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ABSTRACT

Important robotic tasks could be effectively performed by
powerful and accurate manipulators. However, high accu-
racy is generally difficult to obtain in large manipulators ca-
pable of producing high forces due to system elastic and ge-
ometric distortions. A method is presented to identify the
sources of end-effector positioning errors in large manip-
ulators using experimentally measured data. The method
does not require explicit structural modeling of the system.
Both geometric and elastic deformation positioning errors
are identified. These error sources are used to predict, and
compensate for, end-point errors as a function of configu-
ration and measured forces, improving the system absolute
accuracy. The method is applied to a large high-accuracy
medical robot. Experimental results show that the method is
able to effectively correct for the system errors.

KEYWORDS: Robot calibration, Flexible arms, Medical sys-
tems.

RESUMO

Importantes tarefas robóticas poderiam ser eficientemente
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executadas por manipuladores potentes e precisos. No en-
tanto, alta precisão absoluta é geralmente difícil de ser ob-
tida em grandes manipuladores capazes de produzir forças
de alta intensidade, devido às distorções elásticas e geomé-
tricas do sistema. Um método é apresentado para identificar,
através de medições indiretas, as fontes de erro de posiciona-
mento da extremidade de grandes manipuladores. O método
não requer uma modelagem estrutural explícita do sistema.
Ambos os erros geométricos e elásticos de posicionamento
são identificados. Esses valores são usados para predizer e
compensar os erros da extremidade do robô em função da
configuração e de forças medidas, melhorando a precisão ab-
soluta do sistema. O método é aplicado a um grande robô
médico de alta precisão. Resultados experimentais demons-
tram que o método é capaz de corrigir eficientemente os erros
de posicionamento do sistema.

PALAVRAS-CHAVE: Calibragem de robôs, manipuladores
flexíveis, sistemas médicos.

1 INTRODUCTION

Large robot manipulators are needed in field, service and
medical applications to perform high accuracy tasks. Exam-
ples are manipulators that perform decontamination tasks in
nuclear sites, space manipulators such as the Special Purpose
Dexterous Manipulator (SPDM) and manipulators for medi-
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cal treatment (Vaillancourt et al. 1994; Flanz 1996; Hamel et
al. 1997). In these applications, a large robotic system is of-
ten needed to have very fine precision. Its accuracy specifica-
tions may be very small fractions of its size. Achieving such
high accuracy is difficult because of the manipulator’s size
and its need to carry heavy payloads. Further, many tasks,
such as space applications, require systems to be lightweight,
and thus structural deformation errors can be large.

In such systems, two principal error sources create significant
end-effector errors. The first is kinematic errors due to the
non-ideal geometry of the links and joints of manipulators,
such as errors due to machining tolerances. These errors are
often called geometric errors. Task constraints often make it
impossible to use direct end-point sensing in a closed-loop
control scheme to compensate for these errors. Therefore,
there is a need for model-based robot calibration.

The second error source that can limit the absolute accuracy
of a large manipulator is the elastic errors due to the distor-
tion of a manipulator’s mechanical components under large
task loads or even its own weight. Classical error compensa-
tion methods cannot correct the errors in large systems with
significant elastic deformations, because they do not explic-
itly consider the effects of task forces and structural compli-
ance. Methods have been developed to deal with this prob-
lem (Drouet et al. 1998), however they depend upon lenghty
analytical models of the manipulator structural properties.

In this work a method that compensates for the position and
orientation errors caused by geometric and elastic errors in
large manipulators is discussed. The method, called here
Geometric and Elastic Error Compensation (GEC), explic-
itly considers the task load dependency of the errors, model-
ing both deformation and more classical geometric errors in a
unified and simplified manner. A set of experimentally mea-
sured positions and orientations of the robot end-effector and
measurements of the payload wrench are used to calculate
the robot “generalized” errors without using an explicit ma-
nipulator elastic model. Without the need of an explicit elas-
tic model, it is feasible to completely automate the analytical
derivation of the required identification matrices. General-
ized are called the errors that characterize the relative po-
sition and orientation of frames defined at the manipulator
links. They are determined from measured data as a function
of the system configuration and the task wrench. Knowing
these generalized errors the manipulator end-effector errors
are used to compensate for robot errors at any configuration.
In the GEC method each generalized error parameter can be
represented as a function of only a few of the system vari-
ables. As a result, the number of measurements required
to characterize the system is significantly smaller than ex-
pected.

 

PPS

Rotating
Gantry

ProtonBeam
Nozzle

Figure 1: The PPS and the Gantry

Figure 2: The Patient Positioning System

The method is applied to an important medical application of
large manipulator systems. The manipulator is used as a high
accuracy robotic patient positioning system in a radiation
therapy research facility constructed at the Massachusetts
General Hospital (MGH), the Northeast Proton Therapy Cen-
ter (NPTC) (Flanz 1996). The robotic patient positioning
system (PPS) places a patient in a high energy proton beam
delivered from a proton nozzle carried by a rotating gantry
structure (see Fig. 1). The PPS is a six degree of freedom
manipulator that covers a large workspace of more than 4m
in radius while carrying patients weighing as much as 300 lbs
(see Fig. 2). Patients are immobilized on a “couch” attached
to the PPS end-effector. The PPS, combined with the rotating
gantry that carries the proton beam, enables the beam to en-
ter the patient from any direction, while avoiding the gantry
structure. Hence flexibility offered by robotic technology is
needed.
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The required absolute positioning accuracy of the PPS is 0.5
mm. This accuracy is critical as larger errors may be dan-
gerous to the patient (Rabinowitz 1985). The required ac-
curacy is roughly 10−4 of the nominal dimension of system
workspace. This is a greater relative accuracy than most in-
dustrial manipulators. In addition, FEM studies and experi-
mental results show that with a changing payload (between 1
and 300 pounds) and changing configuration the end-effector
errors due to elastic deformations and geometric errors are of
the order of 6-8 mm. Hence the accuracy is 12 to 16 times
the system specification (Mavroidis et al. 1997). However,
since the repeatability error of the PPS, defined here as how
well the system returns to certain arbitrary configurations, is
less than 0.15mm, it is a good candidate for a model based
error correction method.

The GEC calibration method was applied to the PPS with
a force/torque sensor built into the system to measure the
wrench applied by the patient’s weight. It is found that us-
ing only 450 calibration measurements the end-point errors
could be reduced to well within the required specification. In
fact, experimental results show that the maximum error was
reduced by a factor of 18.

2 ANALYTICAL BACKGROUND

Physical errors cause the geometric parameters of a manipu-
lator to be different from their ideal values (Roth et al. 1986).
As a result, the frames defined at the manipulator joints are
slightly displaced from their expected, ideal locations, cre-
ating significant end-effector errors. The position and ori-
entation of a frame Freal

i with respect to its ideal location
Fideal

i is represented by a 4x4 homogeneous matrix Ei. The
translational part of matrix Ei is composed of the 3 coordi-
nates εx,i, εy,i and εz,i (along the X, Y and Z axes respec-
tively, defined using the Denavit-Hartenberg representation),
see Fig. 3. The rotational part of matrix Ei is the result
of the product of three consecutive rotations εs,i, εr,i, εp,i

around the Y, Z and X axes respectively (also shown in Fig.
3). These are the Euler angles of Freal

i with respect to Fideal
i .

The subscripts s, r, and p represent spin (yaw), roll, and pitch,
respectively. The 6 parameters εx,i, εy,i, εz,i, εs,i, εr,i and
εp,i are called generalized error parameters, which can be a
function of the system geometry and joint variables. For an n
degree of freedom manipulator, there are 6(n+1) generalized
errors which can be written in the form of a 6(n+1) x 1 vector
ε = [εx,0, . . . , εx,i, εy,i, εz,i, εs,i, εr,i, εp,i,. . . ,εp,n], with i

ranging from 0 to n, assuming that both the manipulator and
the location of its base are being calibrated. The general-
ized errors that depend on the system geometry, the system
task loads and the system joint variables can be calculated
from the physical errors link by link. Note that actual sys-
tem weight effects can be included in the model as a simple

function of joint variables.

Figure 3: Definition of the Translational and Rotational Gen-
eralized Errors for ith Link

Since the generalized errors are small, the end-effector posi-
tion and orientation error ∆X can be defined as the 6x1 vec-
tor that represents the difference between the real position
and orientation of the end-effector and the ideal one:

∆X = Xreal
− Xideal (1)

where Xreal and Xideal are the 6x1 vectors composed of the
three positions and three orientations of the end-effector ref-
erence frame in the inertial reference system for the real and
ideal cases, respectively. After linearization, the end-effector
error can be represented by the following linear equation:

∆X = Jeε (2)

where Je is the 6x6(n+1) Jacobian matrix of the end-effector
error ∆X with respect to the elements of the generalized er-
ror vector ε, also known as Identification Jacobian matrix
(Zhuang et al. 1999). As with the generalized errors, Je de-
pends on the system configuration, geometry and task loads.

If the generalized errors, εs can be found from calibration
measurements, then the correct end-effector position and ori-
entation error can be calculated using Eq. (2) and be compen-
sated. To calculate the generalized errors ε it is assumed that
some components of vector ∆X can be measured at a finite
number of different manipulator configurations.

Assuming that all 6 components of ∆X can be measured,
for an n degree of freedom manipulator, 6(n+1) generalized
errors ε can be calculated by measuring ∆X at m different
configurations, defined as q1, q2,. . . , qm, then writing Eq.
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(2) m times:

∆Xt =









∆X1

∆X2

...

∆Xm









=









Je(q1)
Je(q2)
...

Je(qm)









· ε = Jt · ε (3)

where ∆Xt is the m x 1 vector formed by all measured vec-
tors ∆X at m different configurations and Jt is the 6m x
6(n+1) matrix formed by the m Identification Jacobian ma-
trices Je at m configurations, called here Total Identifica-
tion Jacobian. To compensate for the effects of measurement
noise, the number of measurements m is, in general, much
larger than n.

If the generalized errors ε are constant, then a unique least-
squares estimate ê can be calculated (Roth et al. 1986):

ε̂ =
(

JT
t Jt

)−1
JT

t ·∆Xt (4)

However, if the Identification Jacobian matrix Je(qi) con-
tains linearly dependent columns, Eq. (4) will produce esti-
mates with poor accuracy (Hollerbach et al. 1996). This oc-
curs when there is redundancy in the error model, in which
case it is not possible to distinguish the error contributed by
each generalized error component, even if specific measure-
ment configurations are considered. Orthogonal matrix de-
composition can be used in these cases to improve the nu-
merical accuracy of this approach. An analytical method to
eliminate the redundant parameters has been presented by
(Meggiolaro and Dubowsky 2000). Conventional calibration
methods also cannot be successfully applied when some of
the generalized errors depend on the manipulator configura-
tion q or the end-effector wrench w, namely ε(q,w), such as
when elastic deflections that depend on the configuration and
applied forces at the end-effector are significant. A method is
presented below for finding the generalized errors (ε) in the
presence of elastic deformations combined with geometric
errors.

3 GEOMETRIC AND ELASTIC ERROR
COMPENSATION

In the GEC method (Geometric and Elastic Error Compensa-
tion), elastic deformation and classical geometric errors are
considered in a unified manner. The method can identify and
compensate for both types of error, without an elastic model
of the system. To apply the GEC method, the error model is
extended to explicitly consider the task loading wrench and
configuration dependency of the errors.

For a system with significant geometric and elastic errors, the
generalized errors ε are a function of the manipulator con-
figuration q and the end-effector wrench w, or ε(q,w). To

predict the endpoint position of the manipulator for a given
configuration and task wrench, it is necessary to calculate the
generalized errors from a set of offline measurements. The
complexity of these calculations can be substantially reduced
if the generalized errors are parameterized using polynomial
functions. The ith element of vector ε is approximated by a
polynomial series expansion of the form:

ε∗i =
ni
∑

j=1

ci,j · fi,j(q,w),

fi,j(q,w) ≡ (wmj
)a0,j · (q

a1,j

1 · q
a2,j

2 · ... · q
an,j

n )
(5)

where ni is the number of terms used in each expansion, ci,j

are the polynomial coefficients, wmj is an element of the task
wrench w, and q1, q2, ..., qn are the manipulator joint param-
eters. It has been found that good accuracy can be obtained
using only a few terms ni in the above expansion (Meggi-
olaro et al. 1998). From the definition of the generalized
errors, the errors associated with the ith link depend only on
the parameters of the ith joint. If elastic deflections of link
i are considered, then the generalized errors created by these
deflections would depend on the weight wrench wi applied
at the ith link. For a serial manipulator, this wrench is due to
the wrench at the end-effector and to the configuration of the
links after the ith. Hence, the wrench wi depends only on the
joint parameters qi+1,...,qn. Thus, the number of terms in the
products of Eq. (5) is substantially reduced. Each general-
ized error parameter is then represented as a function of only
a few of the system variables, greatly reducing the number of
measurements required to characterize the system using the
GEC method.

The constant coefficients ci,j are grouped into one vector c,
becoming the unknowns of the problem. The total number
of unknown coefficients, called nc, is the sum of the number
of terms used in Eq. (5) to approximate each generalized
error, i.e. nc = Σni. The nc functions fi,j(q,w) are then
incorporated into the Identification Jacobian matrix Je from
Eq. (2):

∆X = Je(q) · ε(q,w) ≡ He(q,w) · c (6)

where He is the (6 x nc) Jacobian matrix of the end-effector
error ∆X with respect to the polynomial coefficients ci,j .
The matrix He, called here Extended Identification Jacobian
matrix, can be obtained from Eqs. (5) and (6):

He(q,w) ≡ [J1 · f1,1, . . . , J1 · f1,n1, . . . ,

Ji · fi,1, Ji · fi,2, . . . , Ji · fi,ni, . . .] (7)

where Ji is the column of matrix Je associated to the gener-
alized error component εi.

An estimate of the coefficient vector c is then calculated by
replacing Je with the matrix He in Eq. (3) and applying
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Eq. (4), completing the identification process, see Eq. (8).
Once the constant polynomial coefficients, c, are identified,
the end-effector position and orientation error∆X can be cal-
culated and compensated using Eq. (6).

ĉ = (HT

e
He)

−1
HT

e
·∆X (8)

Finally, it must be emphasized that the GEC model has the
advantage of modeling non-linear elasticity, due to its poly-
nomial nature. The polynomial approximation would only
be a model of linear elasticity if the order of the polynomial
was limited to three (relating the joint parameters, or order
one relating the payload wrench), and if these polynomial
coefficients were related among themselves in the same way
as in the analytical results for simple beam bending. How-
ever, the polynomial expansion can include additional terms,
being able to model general non-linear (or linear) elasticity,
combined with a general formulation for geometric errors
that may vary in their own frames (and thus not limited to
constant geometric errors).

4 APPLICATION TO THE PATIENT POSI-
TIONING SYSTEM

The PPS is a six degree of freedom robot manipulator (see
Fig. 2) built by General Atomics (Flanz 1996). The first
three joints are prismatic, with maximum travel of 225cm,
56cm and 147cm for the lateral (X), vertical (Y) and longitu-
dinal (Z) axes, respectively. The last three joints are revolute
joints. The first joint rotates parallel to the vertical (Y) axis
and can rotate ±90˚. The last two joints are used for small
corrections around an axis of rotation parallel to the Z (roll)
and X (pitch) axes, and have a maximum rotation angle of
±3˚. The manipulator "end-effector"is a couch, supporting
the patient in a supine position, accommodating patients up
to 188cm in height and 300lbs in weight in normal operation.

The intersection point of the proton beam with the gantry
axis of rotation is called the system isocenter. The treatment
volume is defined by a treatment area on the couch of 50cm x
50cm and a height of 40cm (see Figure 2). This area covers
all possible locations of treatment points (i.e. tumor loca-
tions at a patient). The objective is that the PPS makes any
point in this volume be coincident with the isocenter at any
orientation.

The joint parameters of the PPS are the displacements d1,
d2, d3 of the three prismatic joints and the rotations θ, α, β
of the three rotational joints. A 6 axis force/torque sensor is
placed between the couch and the last joint. By measuring
the forces and moment at this point, it is possible to calculate
the patient weight and the coordinates of the patient center of
gravity. The system motions are very slow and smooth due
to safety requirements. Hence, the system is quasi-static, and

its dynamics do not influence the system accuracy and are
neglected.

The accuracy of the PPS was measured with a position ac-
curacy of approximately 0.04mm using a Leica 3D Laser
Tracking System. These measurements were to evaluate the
PPS repeatability, the nonlinearity of its weight-dependent
deflections, the inherent uncompensated PPS accuracy, and
the method developed above.

Three targets were placed about 10mm above the couch. For
more than 700 different configurations of the PPS and dif-
ferent weights the location of the three targets is measured.
From the system kinematic model with no errors, the ideal
coordinates of the Nominal Treatment Point (NTP), defined
as the location of a tumor on a patient, were calculated and
subtracted from the experimentally measured values to yield
the vector ∆X(q,w). Then, 450 measurements were used to
evaluate the basic uncompensated accuracy of the PPS and
the accuracy of the compensation method described above.
Two different payloads were used: one with no weight and
another with a 70 kg weight at the center of the treatment
area. The PPS configurations used were grouped into two
sets:

Set a) Treatment Volume. The 8 vertices of the treatment
volume (see Figure 2) are reached with the NTP with angle
θ taking values from -90˚ to 90˚ with a step of 30˚, for a total
of 112 configurations.

Set b) Independent Motion of Each Axis. Each axis is moved
independently while all other axes are held at the home (zero)
values. The step of motion for d1 is 50 mm, for d2 20 mm,
for d3 25mm and for θ 5˚, resulting in 338 configurations.

The PPS uncompensated accuracy combining the two sets is
shown in Figure 4. The data points represent the position-
ing errors of NTP. It is clearly seen that in spite of the high
quality of the PPS physical system, its uncompensated accu-
racy is on the order of 10mm. This is approximately 20 times
higher than the specification of ±0.50mm.

Part of the uncompensated error is the repeatability errors.
These errors are due to the random system errors, and they
cannot be compensated by the GEC method. They represent
the accuracy limit of any error compensation algorithm and
it also shows how well an error compensation technique per-
forms. Here the system repeatability is based on how well
the system would return the NTP to certain arbitrary config-
urations. A total of 270 measurements were taken with zero
payload weight. The repeatability error of the PPS is less
than 0.15mm (3σ). Thus this system is a good candidate for
model based error correction methods, since the repeatability
errors are relatively small compared to the ±0.50mm.
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Figure 4: Measured and Residual Errors After Compensation

In implementing the computation method a general nonlin-
ear function of the wrench w can be used. To help establish
this function, the behavior of the PPS positioning errors for
different payload weights was examined with measurements
made at the home (zero) configuration. The weights ranged
from 0 to 300 lbs in steps of approximately 25 lbs. The re-
sults showed that the positioning errors of the PPS are nearly
linear with the payload weight. The least square error is less
than 0.1mm for the linear fit. Hence the generalized errors
were taken as linear functions of the system wrench in Eq.
(5).

The generalized errors are then calculated with Eq. (4) using
the configurations of set (b) (independent motion of its axes)
and half of the treatment volume data (set a). For a Pentium
PC 300MHz, the computing time was less than one minute.
The PPS is then commanded to go to compensated points for
the remaining configurations of set (a). The residual posi-
tioning errors of the PPS after compensation for these points
are shown in Fig. 4. The residual errors are enclosed in a
sphere of 0.38 mm radius which is smaller than the accuracy
specification. The required number of data points for this cal-
culation was less than 400. Hence the compensation method
used in this paper enables the system to meet its specifica-
tion. It is now a key element in MGH’s operational software.
Since the remaining errors after calibration using 400 points
were comfortably under 0.5mm, a significantly smaller num-
ber of poses could have been used in the calibration. In fact,
applying the presented calibration method to a subset of only
125 measurement poses of the Patient Positioning System re-
sulted in a maximum residual error of 0.49mm. This abso-
lute accuracy meets the specification, while significantly less
than 400 measurement points were necessary. This number
is indeed much smaller than it might be expected, consider-
ing that not only elastic deformations, but also geometric er-
rors that vary in their own frames (such as a quasi-sinusoidal
shape for the rail errors on the prismatic base, as discussed
below), are present in the system. However, the calibration

error dependence on the number of measurement poses has
not been addressed in this work.

One of the main advantages of the GEC methodology is the
ability to model non-linearities or any other repeatable error
source that can be represented as a function of the system
parameters and of the payload wrenches. Since any differ-
entiable analytical expression can be represented as a poly-
nomial series, the method is able to identify errors that other
calibration methods (which only model elastic deformations
and geometric errors constant in their frames) can’t. In par-
ticular, the errors along the Patient Positioner’s lateral rail
had an approximately sinusoidal shape (as it was expected
from the respective manufacturing process, due to eccentric-
ities in its machining), which turned out to be an important
error source in this system. These errors were identified
through the presented methodology using polynomial expan-
sions with relatively few terms (about 8th order).

In addition, the GEC method has an advantage of automat-
ically accounting for the elastic deformations due to link
masses. The polynomial terms that are a function of the
system configuration (but not of the task wrench w) are the
ones that account for the contribution of the link masses to
the varying end-effector elastic errors. Since the link masses
are constant (only the associated moments are variable), the
constant polynomial coefficients associated with these terms
will automatically account for these masses. These errors are
clearly configuration-dependent, as expected, since the poly-
nomial terms that multiply these constant mass coefficients
are a function of the system configuration. Therefore, all link
masses are implicitly identified, and their associated elastic
errors are automatically compensated for.

5 CONCLUSIONS

In this work, a method is discussed to compensate the posi-
tioning end-effector errors of large manipulators with signif-
icant task loads. Both geometric and elastic errors are con-
sidered without requiring an explicit elastic model of the sys-
tem. The method has been applied experimentally to a high-
accuracy large medical manipulator. The results showed that
the basic accuracy of the manipulator exceeded its speci-
fications, but after applying the method to compensate for
end-effector errors the accuracy specifications are met. The
method is now a key element of the software used to treat
cancer patients.
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