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Abstract

Most of the existing methods for estimating eN parameters are based on a relatively limited amount of experimental data. In
addition, sound statistical evaluation of the popular rules of thumb used in practice to estimate fatigue properties is scarce, if
available. In this work, an extensive statistical evaluation of the existing Coffin–Manson parameter estimates is presented based
on monotonic tensile and uniaxial fatigue properties of 845 different metals, including 724 steels, 81 aluminum alloys, and 15
titanium alloys. The studied Coffin–Manson estimates include the methods proposed by Muralidharan and Manson, Bäumel and
Seeger, Roessle and Fatemi, Mitchell, Ong, Morrow, Raske, as well as Manson’s universal slope and four-point correlation meth-
ods. From the collected data, it is shown that all correlations between the fatigue ductility coefficient e0f and the monotonic tensile

properties are very poor, and that it is statistically sounder to estimate e0f based on constant values for each alloy family. Based on

this result, a new estimation method which uses the medians of the individual parameters of the 845 materials is proposed.
# 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The so-called eN fatigue design method correlates

the number of cycles N to initiate a fatigue crack in

any structure with the life of small specimens made of

the same material and submitted to the same strain his-

tory that loads the critical point (generally a notch

root) in service. This method does not recognize the

presence of cracks; however, it models macroscopic

elastic–plastic events at the notch roots and uses the

local strain range (a more robust parameter to describe

plastic effects) instead of the stress range to quantify

them. Therefore, the eN method must be used to model

low-cycle fatigue problems, when the plastic strain

range Dep at the critical point is of the same order or

larger than the elastic range Dee, but it can be applied

to predict any crack initiation life.
The classical eN method works with real (logarith-

mic) stresses and strains, uses a Ramberg–Osgood

description for the DrDe hysteresis loops, and considers

the cyclic softening or hardening of the material, but

not its transient behavior from the monotonic re curve

[1–5]. Hence, a single equation is used to describe all

hysteresis loops:

De
2

¼ Dee
2

þ Dep
2

¼ Dr
2E

þ Dr
2K 0

� �1=n0

ð1Þ

where E is the Young modulus, K0 is the hardening

coefficient and n0 is the hardening exponent of the

cyclically stabilized DrDe curve. Values for the cyclic

hardening exponent n0 are typically between 0.05 and

0.3, while the monotonic hardening exponent n is more

disperse, varying between 0 and 0.5 in most cases.
The relationship between the strain range De at the

critical point and its fatigue initiation life N is usually
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given by the classical Coffin–Manson equation:

De
2

¼ Dee
2

þ Dep
2

¼ r0
f

E
2Nð Þbþe0f 2Nð Þc ð2Þ

where r0
f , e0f , b and c are the fatigue strength and duc-

tility coefficients and exponents measured in fully alter-
nated tension–compression fatigue tests.
Assuming that Ramberg–Osgood’s elastic and plastic

strain ranges perfectly correlate with the correspondent

Coffin–Manson’s ranges, then only four of the six

material parameters fn0;K 0;r0
f ;e

0
f ;b;cg would be inde-

pendent. Thus, from Eqs. (1) and (2),

Dr
2

¼ r0
fð2NÞb ¼ K 0e0f

n0 2Nð Þc	n
0
) n0 ¼ b

c
;

K 0 ¼ r0
f

e0f
n0

ð3Þ

The Ramberg–Osgood and Coffin–Manson equa-

tions describe well the cyclic response of many materi-

als; however, they are not physical laws. Instead, Eq. (3)

must be regarded as a measure of the coherence

between those equations. Therefore, such ‘‘theoretical’’

estimates should not be used to replace experiments.

Whenever possible, all six material parameters should

be independently obtained from actual measurements.
However, for initial design studies, it is desirable to

estimate these six eN parameters based only on readily

available monotonic tensile test data. The main esti-

mation methods proposed in the literature are dis-

cussed next.
2. Estimation methods of fatigue properties

Several estimates of Coffin–Manson’s parameters

have been proposed in the literature since Morrow [6],

who in 1964 correlated the b and c exponents of Cof-

fin–Manson’s equation with the cyclic hardening

exponent n0, see Table 1.
Based on the experimental results on 69 metals,

Manson [7] proposed in 1965 two different methods:

the universal slope method, in which b and c are

assumed constant for all metals (namely b¼ �0:12 and

c¼ �0:6), and the four-point correlation method,

defined through estimates of the elastic or the plastic

strain ranges Dee=2 or Dep=2 at four different lives

(namely N¼ 1=4; 10; 104 and 105 cycles). Both Man-

son’s estimates make use of the ultimate strength SU
and the reduction in area RA.
Raske and Morrow [8] published in 1969 an estimate

for the fatigue ductility coefficient e0f from r0
f , n

0, and

the cyclic yielding strength S0
Y.

Mitchell et al. [9] proposed in 1977 that the exponent

b (and not only r0
f ) is a function of SU, estimated e0f

directly from the true fracture ductility ef , and assumed

that Manson’s slope c¼ �0:6 is only valid for ‘‘ductile’’

metals, while c¼ �0:5 should be more appropriate for

‘‘strong’’ alloys.
In 1988, Muralidharan and Manson [10] revisited the

universal slope idea, increasing both Coffin–Manson’s

exponents to b¼ �0:09 and c¼ �0:56, and introducing

the parameter SU=E to estimate both coefficients, r0
f

and e0f .
Table 1

Estimation methods for Coffin–Manson’s parameters
Estimate r
0
f e
0f b
 c
Morrow (1964) –
 –

1

�n0

þ5n0

�1

1þ5n0
Manson’s universal slopes

(1965)

1
.9	SU 0
:76 	 ln 1
1�RA

� �� �0:6 �
0.12
 �0.6
Manson’s four-point (1965) 1
:25rf 	 2b
rf ffi SUð1þ ef Þ

0
:125
20c 	 ln 1

1�RA

� �� �3=4 lo
gð0:36	SU=rf Þ
5:6
1
3 log

0:0066�r0
f
ð2104Þb=E

0:239	fln½1=ð1�RAÞ�g3=4
Raske–Morrow (1969) –
 0
:002 	 ðr0
f=S

0
YÞ

1=n0 –
 –
Mitchell (steels, 1977) S
U þ 345 MPa e
f 1
6
 log

0:5	SU
SUþ345
�0.6 (‘‘ductile’’) or �0.5
(‘‘strong’’)
Muralidharan–Manson

(1988)
0
:623E SU

E

� �0:832
0
:0196ðSU=EÞ�0:53 	
ln 1

1�RA

� �� �0:155
�
0.09
 �0.56
Bäumel–Seeger

(steels, 1990)

1
.5	SU 0
:59 if SU=E �
0:003 or 0:812� 74 	 SU=E

�
0.087
 �0.58
Bäumel–Seeger

(Al and Ti, 1990)

1
.67	SU 0
.35 �
0.095
 �0.69
Ong (1993) S
U 	 ð1þ efÞ e
f 1

6 log

ðSU=EÞ0:81
6:25	rf=E
1
4 log

0:0074�r0
f
ð104Þb=E

2:074	ef

Roessle–Fatemi

(steels, 2000)

4
:25 	HBþ 225 MPa ½
0:32 	HB2 � 487 	HBþ
191;000 MPa�=E

�
0.09
 �0.56
Medians (steels, 2002) 1
.5	SU 0
.45 �
0.09
 �0.59

Medians (Al alloys, 2002) 1
.9	SU 0
.28 �
0.11
 �0.66
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Two years later, Bäumel and Seeger [11] were the
first to recognize the importance of separating the eN
estimates by alloy family, proposing different methods
for low-alloy steels and for aluminum (Al) and
titanium (Ti) alloys in their uniform material laws. It
was found that on average, both exponents b and c are
significantly lower in Al or Ti alloys than in steels,
which might explain the low value of b proposed by
Manson in 1965 [7], who included in his analyses sev-
eral alloy families besides steels. Bäumel and Seeger
were also the first to ignore any monotonic measure of
the material ductility (such as the reduction in area
RA) when estimating the fatigue ductility coefficient, e0f .
In 1993, Ong [12] revisited Manson’s four-point cor-

relation method and proposed a few modifications to
better fit the experimental data of 49 steels from the
SAE J1099 technical report on fatigue properties [13].
Once again, b and c were assumed to be functions of
the ultimate strength SU and the true fracture ductility
ef , while e0f was estimated in the same way as Mitchell

proposed in 1977.
Recently, Roessle and Fatemi [14] proposed the

hardness method, assuming the same constant slopes as
Muralidharan and Manson did, while estimating both
Coffin–Manson’s coefficients as a function of the Brin-
nell hardness, HB. It is no surprise that r0

f can be esti-
mated from the hardness HB, since SU and HB present
a very good correlation for steels: if SU is given in MPa
and HB in kg/mm2, SU is approximately 3.4 HB with
a (small) coefficient of variation V¼ 3:8%, from a
study on 1924 steels from the ViDa software database
[15,16].
In the last decade, several works have been published

evaluating the life prediction errors associated with
each of the estimation methods discussed above [14,17–
20]. In 1993, Ong [17] evaluated Manson and Mitchell’s
original methods based on properties of 49 steels. He
concluded that Mitchell’s method resulted in overly
non-conservative predictions, while Manson’s universal
slope and four-point methods, although giving better
life estimates, were only able to obtain satisfactory cor-
relations for the fatigue strength coefficient, r0

f . One
year later, Brennan [18] compared all Manson’s meth-
ods and concluded that Muralidharan–Manson’s
revised universal slopes [10] resulted in good predic-
tions; however, his analysis was based on only six
steels.
Park and Song [19] evaluated all methods proposed

until 1995 using published data on 138 materials. They
found that both Manson’s original methods are excess-
ively conservative for long life predictions, but slightly
non-conservative for short lives. In contrast, Mur-
alidharan–Manson’s method is slightly conservative at
shorter lives, but is non-conservative at long lives,
being selected as the best overall estimation method
together with Bäumel–Seeger’s uniform material laws.
Park and Song also confirmed that Mitchell’s method
leads to non-conservative predictions over the entire
life range.
Roessle and Fatemi [14] studied measured properties

of 20 steels plus 49 steels from the SAE J1099 technical
report on fatigue properties [13], arriving at basically
the same conclusions as Park and Song did. In
addition, no strong correlation was found between r0

f

and the true fracture strength. They also found that
using the true fracture ductility ef to estimate e0f can

result in significant error. Finally, Kim et al. [20] pre-
sented an evaluation of all available estimation meth-
ods, based on measured properties of eight steels. It
was found that the best life predictions were obtained
using Bäumel–Seeger, Roessle–Fatemi and Mur-
alidharan–Manson’s methods. In addition, Ong’s
method resulted in non-conservative predictions
especially for long lives.
From the above evaluations, it is possible to con-

clude that the best estimation methods are all based on
constant values of the exponents b and c, while in gen-
eral r0

f is well estimated (directly or indirectly) as a lin-
ear function of the ultimate strength SU. It is also
suggested that e0f does not correlate well with any

monotonic measure of the material ductility, such as
RA or ef . Comparing to the existing estimates for e0f ,
from a statistical point of view assuming it is a con-
stant would result in better predictions. Based on these
conclusions, a new eN estimate called the medians
method is proposed in this work, which assumes con-
stant values for r0

f=SU, e0f , b and c. From a statistical

study on the fatigue properties of 845 different metals,
it is found that better estimates are obtained from the
median values of each of these four parameters, calcu-
lated for each alloy family. A statistical evaluation of
this method and all others discussed above is presented
in the following sections.
3. Experimental program

Strain-controlled constant amplitude fatigue and
monotonic tension tests at room temperature were per-
formed on eight steels and one aluminum alloy accord-
ing to the ASTM standards E606 and E8 [21,22]. The
tested materials consisted of API steels 5D S-135, 5L
Grade B, 5L X-60 (base and welded metals), SAE
steels 1020 and 4340, USI SAR 60 (base and wet wel-
ded metals), and the aluminum alloy 7075-T6. USI
SAR 60 is the commercial name of a low-C high-
strength structural steel manufactured by Usiminas,
with a minimum yielding strength of 460 MPa and
analyzed % weight chemical composition of C 0.12,
Mn 1.09, Cr 0.18, Mo 0.14, V 0.09, Al 0.04, Si 0.024,
Ti 0.02, Ni 0.02, and P 0.014.
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A minimum of 10 eN specimens of each material
were cyclically tested at strain amplitudes which ranged
from 0.2% to 1.2%. All tests were made at R¼ �1,
under strain control on servo-hydraulic testing
machines at around 1 Hz. The module method [21] was
used to determine the fatigue life of the steels, but the
7075-T6 aluminum specimens, due to their low fracture
toughness, broke before any significant crack growth.
Ramberg–Osgood curves were fitted to the cyclically
stabilized hysteresis loops, and the Coffin–Manson
parameters were obtained from the strain-life data.
Table 2 provides a summary of the experimentally
obtained material properties.
To evaluate the existing procedures for estimating

fatigue lives, these nine metals were combined with the
tensile and eN properties of 836 materials obtained
from the literature, totaling 724 different steels, 81
aluminum, 15 titanium, nine nickel alloys, and 16 cast
irons. These materials were tested under several con-
ditions or heat treatments, at temperatures varying

from 21 to 800
v
C.

It should be emphasized that this sample included
only the metals which reportedly had fully measured
Coffin–Manson, cyclic Ramberg–Osgood, and mono-
tonic tensile properties among the more than 13,000
different materials listed on the ViDa software database
[15,16]. ViDa is a powerful PC-based academic pro-
gram developed to automate all traditional local
approach methods used in fatigue design, including the
SN, the IIW (for welded structures) and the eN for
crack initiation, and the da=dN for crack propagation.
Its comprehensive materials database has been com-
piled from several sources in the literature and care-
fully filtered to avoid suspicious data. In particular, all
materials considered in this study can be found in
[11,13,14,18,20,23–25], and their experimental Coffin–
Manson curves are shown in Figs. 1 and 2.
The 724 steels include (but are not limited to): SAE

steels such as 1005, 1006, 1008, 1015, 1018, 1020, 1025,
1030, 1035, 1038, 1040, 1045, 1050, 1080, 1090, 10B21,
10B22, 10B30, 10B62, 1141, 1144, 1522, 1541, 1561,
15B27, 15B35, 4130, 4135, 4140, 4142, 4340, 5160,
52100, 8620H, 8630, 8640, 9262, 950, 950C, 950X,
960X, 980X, Gainex; ASTM steels A36, A136, A302B,
A514, A516 Gr.70, A538A, A538B, A538C, A588; stain-
less steels such as 304, 304L, 310, 316, 321, SUH310-B,
SUH616-B, SUH660-B, SUS304-B, SUS316-B, SUS316-
HP, SUS321-B, SUS347-B, SUS403-B, AM350; and
also several others including 8 Mn 6, 13 Cr Mo 44, 14
Mo V 63, 15 Mo 3, 18 Ni (250) Maraging, 19 Mn 5, 2.25
Cr 1 Mo, 28 Cr Mo NiV 49, 28 Ni Cr Mo 74, 300-M, 34
Cr Ni Mo 6, 40 Cr Mo 4, 41 Cr M4B, 42 Cr Mo 4, 49
Mn VS3, 55 Cr 3, EN 8M, EN 8R, EN 16S, EN 16T,
Table 2

Mechanical properties of the tested materials
E
 (GPa)
 SU (MPa) S
Y (MPa)
 S0
Y (MPa) R
A (%) K
0 (MPa) n
0 r
0

f (MPa) e
0f
 b c
API 5D S-135 2
00
 1175 1
033
 800 6
0 1
910 0
.14 1
620 0
.49
 �0.09 �
0.73

API 5L Gr.B 2
08
 423
 294
 277 6
0 1
229 0
.24
 964 0
.36
 �0.145 �
0.55

API 5L X-60 1
98
 533
 457
 409 4
6
 813 0
.12
 647 0
.24
 �0.049 �
0.53

API 5L X-60 weld 1
98
 576
 478
 475 4
8
 890 0
.098
 650 0
.26
 �0.06 �
0.77

SAE 1020 2
05
 491
 285
 270 5
4
 941 0
.18
 815 0
.25
 �0.114 �
0.53

SAE 4340 2
00
 1250 1
060
 700 3
6 1
890 0
.16 1
180 0
.092
 �0.06 �
0.44

SAR 60 2
05
 620
 540
 500 4
0 1
122 0
.13 1
010 0
.45
 �0.08 �
0.62

SAR 60 wet weld 1
74
 463
 390
 400 2
9
 494 0
.034
 478 0
.37
 �0.037 �
1.06

Al 7075-T6
 71.9
 576
 498
 494 1
1
 787 0
.07
 709 0
.12
 �0.056 �
0.75
Fig. 1. Coffin–Manson curves of 724 steels under temperatures

between 21 and 800
v
C.
Fig. 2. Coffin–Manson curves of 81 aluminum and 15 titanium

alloys.
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EN 24, EN 25, H11, HI-Form 60, HT 60, HT 80, HY
80, HY 130, Incoloy 800H, Man-Ten, RQC 100, RQT
501, RQT 701, St 46, St 49, St 50, SCMV 2, SCMV 3,
SCMV 4 and SPV 50.
The 81 aluminum alloys include 1050, 1100, 2014-

T6, 2024-T3, 2024-T351, 2024-T4, 2219-T851, 356-T6,
5083-H12, 5083-O, 5086-F, 5182-O, 5183-O, 5454-H38,
5454-O, 5456-H311, 6005, 6061-T4, 6061-T6, 6061-
T651, 6082, 6351, 7075-T6, 7075-T61, 7075-T65, 7075-
T651, 7075-T73, 7075-T7351, 7175-T73, A356-T6,
among others.
Some of the considered titanium alloys are: Ti

0.4Mn, Ti 5Mn, Ti 8Mn, Ti 10Mn, Ti 6Al 4V, and Ti
8Al 1Mo 1V. The cast irons include AISI A48-40B,
A48-50B, A48-60B, GG 25, GG 35, GG 40, GGG 40,
GGG 60, and GTS 55; and some of the nickel-base
alloys are: Hastelloy X, Inconel 713C, Inconel 718,
Inconel X, and Waspaloy A.
From the large size and diversity of the steel and

aluminum samples, they may be considered representa-
tive of the behavior of these alloy families. Among the
724 steels, 540 were tested at room temperature, while
the other 184 were tested under temperatures between
400 and 800

v
C. As suggested in Fig. 1, temperature

does not influence decisively on the scatter of the Cof-
fin–Manson curves of the analyzed steels; therefore, the
low- and high-temperature data are evaluated together.
However, the high-cycle fatigue resistance is signifi-
cantly lowered under high temperatures (Fig. 1). Part
of this temperature effect can be accounted for by all
discussed estimation methods, because the lower values
of the ultimate strength SU or the Brinnell hardness
HB found at high temperatures always result in lower
estimates of the fatigue resistance coefficient, r0
f . In the

next section, the Coffin–Manson and Ramberg–Osgood
parameter estimates are statistically evaluated.
4. Statistical evaluation of the eN parameter

estimates

In this section, the Coffin–Manson and Ramberg–
Osgood parameters and their estimates are individually
studied based on the data of the 845 metals described
above. For the statistical study, each data set is sorted
in ascending order, and then each data point is associa-
ted to its mean rank. Then, each data set is fitted using
12 continuous probability distributions: beta, Birn-
baum-Saunders, gamma, inverse Gauss, logistic, log-
logistic, normal, log-normal, Pearson, Gümbel (extreme
value), and Weibull [26,27]. The chi-square and Ander-
son–Darling tests [28,29] are used to evaluate the good-
ness-of-fit of each of the considered distributions for
each set. In particular, both tests show that the log-
logistic distribution [27] is the one that best fits the Cof-
fin–Manson parameters b, c, and e0f , the cyclic hardening
exponent n0, and the ratios r0

f=SU and n0=ðb=cÞ of the
considered steels and aluminum alloys. This does not
necessarily mean that these variables follow the log-
logistic distribution, it is only an indication that among
the 12 considered distributions, this is the one that most
likely produced the specific data sets used in this analy-
sis. The best-fitted distributions and their mean, median,
and coefficient of variation V (defined as the ratio
between the standard deviation and the mean) are
shown in Fig. 3.
ity functions and {mean, median, coefficient of variation} of Coffin–Manson and Ramberg–O
Fig. 3. Probability dens sgood parameters of 724

steels and 81 aluminum alloys.
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All 845 metals have r0
f=SU ratios between 0.5 and 10,

with average 1.65 and median 1.5 for steels, suggesting
that Manson’s estimate r0

f ¼ 1:9 	 SU is potentially non-

conservative for these materials. The fatigue ductility
coefficient e0f has the greatest scatter of all studied

properties (coefficient of variation V up to 179%), with
values ranging from 0.001 to 400. It must be noted that
e0f values much greater than 2.3 are very likely a result

of bad fitting of the Coffin–Manson curve, because
such values would imply in a reduction in area RA
much greater than 90% at 2N¼ 1. Also, all considered
metals have cyclic hardening coefficients K0 ranging
between E/1000 and E/20, cyclic hardening exponents
n0 between 0.01 and 0.6, fatigue strength exponents b
between �0.35 and �0.01, and fatigue ductility expo-
nents c between �1.5 and �0.1. More specifically, 93%
of the steels have 0:06 <n0< 0:35, 92% have
�0:2 <b< �0:05, and 94% are in the range
�0:9 <c< �0:3. In addition, 94% of the aluminum
alloys have 0:03 <n0< 0:2, 91% have �0:2 <b< �0:08,
and 88% present �1:0 <c< �0:4.
To verify the coherence between Coffin–Manson’s

and Ramberg–Osgood’s elastic and plastic strain ran-
ges, the correlations presented in Eq. (3) are evaluated
for the considered steels and aluminum alloys, see
Fig. 4. From this study on 724 steels, it is found that
there is a reasonable (but not exact) correlation
between the cyclic hardening exponent n0 and the ratio
b=c, with a coefficient of variation V¼ 15%. The cyclic
hardening coefficient K0 estimate based on n0 and on
Coffin–Manson’s coefficients is also fairly good for
steels, despite the somewhat significant scatter in the
experimental data, V¼ 15% as well. However, for the
considered 81 aluminum alloys, it is found that Eq. (3)
tends to overestimate both n0 and K0, see Figs. 3 and 4.
This is an indication that the coherence between the
stress–strain and strain-life relationships used in the
traditional eN method is better verified in steels than in
aluminum alloys.
The several Coffin–Manson parameter estimates are

now evaluated through Figs. 5–12. As seen in Fig. 5,
Manson’s estimate for the fatigue strength coefficient
r0
f is non-conservative for most steels, while Mitchell’s

method results in better values. However, due to the
345 MPa offset in Mitchell’s estimate, r0

f is over-

estimated in materials with low ultimate strength SU,
such as steels under high temperatures (Fig. 5). Mur-
alidharan–Manson’s method provides a much better r0

f

estimate for steels; however it is overly conservative for
aluminum and titanium alloys. Also, it is found that
Muralidharan–Manson’s r0

f estimate for steels can be

successfully approximated by 1.5	SU, a much simpler
and equally effective expression. Interestingly, the fac-
tor 1.5 is also the median value of the r0

f=SU ratio for

the 724 steels.
The correlations between the fatigue strength

exponent b and RA or SU are poor for all studied
metals: Manson’s four-point method underestimates b
for most materials, while Mitchell’s correlation has a
large scatter (Fig. 6). Even though b and c correlate
fairly well with the hardening exponent n0, estimating
these exponents as constants results in a smaller co-
efficient of variation if compared to the available
estimates. In addition, Morrow’s b estimate is non-con-
servative for almost all studied aluminum and titanium
alloys. A sensitivity analysis (discussed in the next sec-
tion) shows that better predictions are obtained from b
and c estimates based on their median values for each
alloy family: b¼ �0:09 and c¼ �0:59 for the 724 steels,
and b¼ �0:11 and c¼ �0:66 for the 81 aluminum
alloys (Fig. 7).
As seen in Fig. 8, the fatigue ductility coefficient e0f

does not correlate well with the reduction in area RA
or the true fracture ductility ef . Mitchell and Manson’s
e0f estimates are non-conservative. Also, there is a large

scatter in Muralidharan–Manson and Bäumel–Seeger’s
e0f estimates to justify a suitable correlation with SU=E.

One limitation of Bäumel–Seeger’s method is that it is
only valid if the ultimate strength SU is much smaller
than 2.2 GPa, otherwise negative values of e0f may be

obtained. Raske–Morrow’s e0f estimate also has a large

scatter, because it implicitly assumes a perfect corre-
lation between the elastic and plastic strain ranges in
Ramberg–Osgood and Coffin–Manson.
Manson’s method based on fixed points also results

in poor estimates for the studied materials. The elastic
and plastic strain ranges in Manson’s four-point corre-
lation are overestimated at N¼ 1=4; 10 and 104 cycles
for steels (Fig. 9). The only fixed point with a fair cor-

relation is N¼ 105 cycles, where the elastic strain

Fig. 4. Coherence between Coffin–Manson and Ramberg–Osgood

parameters for steels and aluminum alloys.
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amplitude is slightly underestimated by 0:45 	 SU=E.
The Coffin–Manson coefficients r0

f and e0f are over-

estimated from the four-point correlation method, the
exponent b is underestimated, and for 93% of the
steels, c results in the narrow range �0:7 <c< �0:5
(Fig. 10). Ong’s proposed modification to the four-
point correlation method results in better average esti-
mates for r0

f , b and c; however, as in Mitchell’s

method, it overestimates e0f (Fig. 11).
Roessle–Fatemi’s method results in a fair correlation

between r0
f and the Brinnell hardness, HB. From the

good correlation SU ¼ 3:4 	HB for steels, this r0
f esti-

mate can be rewritten as 1:25 	 SU þ 225 MPa, an inter-
mediate function in between Manson’s and Mitchell’s.
However, Roessle–Fatemi’s estimate for e0f does not

correlate well with the analyzed data. Therefore, from
a statistical viewpoint, sophisticated equations surpris-
ingly tend to increase the dispersion in e0f . The least

scatter in those cases was obtained assuming a constant
value such as its median 0.45 for steels or 0.28 for
aluminum alloys (Fig. 3).
Based on the above conclusions, an eN estimate

called the medians method is proposed, which estimates

r0
f=SU, e0f , b and c as constants equal to their medians

for each alloy family:

De
2

¼ 1:5
SU

E
ð2NÞ�0:09 þ 0:45

	 ð2NÞ�0:59 ðfrom 724 steelsÞ ð4Þ
De
2

¼ 1:9
SU

E
ð2NÞ�0:11 þ 0:28

	 ð2NÞ�0:66 ðfrom 81 aluminum alloysÞ ð5Þ
One of the reasons why in general mean values do

not produce good parameter estimates is that the mean

is very much affected by the extreme values at the tails

of the probability distributions (which represent only a

small percentage of the considered sample). On the

other hand, the median is a much more robust para-

meter, especially in the case of asymmetric distributions.
Another interesting property is that the median esti-

mate for steels is almost insensitive to the operating

temperature. The only parameter with a significant

temperature dependence is the fatigue ductility coef-

ficient e0f : the median value for 540 steels at room tem-

perature is e0f ¼ 0:51, while 184 steels at temperatures

between 400 and 800
v
C have e0f ¼ 0:35. Using these

values, separate median estimates can then be proposed

for high- and low-temperature steels. The fatigue

strength coefficient r0
f has also a significant temperature

dependence; however, the median of the r0
f=SU ratio

remains unchanged.
As shown in Table 3, other median estimates for fr0

f ;

e0f ;b;cg are obtained for three alloy families: {1.9	SU,
0.50, �0.10, �0.69} from a study on 15 titanium

alloys; {1.2	SU, 0.04, �0.08, �0.52} calculated from 16

cast irons; and {1.4	SU, 0.15, �0.08, �0.59} from nine

nickel alloys. However, these three estimates should be

used with caution, because they were based on a very

limited sample.
Fig. 5. Estimates of Coffin–Manson’s fatigue strength coefficient, r0
f .
Fig. 6. Estimates of Coffin–Manson’s exponents, b and c.
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Other useful estimates based on median values are
E¼ 205 GPa (median value of 3157 steels at room tem-
perature from the ViDa database [15,16], with a coef-
ficient of variation V¼ 3:1%), E¼ 71 GPa (from 551
Al alloys, V¼ 4:0%), E¼ 108 GPa (139 Ti alloys,
V¼ 7:4%), E¼ 140 GPa (22 cast irons, V¼ 24%), and
E¼ 211 GPa (376 Ni alloys, V¼ 3:4%).
The cyclic strain hardening exponent can also be

estimated in the same way: n0¼ 0:15 (823 steels,
V¼ 49%), n0¼ 0:09 (237 Al alloys, V¼ 41%), n0¼ 0:10
(43 Ti alloys, V¼ 64%), n0¼ 0:145 (16 cast irons,
V¼ 37%), and n0¼ 0:14 (eight nickel alloys, V¼ 26%).
However, the very high scatter in these n0 estimates
should be noted.
5. Statistical evaluation of the eN fatigue life

estimates

In the previous section, all fatigue estimates were
evaluated by treating the eN parameters as independent
Fig. 7. Coffin–Manson’s exponents b and c for 724 steels and 81 aluminum alloys.
Fig. 9. Evaluation of the strain range estimates used by Manson’s

four-point correlation method.
Fig. 10. Resulting Coffin–Manson parameters from Manson’s four-

point correlation method.
Fig. 8. Estimates of Coffin–Manson’s fatigue ductility coefficient, e0f .
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random variables. However, for fatigue life estimation

purposes, Coffin–Manson’s coefficients and exponents

are not independent. For instance, it is possible to

obtain fair life predictions using a method that over-

estimates the fatigue strength coefficient r0
f while

underestimating the corresponding exponent b, since

both errors may cancel each other. Therefore, to vali-

date eN estimates, a statistical study must be per-

formed comparing the predicted lives (and not only the

individual Coffin–Manson parameters) with the exper-

imentally measured ones.
The best-fitted probability density functions (pdf) of

the eN specimen lives under several strain amplitudes

De=2 are shown in Figs. 13 and 14, calculated from mea-

sured Coffin–Manson data on 724 steels and 81 alumi-

num alloys. The scatter in the eN specimen lives for the

different materials is minimum between 1000 and 3000

cycles, which is perhaps a good reason to continue esti-
mating Wöhler’s curve using N¼ 103 cycles as a fixed

point in the SN methodology. Also, the average strain

amplitude at 103 cycles in both steels and aluminum

alloys is approximately Deð103Þ=2 ¼ 0:8%. Even though

the scatter is minimum around 0.8%, eN specimen lives

varying from less than 50 cycles (for a few wet welds) up

to 2 104 cycles (for a hot-worked H11 tool steel) can

be obtained at this strain amplitude. The high scatter

observed at lives greater than 105 cycles is expected, due

to the large variation in the fatigue resistance of several

steels and aluminum alloys.
One limitation of the presented analysis is that the

data used in the evaluation are not direct experimental

data (which are very difficult to obtain in the literature

for such a large sample of test materials), but calcu-

lated values from the experimentally obtained fatigue

properties. However, it can be assumed that the

Coffin–Manson parameters generate reasonable data

points at least in the range where most experiments

were performed, typically 0:3% < De=2 < 2% for

metals. Outside this range, the calculated values from

the Coffin–Manson parameters might include signifi-

cant extrapolation errors, degrading the accuracy of

this analysis. But in any case, it would not be simple to

obtain reliable experimental data outside this range.

First, due to the high cost of the eN test machines, very

few specimens are tested under very low strain ampli-

tudes (e.g. a servo-hydraulic testing machine at 40 Hz

would take over 144 days to reach 5 108 cycles).

Also, most commercial clip-gages do not have

adequate resolution to control tests with strain ampli-

tudes smaller than 0.1%, generating significant

measurement errors. And second, very high strain

amplitude tests are difficult to perform in practice,

since eN specimens may buckle under such conditions.

Therefore, the presented analysis cannot be extended to

very short or very long life predictions, but it can be

successfully applied to a significant range of strain

amplitudes.
Fig. 11. Resulting Coffin–Manson parameters from Ong’s modified

four-point correlation method.
tion of Roessle–Fatemi’s estimates for Coffin–Manson coefficients r0
f and e0f based on the Brinne
Fig. 12. Evalua ll hardness, HB.
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The performance of each fatigue estimate is now
evaluated through the life prediction ratio (LPR),
defined as the ratio between the life (in cycles) pre-
dicted by any of the presented methods, Npredicted, and
the observed experimental life, Nobserved. Therefore,
LPR values between 0 and 1.0 are a result of conserva-
tive estimates, while values greater than 1.0 are non-
conservative. It must be noted that all mean values and
standard deviations of the LPR will be calculated based
on the logarithmic representation of Npredicted=Nobserved,
in order to give equal weight to, e.g. ratios 3 and 1/3,
since both imply on a factor of 3 in the life estimation
error.
The pdf that best-fitted the eN specimen LPR of the

724 steels are shown in Fig. 15, obtained under the
strain amplitude De=2 ¼ 1:0%. Under such strain
amplitude, Manson’s universal slope method results in
average non-conservative prediction errors of 97%
(since its mean LPR is 1.97), Bäumel–Seeger’s in 38%,
and the medians method in 3%, with similar standard
deviations. Except for Mitchell’s method, which pre-
sents a high scatter in the LPR, it is found that all esti-
mates shown in Table 1 result in roughly the same
standard deviations when represented in the logarith-
mic scale at each strain range level. However, these
standard deviations do vary with the strain amplitude
F

u

C

level, presenting a minimum near De=2 ¼ 1:0%. The

poor performance of Mitchell’s method in this study is

mainly a result of its non-conservative e0f estimate, since
the great majority of steels and aluminum alloys have

e0f much smaller than the true fracture ductility, ef .
Table 3

Median and coefficient of variation of the stress amplitudes at 103 cycles and Coffin–Manson parameters for the studied materials
Alloy family r
a (10
3 cycles)
 r0

f
 e0f b
 c
 E (GPa)
Median
 V (%) M
edian V
 (%) M
edian V
 (%) M
edian
 V (%) M
edian
 V (%) M
edian
 V (%)
724 steels 0
.76	SU
 18 1
.5	SU 4
3 0
.45 1
57 �
0.09
 40 �
0.59
 28 2
05
 3.1
81 Al alloys 0
.82	SU
 10 1
.9	SU 2
4 0
.28 1
79 �
0.11
 28 �
0.66
 33
 71
 4.0
15 Ti alloys 0
.89	SU
 9 1
.9	SU 3
6 0
.5 1
23 �
0.10
 37 �
0.69
 24 1
08
 7.4
9 Ni alloys 0
.76	SU
 31 1
.4	SU 3
0 0
.15 1
71 �
0.08
 28 �
0.59
 22 2
11
 3.4
16 cast irons 0
.65	SU
 28 1
.2	SU 2
8 0
.04 1
27 �
0.08
 29 �
0.52
 30 1
40
 24
ig. 13. Probability density functions of the eN test specimen lives

nder various strain amplitudes De=2, calculated from experimental

offin–Manson curves of 724 steels.
Fig. 14. Probability density functions of the eN test specimen lives

under various strain amplitudes De=2, calculated from experimental

Coffin–Manson curves of 81 aluminum alloys.
Fig. 15. Statistics of the life prediction ratio obtained by a few esti-

mation methods for 724 steels, obtained under the strain amplitude

De=2 ¼ 1:0%.
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As follows, each estimation method is further eval-
uated through the average values of the LPR prob-
ability density functions obtained under several strain
amplitudes De=2, see Fig. 16. Mitchell’s method is not
represented in this figure, because its average LPR is
greater than 4.0 in the entire life range.
Manson’s universal slope and four-point correlation

methods are non-conservative for short lives, with
average life prediction errors of over 100%. Also, these
two methods are highly conservative for long lives,
underestimating the elastic strain amplitude Dee=2 at
105 cycles using 0:44 	 SU=E or 0:45 	 SU=E. A better
correlation for the 724 steels is obtained from the
median estimate:

Dee
2

ð105 cyclesÞ ¼ 1:5
SU 	 ð2 105Þ�0:09

E
¼ 0:5

SU
E

ð6Þ

Muralidharan–Manson and Roessle–Fatemi’s meth-
ods result in reasonable average LPR for steels, even
though significantly non-conservative predictions may
be obtained at strain amplitudes De=2 below 1.0%
(Fig. 16). Bäumel–Seeger and Ong’s methods also
result in fair predictions; however, they are slightly
non-conservative at high De=2 levels because of the
poor estimates for e0f , which do not correlate with SU=E

or ef for the 724 steels. The lowest average prediction
errors are obtained from the median estimate for
steels, with LPR very close to 1.0 in all strain ampli-
tudes between 0.4% and 5%, and conservative errors
below this interval. However, this could be expected
as the parameters from the median method were cali-
brated using the same material data set used in the
comparisons.
For aluminum and titanium alloys, it is found that

better predictions are obtained from the medians
method, followed by Bäumel–Seeger’s uniform material
law, very likely because both are based on constant
estimates for r0
f=SU, e0f , b and c. Also, Bäumel–Seeger’s

estimate c¼ �0:69 may be appropriate for titanium but
a little low for aluminum alloys. Therefore, it is always
a good idea to consider separate estimates for each
alloy family, separating the aluminum from the
titanium alloys such as in the medians method.
Finally, a sensitivity analysis is performed varying

each of the individual Coffin–Manson parameters. More
specifically, all combinations of ratios r0

f=SU between 0
and 4, e0f values between 0 and 2, �0:4 <b< 0, and

�1:5 <c< 0 are evaluated in steps of 0.01 (0.001 for the b
exponent) for each alloy family. For each parameter
combination, the average life prediction ratio and its
standard deviation (in the logarithmic scale) are eval-
uated for the studied metals at a few selected strain
amplitude levels. For the studied steels and aluminum
alloys, it is found that the individual medians of the Cof-
fin–Manson parameters are the optimal values that
result in the best average predictions with the smallest
standard deviations. In addition, it is found that the
introduction of an offset into the r0

f estimate (such as 345

MPa in Mitchell or 225 MPa in Roessle–Fatemi’s meth-
ods) does not improve the life predictions if compared to
the ones obtained from constant r0

f=SU ratios. In the

next section, the studied metals and the medians method
are used to evaluate traditional estimates in the SN
methodology.
6. Statistical evaluation of the SN fatigue life

estimates

One of the most popular estimates used in the SN
stress–life methodology is based on the stress ampli-
tudes associated with fatigue lives of 103 and 106 cycles,

rað103Þ ¼ 0:9 	 SU and rað106Þ ¼ 0:5 	 ka 	 kb 	 	 	 ke 	 SU

(for steels with SU � 1400 MPa), where the constants
ka, kb, kc, kd and ke are the endurance limit modifying
factors [30,31]. These SN estimates can be verified from
Coffin–Manson’s strain amplitudes De=2 calculated at

N¼ 103 or 106 cycles. The cyclic Ramberg–Osgood
curve of each material is then applied to the De=2 values
to obtain the associated elastic–plastic stress amplitude, ra.
Surface finish does not significantly affect low-cycle

fatigue lives. In addition, the ASTM standard does not
require the eN specimens to be polished—it only
requires, as a final operation, a machining or other
‘‘finishing’’ procedure that would introduce minimal
surface metal distortion consistency in the surface fin-
ish [21]. Thus, it seems safe to assume that the eN spe-
cimens might have been machined, as opposed to the
SN ones, which are always polished, because these are
primarily used in high cycle fatigue studies, where
surface finish plays a major role. Therefore, a surface
Fig. 16. Average life prediction ratios obtained by several esti-

mation methods for 724 steels, under strain amplitude levels between

0.2% and 5%.
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finish factor ka was considered in this analysis for the

eN specimens, estimated for steels by 4.51	(SU)�0.265.
Therefore, the 0.5 factor at 106 cycles can be verified

through the ratio rað106Þ=ðka 	 SUÞ, while the 0.9 factor
at 103 cycles is checked using rað103Þ=SU.
Both mean and median values of the ratio rað106Þ=

ðka 	 SUÞ are 0.48 for the 654 steels in this study with

SU � 1400 MPa, a value very close to the traditional

0.5 factor. The assumption of a machined surface

finish in the eN specimens indeed resulted, for the

studied materials, in a better agreement with the

traditional 0.5	SU estimate. However, as would be

expected for high cycle estimates, there is significant

scatter at 106 cycles, with a coefficient of variation

V¼ 27%. If all 724 steels are considered, then both

mean and median values are slightly increased to

0.49, an indication that the 700 MPa estimate for

steels with SU > 1400 MPa is quite conservative, see

Fig. 17.
On the other hand, the 0.9	SU estimate at 103 cycles

would be highly non-conservative if applied to eN spe-

cimens, as observed in Fig. 17 from the mean 0.76 and

median 0.75 of the ratio rað103Þ=SU (with V¼ 18%).

This difference is because 0.9	SU is a purely elastic

stress associated to the bending moment that would

result in a fatigue life of 103 cycles for rotating bending

SN specimens. However, in 85% of 7492 metals sam-

pled from the ViDa database [15,16], the yielding

strength is below 0.9	SU; therefore, such stress level

cannot be considered as purely elastic. The maximum

elastic–plastic stress rmax that is actually applied to the

SN specimen is then estimated by equating the exter-

nally applied moment pd3ð0:9 	 SUÞ=32 with the resist-

ing moment of the specimen cross-section (where d is
its diameter):

0:9SUp
16

¼
ðrmax

0

r
E
þ 1

n0
r
K 0

� 	1=n0
 �
r
E
þ r

K 0

� 	1=n0

rmax
E

þ rmax
K 0

� 	1=n0
 �2

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
r
E
þ r

K 0

� 	1=n0
rmax
E

þ rmax
K 0

� 	1=n0
2
64

3
75
2

vuuuuut dr ð7Þ

Eq. (7) is then solved numerically using the Ram-

berg–Osgood properties of each of the 724 steels,

resulting in an average rmax value of 0.68	SU, see
Fig. 18. Such elastic–plastic analysis confirms the inad-

equacy of the purely elastic approach; however, it is a
little conservative if compared to the (better) 0.76	SU
estimate obtained from Coffin–Manson data, due to
the following two reasons. First, the purely elastic

0.9	SU estimate was originally conservative [30]; there-
fore, a higher externally applied moment of pd3SU=32

would be more appropriate at 103 cycles. And second,
plasticity effects cause a slight misalignment between

the stress and the strain neutral axes in the rotating

bending specimen, as described in [7], which is not
modeled in Eq. (7).
Finally, estimates of the rað103Þ=SU ratio can also be

obtained for other alloy families using the medians
method. For idealized materials in which Eq. (3) is

valid (i.e. there is a perfect correlation between Coffin–
Manson and Ramberg–Osgood’s elastic and plastic

strain ranges), the elastic–plastic stress amplitude ra
at N¼ 103 cycles can be calculated multiplying the

Young modulus E by the elastic strain amplitude
Dee=2, resulting in:

ra N ¼ 103
� �

¼ Dr
2

ffi E
Dee
2

¼ r0
f 2 103
� �b ð8Þ

From the median estimate for steels, Eq. (8) predicts
that rað103Þ ¼ 0:757 	 SU ffi 0:76 	 SU, as expected,

which agrees with Juvinall’s estimate for uniaxial ten-
sion–compression tests [30]. As shown in Table 3, the

medians method also predicts rað103Þ ffi 0:82 	 SU for

Fig. 17. Probability density functions of the SN estimate coefficients

at 103 and 106 cycles.
Fig. 18. Schematic of the actual elastic–plastic stress distribution

along the cross-section of an SN rotating bending specimen.
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aluminum alloys, 0.89	SU for titanium alloys, 0.65	SU
for cast irons, and 0.76	SU for nickel alloys, allowing
for improved estimates in the SN methodology.

7. Conclusions

A statistical evaluation of the existing Coffin–Man-
son parameter estimates was presented in this work,
based on monotonic tensile and uniaxial fatigue
properties of 845 different metals from ViDa’s data-
base. Based on this analysis, the following conclusions
can be drawn:

. On average, steels present significantly higher b and c
exponents than aluminum and titanium alloys. There-
fore, different estimates for the Coffin–Manson para-
meters should be considered for each alloy family.

. Correlations between Coffin–Manson’s exponents
and the monotonic tensile test properties are poor.
Even though the cyclic hardening exponent n0 is well
estimated by the ratio b=c for steels, estimates for b
and c based on n0 are detrimental to all studied
methods.

. The fatigue strength coefficient r0
f presents a fair

correlation with the ultimate strength SU (and
consequently with the Brinnell hardness, HB). The
relatively large scatter in this correlation does not
justify the use of non-linear estimates (such as Mur-
alidharan–Manson’s) or linear estimates with offsets
(such as Mitchell or Roessle–Fatemi’s, which over-
estimate r0

f for low values of SU or HB due to such

offsets). Constant estimates for the ratio r0
f=SU were

found to better agree with the studied data. The cor-
relation between r0

f and rf is not as good and should

not be used.
. The fatigue ductility coefficient e0f does not correlate

well with monotonic tensile test properties. Most e0f
correlations proposed in the literature are based on
a limited number of materials and cannot be statisti-
cally justified. In particular, e0f should not be esti-

mated from the true fracture ductility, ef .
. Keep it simple: better life predictions are obtained

simply from constant estimates of the parameters b,
c, r0

f=SU and e0f , such as in the proposed medians
method, which combines good average life predic-
tions with one of the lowest standard deviations.

. Other estimates that resulted in good predictions are
Roessle–Fatemi, Bäumel–Seeger, and Muralidharan–
Manson’s methods for steels. However, the estimates
of the fatigue ductility coefficient e0f in these three
methods are not very good. The main reason for the
good performance of these methods is the combi-
nation of constant values for the b and c exponents
and reasonable estimates for the fatigue strength
coefficient. In fact, it is found that replacing the e0f
estimates by a constant value in these three methods
slightly improves the life predictions and reduces the
associated scatter. Ong’s method also results in
reasonable predictions, despite its poor r0

f and e0f esti-
mates. It must also be noted that Muralidharan–
Manson’s method should not be applied to alumi-
num or titanium alloys, which present significantly
lower b and c exponents.

. Manson’s universal slope and four-point correlation
methods are very conservative for steels at long
lives, as pointed out by Park and Song. Also, both
methods result on average in significantly non-con-
servative life predictions at short lives.

. The classical SN estimates for steels at 103 and 106

cycles were evaluated, resulting in average stress
amplitudes of 0.76	SU and 0.49	SU, respectively.
Other estimates at 103 cycles were also proposed for
cast irons, aluminum, titanium, and nickel alloys,
based on the respective medians method parameters.
For future work, improved median estimates could
be obtained for both uniaxial and torsional fatigue
properties using larger samples of material data.

. Finally, it must be pointed out that all the presented
estimates should never be used in design, because
for some materials, even the best methods may
result in life prediction errors of an order of magni-
tude. The use of such estimates, even the proposed
medians method, is only admissible during the first
stages of design; otherwise all fatigue properties
should be experimentally obtained.
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