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Abstract3

Crack tip plastic zones can be and usually are severely underestimated at the high load levels associated4

with the yield safety factors 1.2 < ϕY < 3 typically used in the design of tough metallic structures. This5

happens because the stress field around the tip is supposed to be solely controlled by the stress intensity6

factor, neglecting the significant effect of the nominal stress to the yield strength ratio, σn/SY . Since most7

Fracture Mechanics design methods use plastic zone size estimates and stress intensity similitude assumptions,8

this fact is more than an academic issue, it is a matter of great practical interest. This problem is demonstrated9

by using Inglis or Westergaard stress functions to generate the complete stress field around the crack tip in10

an infinite plate considering in an appropriate way the important σn/SY effects.11

Keywords: Fracture Mechanics, plastic zone estimates, nominal stress effects.12

1 Introduction13

For both academic and design purposes, the plastic zones size and shape pz(θ) ahead of a crack tip14

are traditionally estimated from simplified linear elastic (LE) stress analysis, assuming that the stress15

field depends only on the stress intensity factor (SIF) KI (or KII or KIII). For example, assuming16

that σij = [KI ] ·[1/
√

(2πr)]·[fij(θ)] = f(KI ), where r is the distance from the crack tip, θ is the angle17

measured from the crack plane and fij(θ) are the mode I Williams θ-functions, and equating the18

resulting Mises stress to SY , the yielding strength, the simplest elastic-plastic frontiers in plane stress19

and in plane strain are estimated by [1].20
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pz(θ)pl−σ = (K2
I

/
2πS2

Y ) · cos2(θ/2) · [1 + 3sin2(θ/2)]

pz(θ)pl−ε = (K2
I

/
2πS2

Y ) · cos2(θ/2) · [(1− 2ν)2 + 3sin2(θ/2)]
(1)

where ν is Poisson’s coefficient. Thus, according to this simplified estimate, the plastic zone size21

directly ahead of a crack tip in plane stress should be pz(0)pl−σ = pz0 =(1/2π)(KI /SY )2. This value is22

the reference used to normalize all the plastic zone plots presented below.23

However, the classical σij = f(KI ) hypothesis almost universally used in LEFM analysis is only valid24

very close to the crack tip, more specifically if r → 0, exactly where the assumed elastic behavior25

breaks down. In particular, this approximation predicts that the normal stress perpendicular to the26

crack plane in a Griffith plate is σy(x→ ∞, y = 0) = 0, instead of σy(x→ ∞, y = 0) = σn, as it27

should. Therefore, the classical σij = f(KI ) hypothesis does not obey all the plate boundary conditions28

(this same problem, by the way, also happens with the more elaborated HRR elastic-plastic field.)29

Therefore, as the plastic zone borders are not necessarily (neither are usually) too close to the crack30

tip, it is worth to at least estimate the effect of the nominal stress to the yield strength ratio σn/SY31

on pz(θ), instead of simply neglecting it.32

A quite simple, but certainly not unreasonable first estimate of the σn/SY effect on the plastic zones33

frontiers around the crack tips can be made by forcing σy(x→ ∞, y = 0) = σn, adding up a constant34

σy = σn stress to the Williams (or Irwin) stress LE field to obtain35

σ(θ)Williams+σn

Mises,pl−σ = σ(θ)Wil+σn

M,pl−σ = [(κfx)2 + (κfy + σn)2 − (κfx)(κfy + σn) + 3(κfxy)2]1/2 (2)

where σ(θ)Wil+σn

M,pl−σ is the resulting LE Mises stress distribution around the crack tip in plane stress36

(considering the σn/SY effect), κ = KI /
√

(2πr), and fx, fy and fxy are the θ-functions associated with the37

σx, σy and τxy Williams (or Irwin) stresses in mode I. Equating σ(θ)Wil+σn

M,pl−σ = SY and repeating the38

process for plane strain, pz(θ)Wil+σn

M,pl−σ

/
pz0 and pz(θ)Wil+σn

M,pl−ε

/
pz0 plots can be generated to enhance39

the searched σn/SY effect, as shown in Figure 1.40

Figure 1 indicates that the estimated σn/SY influence on the size and the shape of the plastic zones41

that surround the crack tips under real normal loading conditions, which can reach ratios σn/SY >42

0.8 in structures designed for minimum weight, is clearly not negligible. However, it cannot be prove43

that the σn/SY effects are really that important, since the hypothesis used to generate its plots is44

not mathematically sound. But this simple estimate nevertheless points out that the plastic zone45

dependence on σn/SY should be studied in a more careful way, as done in the following sections.46

2 Plastic zones estimated using the Inglis stresses47

A much better estimate for the σn/SY influence on the size and shape of the plastic zones pz(θ) can48

be generated by using the classical Inglis stress field in an infinite plate with a crack-like very sharp49

elliptical notch, with its major semi-axis a perpendicular to the tensile nominal stress σn, and with50

its minor semi-axis b << a.51
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Figure 1: Mode I plastic zones estimated for the infinite cracked plate, which has KI = σn

√
(πa), by

summing σn to the Williams σy(KI ) stress, to force σy ( σn far from the crack tips.

Therefore, making x = c·coshα·cosβ and y = c·sinhα·sinβ, such a crack-like sharp notch is quite52

simply described in elliptical coordinates (α,β) by α = α0, where a = c·coshα0, b = c·sinhα0, and c =53

a/cosα0. The linear elastic stresses in the Inglis plate loaded by a general bi-axial nominal stress field54

are given by the following infinite series [2, 3]55

σα = γ
∑

n

An{(n + 1)e(1−n)α cos(n + 3)β + (n− 1)e−(n+1)α cos(n− 3)β−

−[4e−(n+1)α + (n + 3)e(3−n)α] cos(n + 1)β + [4e(1−n)α + (3− n)e−(n+3)α] cos(n− 1)β}+
+Bn{e−(n+1)α[n cos(n + 3)β + (n + 2) cos(n− 1)β]− [(n + 2)e(1−n)α + ne−(n+3)α] cos(n + 1)β}

(3)

56

σβ = γ
∑

n

An{(3− n)e(1−n)α cos(n + 3)β − (n + 3)e−(n+1)α cos(n− 3)β−

−[4e−(n+1)α − (n− 1)e(3−n)α] cos(n + 1)β + [4e(1−n)α + (n + 1)e−(n+3)α] cos(n− 1)β}−
−Bn{e−(n+1)α[n cos(n + 3)β + (n + 2) cos(n− 1)β]− [(n + 2)e(1−n)α + ne−(n+3)α] cos(n + 1)β}

(4)

57

ταβ = γ
∑

n

An{(n− 1)e(1−n)α sin(n + 3)β + (n + 1)e−(n+1)α sin(n− 3)β − (n + 1)e(3−n)α] sin(n + 1)β−

−(n− 1)e−(n+3)α] sin(n− 1)β}−
−Bn{e−(n+1)α[n sin(n + 3)β + (n + 2) sin(n− 1)β]− [(n + 2)e(1−n)α + ne−(n+3)α] sin(n + 1)β}

(5)
where γ = (cosh2α - cos2β)−2 and n is an integer.58

Fortunately, only 5 of these infinite series constants are non-zero when the Inglis plate is loaded by59

a simpler uni-axial tensile stress σn perpendicular to the elliptical hole major axis, namely60
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



A1 = −σn[1 + 2exp(2α0)]

A−1 = σn/16

B1 = σnexp(4α0)

B−1 = σn(1 + cosh2α0)

B−3 = σn/8

(6)

Modeling the crack as a very sharp elliptical notch, with a tiny but nevertheless finite tip radius61

estimated as half the crack tip opening displacement, ρ = b2/a = CTOD/2 = 2KI
2/πSY E’, where E’= E62

in plane stress and E’ = E/(1 - ν2) in plane strain, and knowing that whereas the cracked infinite plate63

has a SIF KI = σn
√

(πa), the notched one has a corresponding stress concentration factor Kt = 1 +64

2a/b, then65

Kt = 1 + 2 · a

b
= 1 + 2

√
a

ρ
= 1 + 2 ·

√
aπE′SY

2 · σ2
nπa

⇒ a

b
=

√
E′

2 · σn
· SY

σn
=

√
E′φY

2 · σn
(7)

where ϕY = SY /σn is its nominal safety factor against yielding. Using this a/b ratio to obtain the notch66

shape that simulates the crack by α0 = tanh−1(b/a), then the LE stresses in the cracked plate can be67

calculated substituting the 5 constants specified above in (3-5), a tedious but certainly not a difficult68

task. Finally, the Mises stress resulting from σα, σβ , ταβ , and (in the plane strain case) σz = ν(σα +69

σβ) can be used to estimate the Inglis plastic zones by numerically solving equations (8-9) for |θ | ≤70

π:71

σIng
M,pl−σ =

√
σ2

α + σ2
β − σασβ + 3τ2

αβ = SY (8)
72

σIng
M,pl−ε

=
√

0.5[(σα − σβ)2 + (σα − σz)
2 + (σz − σβ)2] + 3τ2

αβ = SY (9)

Some resulting pz(θ)Ing
M,pl−σ

/
pz0 and pz(θ)Ing

M,pl−ε

/
pz0 frontiers, obtained from the numerical solu-73

tion of equations (8) and (9), are shown in Figure 2.74

Therefore, the influence of the nominal stress to the yield strength ratio on the plastic zones,75

although a little less than estimated by the simple approximation presented in Figure 1, is indeed76

significant and should not be neglected in practical applications. This is a strong assertion, but it77

is supported by the exact LE stress field solution for the infinite cracked plate in mode I, when the78

crack is modeled as an elliptical sharp notch of tip radius ρ = CTOD/2, a quite reasonable hypothesis.79

Nevertheless, it is worth to use an alternative approach to confirm it, as follows.80

3 Plastic zones estimated using the Westergaard stress function81

The appropriate use of an adequate Westergaard Z(z) stress function provides an alternative way to82

rigorously estimate the size and the shape of the plastic zones ahead of crack tips departing from83

the LE stress field. However, since the elastic-plastic frontier is not adjacent to the crack tip, the full84
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Figure 2: Mises plastic zones in plane stress and in plane strain, calculated using the Inglis linear
elastic stress field in an infinite cracked plate loaded in mode I, modeling the crack as a very sharp
elliptical notch of tip radius ρ = CTOD/2 (avoiding in this way the physically unrealistic singularity at
the crack tip).

stresses generated from Z(z) must be used in such a calculation. This can be easily demonstrated by85

revisiting the classical Irwin solution for the cracked infinite plate loaded in mode I.86

Thus, if (x, y) and (r, θ) are the Cartesian and the polar coordinates centered at the crack tip, i =87 √
-1 is the complex unity and z = x + iy is a complex variable, the Irwin solution is obtained from the88

Westergaard stress function [4–6]89

Z(z) = zσn/
√

(z2 − a2) ⇒ Z ′(z) = dZ/dz = −a2σn/(z2 − a2)3/2 (10)

The linear elastic stresses around the crack tip can be calculated from the stress function Z(z) and90

from its derivative Z’(z) by91





σx = Re(Z)− y Im(Z ′)− σn

σy = Re(Z) + y Im(Z ′)

τxy = −y Re(Z ′)

(11)

Note that to solve the mode I problem from Z(z), a constant term -σn has to be summed to the92

σx = Re(Z) - yIm(Z’) formula to force σx(∞) = 0 in the plate, an adequate mathematical trick since a93

constant stress in the x direction does not affect the stress field near the crack tip. However, the σy =94

Re(Z) - y·Im(Z’) stress is usually approximated to generate a stress intensity factor (generally a highly95

desirable feature but not for estimating pz(θ), since it neglects the σn/SY influence far from the crack96

tip) by writing97

σy(θ = 0) = σn(x + a)/[(x + a)2 − a2]1/2 ∼= σna/
√

(2ax) = KI/
√

(2πr) (if x << a) (12)

where 2a is the crack size perpendicular to the nominal tensile stress σn.98
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Note that equation (12) yields σy(θ = 0) = KI /
√

(2πr) = 0 if r → ∞, thus it does not generate the99

stress far from the crack tip. Thus this classical approximation cannot be used to study the σn/SY100

influence on pz(θ), which is not too close to the crack tip. But this task can be fulfilled by first rewriting101

Z and Z’ in polar coordinates centered at the crack tip102

Z =
[a + (r · cos θ) + i (r · sin θ)] · σn√
[a + (r · cos θ) + i (r · sin θ)]2 − a2

⇒ Z ′ =
−a2 · σn{

[a + (r · cos θ) + i (r · sin θ)]2 − a2
}3/2

(13)

and then by using the complete stress field generated from Z and Z’ to calculate the resulting Mises (or103

Tresca, for that matter) stress. This equivalent stress is then equated to the yielding strength to obtain104

the required pz(θ) elastic-plastic frontiers considering the σn/SY effect. For example, in plane stress105

this procedure generates equation (14). The same process can be easily applied for plane strain case.106

The numerical solution of equation (14) generates the required Westergaard elastic-plastic frontier107

pz(θ)Wtg
M,pl−σ

/
pz0, see Figure 3. And the corresponding equation for the plane strain case can also be108

numerically solved to generate pz(θ)Wtg
M,pl−σ

/
pz0, as also shown in Figure 3.109

Note that these estimates for the elastic-plastic frontiers based on the Westergaard stress function,110

like the estimates based on the Inglis stresses obtained above, are mathematically sound, indicating111

that the claimed σn/SY effect on pz(θ) is indeed significant, and should not be neglected.112

{[
Re

(
(a+r·cos θ+i·rsinθ)·σn√
(a+r·cos θ+i·rsinθ)2−a2

)
− y Im

(
−a2·σn

[(a+r·cos θ+i·rsinθ)2−a2]3/2

)
− σn

]2

+

+
[
Re

(
(a+r·cos θ+i·rsinθ)·σn√
(a+r·cos θ+i·rsinθ)2−a2

)
+ y Im

(
−a2·σn

[(a+r·cos θ+i·rsinθ)2−a2]3/2

)]2

−

−
[
Re

(
(a+r·cos θ+i·rsinθ)·σn√
(a+r·cos θ+i·rsinθ)2−a2

)
− y Im

(
−a2·σn

[(a+r·cos θ+i·rsinθ)2−a2]3/2

)
− σn

]
·

·
[
Re

(
(a+r·cos θ+i·rsinθ)·σn√
(a+r·cos θ+i·rsinθ)2−a2

)
+ y Im

(
−a2·σn

[(a+r·cos θ+i·rsinθ)2−a2]3/2

)]
+

+3 ·
[
−y Re

(
−a2·σn

[(a+r·cos θ+i·rsinθ)2−a2]3/2

)]2
}1/2

= SY

(14)

4 Comparing the plastic zones estimated from Inglis and from Westergaard113

Figure 4 compares the Mises plastic zones calculated using the Inglis stresses assuming that the crack114

is a very sharp elliptical notch of tip radius ρ = CTOD/2, and the complete stresses generated by the115

Westergaard stress function, without the simplification required to obtain the classical KI= σ
√

(πa)116

formula.117

As pzIng(θ) and pzWtg(θ) are obtained from completely different equations, their near coincidence is118

certainly not fortuitous. Therefore, the large σn/SY effect predicted by these rigorous solutions really119
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Figure 3: Mises plastic zones in plane stress and in plane strain in an infinite cracked plate in mode
I, calculated using the complete stresses generated by the Westergaard stress function.

  
Figure 4: Comparison of the Mises plastic zones estimated from Inglis (using ρ = CTOD/2) and from
Westergaard under plane stress and plane strain.

should not be neglected in practice. This point must be emphasized, since it is the plastic zone size120

that validates most LEFM predictions. Moreover, the Inglis and Westergaard plastic zones virtually121

coincide when the sharp ellipsis used to model the crack has its minor semi-axis (instead of its tip122

radius) assumed as half the classical crack opening displacement estimated by Irwin, b = CTOD/2 =123

2KI
2/πSY E’, see Figure 5.124

It is interesting to note that assuming the Inglis and the Westergaard-based pz(θ) must coincide, a125
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quite reasonable hypothesis since they describe the same linear elastic problem, then a new estimate126

for the CTOD can be proposed, since if b = 2KI
2/πSY E’ and ρ = b2/a, then127

CTOD = 2ρ = 2
4K4

I

(πSY E′)2 · a =
8
π

(
KIσn

E′SY

)2

=
8
π

(
KI

E′ φY

)2

∼= 2.55
(

KI

E′ φY

)2

(15)

  
Figure 5: The plastic zones estimated using the complete linear elastic stresses induced by the West-
ergaard stress function are visually undistinguishable from the plastic zones estimated from the Inglis
stresses when a sharp elliptical notch with b = CTOD/2 = 2KI

2/πSY E’ instead of ρ = CTOD/2 is used
to model the crack.

5 Corrected plastic zone estimates including equilibrium considerations128

The so-called Inglis and Westergaard plastic zones are already an improvement over the traditional129

pz(θ) estimates based solely on KI , such as those expressed in equations (1). They take into account the130

σn/SY effect which, as demonstrated above, is indeed quite important under real loading conditions,131

where yielding safety factors in the range 1.2 < SY /σn = ϕY < 3 are common practice when designing132

and using tough metallic structures. But they can be further enhanced because, in spite of obeying all133

contour conditions, they intrinsically suppose that the stresses remain LE in the whole studied plate,134

neglecting the yielding near the crack tip. In other words, they do not consider the force loss caused135

by the yielding-induced stress limitation inside the plastic zone and, in consequence, they violate the136

equilibrium equation.137

This problem can, of course, be corrected following Irwin’s classical idea, assuming that:138

1. the material does not strain harden, thus the Mises (or Tresca) stress remains fixed inside the139

plastic zone, where σM = SY ; and140
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2. the original LE stress distribution can be simply displaced by a value r*(θ) to balance the force141

originally associated with σM (r, θ) > SY or, in other words, the LE stresses outside the plastic142

zone can be expressed by σij(r - r*(θ), θ).143

The Irwin plastic zone pzIrw(θ), which is corrected following his two assumptions to balance the144

force generated bythe KI -induced σy stress, is generally calculated only at the crack plane, where145

pzIrw(θ = 0) = KI
2/πSY

2 = 2pz0. But his idea can be easily extended to generate the whole pzIrw(θ)146

elastic-plastic frontier by solving σM (r = pzIrw(θ), θ) = SY , a task that can be accomplished by first147

calculating the σy linear elastic stress at the classical pz(θ) frontier described by equation (1):148

σy[pz(θ), θ] =
KI√

2π · pz(θ)
cos

θ

2

[
1 + sin

θ

2
sin

3θ

2

]
(16)

This σy(θ) stress at the pz(θ) frontier must remain constant inside pzIrw(θ), since Irwin assumed149

that the material does not strain-harden, but it must also generate the same force caused by the150

singular LE σy(θ) original stress to maintain the plate under equilibrium (neglecting the σn/SY ratio151

contribution), thus152

σy(r = pz(θ), θ) · zpIrw(r, θ) =

pz(θ)∫

0

[
KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)]
dr (17)

Therefore, the classical pzIrw(θ) in plane stress can be expressed by an unique analytical expression:153

pzIrw(θ) =
2KI

√
pz(θ)√

2π · σy[pz(θ), θ]
cos

θ

2

[
1 + sin

θ

2
sin

3θ

2

]
(18)

It is relatively simple to reproduce this analysis to treat the plane strain case, see Figure 6. As154

expected, the pzIrw(θ) are just σn/SY -independent hypertrophied versions of the traditionally esti-155

mated KI -induced pz(θ) plastic zones.156

Now Irwin’s idea can be finally adapted to estimate the Mises plastic zones around a crack tip157

using the complete stresses generated by the Westergaard stress function, obeying at the same time158

the contour condition σy(x→ ∞) = σn and the equilibrium of the applied force on the Irwin plate,159

as any decent estimate should always do. It is interesting to note that it is not necessary to repeat160

this exercise departing from the Inglis stresses, since the plastic zones generated from them are almost161

identical to the Westergaard plastic zones, pzIng(θ) ∼= pzWtg(θ) if b = 2KI
2/πSY E’, as demonstrated162

above.163

A procedure very similar to the one used for generating equation (18), based on the assumption164

that the σy(θ) stress remain fixed inside the plastic zone because the material does not strain-harden,165

can be applied to accomplish this purpose:166

σy[pzWtg(θ), θ] · pzeql(θ) =
pzW tg(θ)∫

0

σy(r, θ)dr ⇒

pzeql(θ) = 1
σy[zpW tg(θ),θ]

pzW tg(θ)∫
0

{
Re[Z(r, θ)] + y Im′[Z ′(r, θ)]

}
dr

(19)
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Figure 6: Irwin plastic zones pzIrw(θ) in plane stress and plane strain, generated to balance the force
generated by the KI -induced σy stress, without taking into account the σn/SY effects.

The resulting plastic zone estimates, pzeql(θ), for the cracked infinite plate loaded in mode I in plane167

stress and in plane strain considering both the σn/SY ratio and the equilibrium influence, can then be168

finally obtained by numerically integrating equation (19), see Figure 7.169

  
Figure 7: Mises pz(θ) estimated using the complete stresses induced by the Westergaard stress function
for the Griffith plate, considering both the σn/SY ratio and the equilibrium effects.

Figure 7 presents the best plastic zones that can be estimated from the linear elastic stress field in a170

cracked Irwin plate, neglecting strain-hardening but considering both the nominal stress to the yield171
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strength ratio σn/SY and the force equilibrium effects, based on relatively simple but sound analytical172

procedures. It is important to note that at σn/SY = 0.8 the maximum dimension of this pzeql(θ) in173

plane stress is about 6 (six) times bigger than the frequently used classical pz0 = K2
I

/
2πS2

Y estimate,174

whereas in plane strain it is almost 5 times bigger, values that certainly are not negligible.175

And it is worth mentioning that these simple estimates do reproduce the familiar butterfly shape of176

the plastic zone around the crack tip, well known by anyone who ever made a fatigue crack propagation177

or a toughness measurement using a polished specimen.178

6 Fitting the equilibrated plastic zone estimates179

It is interesting to propose empirical equations to fit the obtained numerical solutions of the analytically180

proposed plastic zone frontiers which consider both the σn/SY and the equilibrium effects. The plastic181

zone size at an angle θ = 0 can be expressed for 0 ≤ σn/SY ≤ 0.8 within 1% by (see Figure 8)182

pzeql(θ = 0)pl−σ = 2pz0

[
1− 0.63

σn

SY
− 0.1

(
σn

SY

)2

+ 1.35
(

σn

SY

)3
]

pzeql(θ = 0)pl−ε = 2pz0(1− 2ν)2
[
1− 0.17

σn

SY
− 0.3

(
σn

SY

)2

+ 1.4
(

σn

SY

)3
] (20)
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Figure 8: Calculated and fitted values of the equilibrated plastic zone size at the crack plane divided
by the reference plastic zone size, pzeql(θ =0)/pz0, as a function of the ratio σn/SY , for the Griffith
infinite cracked plate loaded in mode I, for plane stress and plane strain (ν = 0.3).
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The above results agree with Finite Element calculations from Newman et al. [7] for elastic-perfectly183

plastic middle-crack tension specimens M(T), which had thicknesses in the range 1.25 < t < 20mm,184

Poisson’s ratio ν = 0.3, and a flow stress σ0 = (SY + SU )/2 = 500MPa, where SY and SU are the yield185

and the (tensile) ultimate strength, resulting in the empirical equations186

pzNewman(θ = 0) = pz0 · π2

4 · α2
g

(21)

In the plane stress case, associated with a thickness t tending towards zero, the constraint factor187

αg clearly tends to 1.15, resulting in pzNewman,pl−σ
∼= 1.87·pz0. And under plane strain, assuming a188

very large t, the above expression tends to αg = 2.40 for the M(T) specimen, therefore pzNewman,pl−ε189

∼= 0.43·pz0. For a σn/SY ratio of 0.7 used in the calculations, equations (20) would result in pzeql,pl−σ190

= 1.95·pz0 and pzeql,pl−ε = 0.39·pz0, a quite reasonable agreement.191

The maximum size of the plastic zone, pzmax, and its associated direction θ = θmax can also be192

fitted with similar expressions for 0 ≤ σn/SY ≤ 0.8, resulting in (see Figure 9)193

pzeql(θ = θmax)pl−σ = 2pz0

[
1.33 + 0.7

(
σn

SY

)
+ 1.7 ·

(
σn

SY

)2
]

pzeql(θ = θmax, ν = 0.3)pl−ε = 2pz0

[
0.8 + 1.5

(
σn

SY

)
+ 0.62

(
σn

SY

)2
] (22)

194

θmaxpl−σ = ±cos−1

[
0.33− 0.07

(
σn

SY

)
− 0.25

(
σn

SY

)2

+ 0.76
(

σn

SY

)3
]

θmaxpl−ε(ν = 0.3) = ±cos−1

[
0.053 + 0.84

(
σn

SY

)
− 1.57

(
σn

SY

)2

+ 1.36
(

σn

SY

)3
] (23)

Note that the above expressions for the maximum angles agree with the expected values for low195

nominal stresses, i.e., if σn/SY tends to zero then196

θmaxpl−σ = ±cos−10.33 ∼= ±70.5o

θmaxpl−ε(ν = 0.3) = ±cos−10.053 = ±cos−1[(1− 2ν)2
/

3] ∼= ±86.9o
(24)

Note also from Figure 9 that the angle θmax under plane strain decreases in absolute value (because197

its cosine increases) when the ratio σn/SY gets higher, a clear indication of the “butterfly effect” on198

the plastic zone shape. This also happens under plane stress, however only for σn/SY > 0.3. Finally,199

expressions are proposed to fit the shape of the calculated plastic zones:200
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Figure 9: Calculated and fitted values of the maximum normalized plastic zone size (pzeql)max/pz0
(left) and associated angle θmax (right), as a function of σn/SY , for plane stress and plane strain (ν =
0.3).

pzeql(θ) = pzeql(θmax)− [pzeql(θmax)− pzeql(0)]
[
cos θ − cos θmax

1− cos θmax

]2

, |θ| 6 θmax

pzeql(θ) = pzeql(θmax) ·
[

cos θ + 1
cos θmax + 1

]1+0.8 σn
SY ·

[
cos θ − γ

cos θmax − γ

]1−0.8 σn
SY

, θmax < |θ| 6 π

(25)

where the auxiliary variable γ is defined as201

γ ≡ 1− 0.8 · σn/SY + 2 · cos θmax

1 + 0.8 · σn/SY
(26)

Finally note that the above expressions are valid for either plane stress or plane strain, as long as202

the appropriate values of pzeql(0), pzeql(θmax) and θmax presented above are used. The quality of the203

fitting can be seen in Figure 10 for plane stress and plane strain.204

However, these pzeql(θ) are specific for the Irwin plate, but the same procedure can be applied205

to estimate the plastic zones of any other geometry for which an appropriate Westergaard stress206

function is available. Moreover, these estimates can be used for calibrating finite-element plastic zone207

calculations, which can be quite tricky.208

7 Conclusions209

The nominal stress to the yield strength ratio, σn/SY , significantly affects the size and the shape of210

the plastic zones ahead of crack tips, as demonstrated by the rigorous solution of the Irwin crack211

problem. Therefore, contrary to what is usually accepted and taught in the traditional LEFM liter-212

ature, the plastic zones do not depend only on the magnitude of the stress intensity factor KI . This213
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Figure 10: Fitted curves to the Mises plastic zones under plane stress (left) and plane strain (right)
considering both the σn/SY and the equilibrium effects.

fact has important consequences, as it can be used to seriously question the similitude principle, one214

milestone in the practice of mechanical design against fracture. Thus, it should be better explored and215

understood.216
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