefore, a competition between lower growth rates of the longer branch and 

smaller bifurcation process zone sizes will take place to determine the real effect of combining bi-

furcation with other retardation mechanisms. 

Equations (7-10) and (6) can then be applied to Equation (5) to model the SIF Kb of the longer 

branch during the transition between Kb0 (the SIF immediately after the bifurcation event) and the 

straight-crack KI (the SIF after the end of the retardation effect), completing this analysis. 

Experimental Results 

Quantitative validations of the predicted bifurcated crack growth behavior are performed on 

Eccentrically-loaded Single Edge Crack Tension specimens ESE(T) made from an annealed SAE 



4340 alloy steel with SY = 377MPa, SU = 660MPa, E = 205GPa, and RA = 52.7%, and with the 

analyzed weight percent composition: 0.37C, 0.56Mn, 0.14Si, 1.53Ni, 0.64Cr, 0.18Mo, 0.04S, and 

0.035P. The tests are performed at frequencies between 20 and 30Hz in a 250kN servo-hydraulic 

computer-controlled testing machine. The crack length is measured following ASTM E 647 proce-

dures [17]. Special attention is given for crack closure measurements, using a high speed data ac-

quisition system to obtain data avoiding interruptions during the tests. In this way, the load and the 

Crack-Opening Displacement (COD) data are used to compute the crack closure load using a digital 

linearity subtractor output (a circuit developed to precisely measure the opening load, [18]).  

 
Figure 5. Normalized SIF of the longer branch during its propagation as a function of the   

normalized length (b – b0)/b0 for several KPR levels (c0/b0 = 0.9, m = 2). 
 

In parallel, the proposed retardation equations are implemented in a powerful fatigue life as-

sessment program named ViDa [19]. This program is used to estimate the number of delay cycles 

associated with the experimentally obtained bifurcation on the 4340 steel ESE(T) specimen. The 

number of cycles spent during the propagation in the retardation region is then calculated by inte-

grating the da/dN equation along the longer crack branch, from b = b0 to b = bf. 

Two tests are performed on ESE(T) specimens subject to 100% overloads. The loading in test 

(I) is ∆K = 13.9MPa√m at R = 0.7, resulting in ≈ 22,000 delay cycles after the overload; and in test 

(II) is ∆K = 14.2 MPa√m at R = 0.7, resulting in ≈ 20,000 delay cycles, see Figs. 6-7. 



    
(a)                                              (b) 

Fig. 6. Crack bifurcation experiments on SAE 4340 steel: (a) test I, (b) test II. 

 
Fig. 7. Fatigue crack growth retardation after a 100% overload, R = 0.7: (a) test I, (b) test II. 

It is found that the minimum load levels in tests I and II are always above the opening load, 

therefore no crack closure is present nor before nor after the overloads. For test I, the measured ini-



tial branch lengths are approximately b0 = 9µm and c0 = 8.5µm, with a bifurcation angle 2θ = 160o, 

see Fig. 6(a). The measured material fatigue crack growth constants in (1) are A = 9⋅10-11m/cycle 

and m = 2.1, and the propagation threshold under R = 0.7 is ∆Kth = 2.8MPa√m. From (6), the ini-

tial SIF are Kb0/KI = 0.751 and Kc0/KI = 0.749, leading to ∆Kb0 = 0.751⋅∆KI = 10.437MPa√m and 

∆Kc0 = 0.749⋅∆KI = 10.413MPa√m. Since both ranges are greater than ∆Kth(R = 0.7) = 2.8MPa√m, 

both branches are expected to start propagating, as verified experimentally. The size of the process 

zone can be estimated from Equation (4), which results in bf = 36.95 × 9µm ≅ 332µm. The number 

of delay cycles nD can then calculated by: 
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which is approximately half of the measured 22,000 delay cycles, see Fig. 7(a). 

For test II, the measured initial branch lengths are approximately b0 = 10µm and c0 = 9.5µm, 

but with a larger bifurcation angle 2θ = 160o, see Fig. 6(b), resulting in: 
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which is also about half of the measured 20,000 delay cycles, see Fig. 7(b). 

Note that in all tests there was no retardation induced by crack closure. In fact, the opening 

load after the overload remained lower than before the overload along the entire process zone, only 

returning to its original value after the bifurcation effect had ended. Moreover, all the measured 

opening loads Kop were below Kmin at this high R-ratio. Therefore closure would not be able to ex-

plain the measured overload-induced retardation [20]. 

The difference between the number of delay cycles measured and predicted using the proposed 

semi-empirical equations can be explained by inaccuracies in the estimation of the initial branch 

lengths b0 and c0, since the retardation effect is highly dependent on the ratio c0/b0. In addition, 



other retardation mechanisms besides bifurcation (except for closure, as discussed above) might be 

contributing to increase the number of delay cycles, such as environmental effects or further kink-

ing of the branch tips due to microstructure inhomogeneities, not considered in this model Even so, 

the presented predictions are of the same order of magnitude of the experimental scatter. Therefore, 

the quantitative approach presented in this work is a quite promising tool for modeling and calculat-

ing overload-induced retardation effects where other mechanisms have failed to give a satisfactory 

explanation. 

Finally, it must be noted as well that all measured bifurcations occurred throughout the thick-

ness in an approximately uniform pattern, observed after carefully slicing and reexamining the 

specimens. Therefore, despite the inherent 3-D nature of the bifurcation problem, in these tests the 

presented two-dimensional FE approach has been validated. 

Conclusions 

In this work, a specialized FE program was developed and used to calculate the propagation 

path and associated stress intensity factors (SIF) of bifurcated cracks, which can cause crack retar-

dation or even arrest. Empirical equations for the process zone size and for the crack retardation 

factor along the curved crack branches where fitted to 262 crack propagation simulations obtained 

from a total of 6,250 FE calculation steps. In particular, the crack bifurcation simulations included 

several combinations of bifurcation angles 2θ = {40o, 80o, 90o, 130o, 168o}, branch asymmetry ra-

tios c0/b0 = {0.5, 0.7, 0.8, 0.9, 0.95, 1.0}, crack growth exponents m = {2, 3, 4}, and even considered 

interaction between crack branching and other retardation mechanisms through the threshold ratios 

KPR/KI = {0.0, 0.067, 0.08, 0.10, 0.13, 0.20, 0.25, 0.40, 0.57}. It was shown that very small differ-

ences between the lengths of the bifurcated branches are sufficient to cause the shorter one to even-

tually arrest as the longer branch returns to the pre-overload conditions. The process zone size was 

found to be smaller for lower bifurcation angles and for branches with greater asymmetry, in both 

cases due to the increased shielding effects on the shorter branch. The retardation zone was reduced 

as well for materials with higher crack growth exponents, due to the increased difference between 



the crack growth rates of the longer and shorter branches. Higher KPR levels also resulted in smaller 

process zones, because the shorter branch was more easily arrested due to the reduction in its stress 

intensity range. However, a competition between smaller process zone sizes and lower growth rates 

of the longer branch did take place to determine the real effect of combined bifurcation and other 

retardation mechanisms. The proposed equations, besides capturing all above described phenomena, 

can be readily used to predict the propagation behavior of branched and kinked cracks in an arbi-

trary structure, as long as the process zone is small compared to the other characteristic dimensions. 

It should be recognized, however, that the presented mixed-mode equations are only accurate if the 

branch lengths greatly exceed the size scale of the microstructural inhomogeneities and the size of 

the near-tip plastic zone. But assuming that the entire crack-front bifurcates uniformly, as observed 

in this work from scanning electron micrographs, the specimen thickness itself may provide the size 

scale requirements for the validity of the presented equations, as the calculated SIF may be aver-

aged considering the (several) grains present along the thickness. Otherwise, if the crack deflections 

vary significantly along the thickness, then further modeling including Mode III effects should be 

considered. From these results, it can be seen that crack bifurcation may provide an alternate 

mechanistic explanation for overload-induced crack retardation on structural components, in special 

to explain load interaction effects under closure-free conditions. 
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