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Abstract

Important robotic tasks could be effectively performed by powerful and accurate manipulators. How-
ever, high accuracy is generally difficult to obtain in large manipulators capable of producing high forces
due to system elastic and geometric distortions. In this work, a high-accuracy patient positioning system is
calibrated, consisting of a six degree of freedom manipulator used to position cancer patients during proton
therapy sessions. It is found that the original manipulator does not meet the required absolute accuracy due
to both geometric and elastic deformation positioning errors. The experimentally identified errors are used
to predict, and compensate for, end-point errors as a function of configuration and measured forces,
improving the system absolute accuracy. Experimental results show that the adopted methodology is able
to effectively correct for the system errors.
© 2004 Elsevier Ltd. All rights reserved.

Keywords: Manipulator parameter identification; Elastic deflections; Medical applications

* Corresponding author. Tel.: +55 21 3114 1638; fax: +55 21 3114 1165.
E-mail address: meggi@alum.mit.edu (M.A. Meggiolaro).

0094-114X/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mechmachtheory.2004.07.013


mailto:meggi@alum.mit.edu 

416 M. A. Meggiolaro et al. | Mechanism and Machine Theory 40 (2005) 415-427
1. Introduction

Large robot manipulators are needed in field, service and medical applications to perform high
accuracy tasks. Examples are manipulators that perform decontamination tasks in nuclear sites,
space manipulators such as the special purpose dexterous manipulator and manipulators for med-
ical treatment [1-3]. In these applications, a large robotic system is often needed to have very fine
precision. Its accuracy specifications may be very small fractions of its size. Achieving such high
accuracy is difficult because of the manipulator’s size and its need to carry heavy payloads. Fur-
ther, many tasks, such as space applications, require systems to be lightweight, and thus structural
deformation errors can be large.

In such systems, two principal error sources create significant end-effector errors. The first is
kinematic errors due to the non-ideal geometry of the links and joints of manipulators, such as
errors due to machining tolerances. These errors are often called geometric errors. Task con-
straints often make it impossible to use direct end-point sensing in a closed-loop control scheme
to compensate for these errors. Therefore, there is a need for model-based error identification and
compensation techniques, often called robot calibration.

The second error source that can limit the absolute accuracy of a large manipulator is the elastic
errors due to the distortion of a manipulator’s mechanical components under large task loads or
even its own weight. Classical error compensation methods do not correct the errors in large sys-
tems with significant elastic deformations, because they do not explicitly consider the effects of
task forces and structural compliance. Methods have been developed to deal with this problem
[4,5], based on analytical models of the manipulator structural properties.

Considerable research has been performed in robot calibration [6-9]. In these methods, robot
position accuracy is improved using compensation methods that essentially identify a more
accurate functional relationship between the joint transducer readings and the workspace posi-
tion of the end-effector based on experimental calibration measurements. A major component
of this process is the development of manipulator error models, some of which consider the
effects of manipulator joint errors, while others focus on the effects of link dimensional errors
[10-13]. Error models have been developed specifically for use in the calibration of manipula-
tors [14,15]. Some researchers have studied methods to find the optimal configurations during
the calibration measurements to reduce the manipulator errors by calibration [9,16]. Solution
methods for the identification of the manipulator’s unknown parameters have been studied
for these model-based calibration processes [17,18]. Most calibration methods have been ap-
plied to industrial or laboratory robots, achieving good accuracy when geometric errors are
dominant.

Classical calibration methods do not explicitly compensate for elastic errors due to the wrench
at the end-effector. While conceptually very similar to the classical geometric problem, the com-
bined problem is far more complex. Compensating for geometric errors requires building a model
that is a function of the n (usually six) joint variables. To compensate for a general six variable
end-point task wrench (three end-point forces and three end-point moments) requires a model
that is a function of both the joint variables and the end-point wrench variables, or a function
of at least 12 variables. The time and cost of the physical calibration measurements often domi-
nates the calibration problem. Simple calculations suggest that a brute force identification would
require several million calibration measurements.
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In this work, a calibration method is applied to an important medical application of large
manipulator systems. The manipulator is used as a high accuracy robotic patient positioning sys-
tem (PPS) in a proton therapy research facility constructed at the Massachusetts General Hospital
(MGH), the Northeast Proton Therapy Center (NPTC) [2,19]. The robotic PPS places a patient in
a high energy proton beam delivered from a proton nozzle carried by a rotating gantry structure
(see Fig. 1). The PPS is a six degree of freedom manipulator that covers a large workspace of more
than 4m in radius while carrying patients weighing as much as 3001bs (see Fig. 2). Patients are
immobilized on a “couch” attached to the PPS end-effector. The PPS, combined with the rotating
gantry that carries the proton beam, enables the beam to enter the patient from any direction,
while avoiding the gantry structure. Hence flexibility offered by robotic technology is needed.

The required absolute positioning accuracy of the PPS is £0.5mm. This accuracy is critical as
larger errors may be dangerous to the patient [20]. The required accuracy is roughly 10~* of the
nominal dimension of system workspace, which is a greater relative accuracy than most industrial
manipulators. In addition, FEM studies and experimental results show that with a changing pay-
load (between 1 and 300 pounds) and changing configuration the end-effector errors due to elastic
deformations and geometric errors are of the order of 6-8 mm. Hence the accuracy is 12-16 times
the system specification [21]. However, since the repeatability error of the PPS, defined here as
how well the system returns to certain arbitrary configurations, is less than 0.15mm, it is a good
candidate for a model based error correction method.

A calibration method is applied to the PPS with a force/torque sensor built into the system to
measure the wrench applied by the patient’s weight. The method is able to compensate for the
position and orientation errors caused by both geometric and elastic errors. The method explicitly
considers the task load dependency of the errors, modeling both deformation and more classical
geometric errors in a unified and simplified manner. A set of experimentally measured positions
and orientations of the robot end-effector and measurements of the payload wrench are used to

Fig. 1. The PPS and the Gantry.
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Fig. 2. The patient positioning system.

calculate the robot errors at each link. It is found that, using only 450 calibration measurements,
the end-point errors could be reduced to well within the required specification. In fact, experimen-
tal results show that the maximum error was reduced by a factor of 18.

2. Analytical background

There are many possible sources of errors in a manipulator. Mechanical system errors result
from machining and assembly tolerances of the manipulator’s mechanical components. Joint er-
rors include bearing run-out in rotating joints, rail curvature in linear joints, and backlash in
manipulator joints and actuator transmissions. Elastic deformation of the manipulator’s members
under task loads and gravity can also result in large end-effector errors, especially in long reach
manipulator systems. Measurement, actuator, and control errors resulting from the control sys-
tem also results in end-effector positioning errors. The resolution of encoders and stepper motors
are examples of this type of error.

Further, errors can be distinguished into “repeatable” and “random” [22]. Repeatable errors
are those with constant numerical value and sign for a given manipulator configuration and task
load, such as an assembly error. Random errors are errors that change unpredictably, such as the
ones due to backlash of an actuator gear train, when the gear train torque is nearly zero. Classical
kinematic calibration and correction can only deal with repeatable errors. It will be shown exper-
imentally in Section 4 that repeatable errors dominate in the performance of the PPS.

To describe the kinematics of a manipulator, Denavit and Hartenberg (DH) reference frames
are defined at the manipulator base, end-effector, and at each of the manipulator joints [23].
The position and orientation of a reference frame F; with respect to the previous reference frame
F;_; is defined with DH’s 4 x 4 matrix A,.

However, system errors cause the geometric parameters of a manipulator to be different from
their ideal values. As a result, the frames defined at the manipulator joints are slightly displaced
from their expected, ideal locations. The actual position and orientation of a frame F'** with re-
spect to its ideal location %! is represented by a 4 x 4 homogeneous matrix E;, which character-
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izes the standard perturbation of relative link transformation in the serial chain of the mechanism,
see Fig. 3. The translational part of matrix E; is composed of the three coordinates ¢, ; ¢, ; and ¢ ;
of the origin OF** in Fi®! (along the X, Y and Z axes respectively, defined using the Denavit-Har-
tenberg representation), see Fig. 4. The rotational part of matrix E; is the result of the product of
three consecutive rotations &, &, &,,; around the Y, Z and X axes respectively (also shown in Fig.
4). These are the Euler angles of F™ with respect to 1!, The subscripts s, r, and p represent spin
(yaw), roll, and pitch, respectively. The six parameters ¢, ;, &, &, &> &; and &, ; are called gen-
eralized error parameters, which can be a function of the system geometry and joint variables. For
an n degree of freedom manipulator, there are 6(n + 1) generalized errors which can be written in
the form of a 6(n + 1) X 1 vector & = [ex.0, - - -, x.is €. €215 Es.i» Ex.is Ep.is - - -» Ep.)> With i ranging from 0
to n, assuming that both the manipulator and the location of its base are being calibrated. If the
manipulator is being calibrated with respect to its own base, then the error matrix Eg (which mod-
els the base location errors) is eliminated, reducing the number of generalized errors to 6n. The
generalized errors that depend on the system geometry, the system task loads and the system joint
variables can be calculated from the physical errors link by link. Note that actual system weight
effects can be included in the model as a simple function of joint variables.

When generalized errors are considered, the manipulator loop closure equation takes the form:

ALC(q; &, S) = EoAlElAzEz s A"En (1)
N Frame F iideal E.
/> No errors \
Frame Fi-r?al ¢ Frame Fireal
Oideal With errors
i /

real
0,
O.real
i-1

Fig. 3. Frame translation and rotation due to errors for ith link.

X ideal

1

Fig. 4. Definition of the translational and rotational generalized errors for ith link.
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where Apc is a 4 X 4 homogeneous matrix that describes the position and orientation of the end-
effector frame with respect to the inertial reference frame as a function of the configuration
parameters q, the vector of the generalized errors ¢, and a vector containing the structural param-
eters s. The translational components of the matrix Ay c and the three angles of its rotational com-
ponents are the six coordinates of the end-effector position and orientation vector X",

The end-effector position and orientation error AX can be defined as the 6 x 1 vector that rep-
resents the difference between the real position and orientation of the end-effector and the ideal
one:

AX = Xreal _ Xideal (2)

where X" and X' are the 6 x 1 vectors composed of the three positions and three orientations
of the end-effector reference frame in the inertial reference system for the real and ideal cases,
respectively. Since the generalized errors are small, Eq. (2) can be linearized, resulting in an
end-effector error represented by the following linear equation in &:

AX = J.& (3)

where J. is the 6 X 6(n + 1) Jacobian matrix of the end-effector error AX with respect to the ele-
ments of the generalized error vector &, also known as Identification Jacobian matrix [24]. As with
the generalized errors, J. depends on the system configuration, geometry and task loads.

If the generalized errors, ¢, can be found from calibration measurements, then the correct end-
effector position and orientation error can be calculated and compensated for using Eq. (3). Fig. 5
schematically shows an error compensation algorithm based on Eq. (3).

The method to obtain ¢ from experimental measurements is to measure components of vector
AX at m different configurations, defined as qq,qqy, - . ., qm, resulting in:

AX, Je(qy)
AX Je

AX, = 2| | delw) e=Jc-¢ (4)
AXm Je(qm)

To compensate for the effects of measurement noise, the number of measurements m is, in general,
much larger than n.

Desired

end-effector L (z)iryrrv(;lrriczg;iscg(i)gl Joint variables \E{ilh
o error correction
osition .
po Inverse ideal . real
deeal kinematics g q
> with no ] =
errors End-effector JOlI.lt +
qi error variable
o | Error | AX | J -1 | correction Aq
7| Model gl
A
€
Wrench from the
Offline Identification end-effector
Measurements Process

Fig. 5. Error compensation scheme.
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If the generalized errors ¢ are constant, then a unique least-squares estimate & can be calculated
by:

g= (JTI)7IT AX, (5)

However, if the identification Jacobian matrix J.(q;) contains linearly dependent columns, Eq.
(5) will produce estimates with poor accuracy [8]. This occurs when there is redundancy in the
error model, in which case it is not possible to distinguish the error contributed by each general-
ized error component. Orthogonal matrix decomposition can be used in these cases to improve the
numerical accuracy of this approach. Analytical procedures can also be employed to eliminate
these redundant parameters [25].

On the other hand, if non-geometric factors are considered such as link compliance or gear
eccentricity, then it is necessary to represent the parameters of ¢ as a function of the system con-
figuration and task loadings prior to the identification process. This extended modeling is pre-
sented below.

3. Geometric and elastic error compensation

In this section, elastic deformation and classical geometric errors are considered in a unified
manner. The error model must be extended to consider the task loading wrench and configuration
dependency of the errors. For a system with significant geometric and elastic errors, the general-
ized errors ¢ are a function of the manipulator configuration q and the end-effector wrench w,
namely &(q,w). To predict the endpoint position of the manipulator for a given configuration
and task wrench, it is necessary to calculate the generalized errors from a set of offline measure-
ments. The complexity of these calculations can be substantially reduced if the generalized errors
are parameterized using polynomial functions. Here, the ith element of vector ¢ is approximated
by a polynomial series expansion of the form:

& = Z Cij 'fi,j(‘l, W), fz',j(q7 W) = (Wm,')ao'/ ’ (q‘fl.j : qu‘j et Z"'j) (6)
J=1

where 7, is the number of terms used in each expansion, c;; are the polynomial coefficients, w,,,; is
an element of the task wrench w, and ¢qy,¢»,...,q, are the manipulator joint parameters. It has
been found that good accuracy can be obtained using only a few terms »; in the above expansion
[26]. From the definition of the generalized errors, the errors associated with the ith link depend
only on the parameters of the ith joint. If elastic deflections of link i are considered, then the gen-
eralized errors created by these deflections would depend on the weight wrench w; applied at the
ith link. For a serial manipulator, this wrench is due to the wrench at the end-effector and to the
configuration of the links after the ith. Hence, the wrench w; depends only on the joint parameters
¢i+1>- - ¢ Thus, the number of terms in the products of Eq. (6) is substantially reduced. Each
generalized error parameter is then represented as a function of only a few of the system variables,
greatly reducing the number of measurements required to characterize the system using the GEC
method. In addition, if only simple (linear elastic) beam bending is considered, then the polyno-
mial order can be reduced to three relating the joint parameters and one relating the payload
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wrench. Higher order terms may be needed to model geometric errors of prismatic joints, such as
rail curvature, discussed in the next section.

The constant coefficients ¢;; are then grouped into one vector ¢, becoming the unknowns of the
problem. Once the polynomial coefficients, ¢, are identified, the end-effector position and orienta-
tion error AX can be calculated and compensated using Egs. (3) and (6). Note that all redundant
parameters are eliminated prior to the model expansion. If redundant parameters are introduced
after the error model expansion (which can be verified from the condition number of the pseudo-
inverse of the Identification Jacobian), then classical numerical methods can be applied to elim-
inate them.

An advantage of the polynomial approximation is the modeling of non-linear elasticity,
through terms with order higher than three, as well as considering a general formulation for geo-
metric errors that are allowed to vary in their own frames such as in the case of rail curvature. In
the next section, the geometric and elastic compensation method is applied to the patient position-
ing system.

4. Application to the patient positioning system

The PPS is a six degree of freedom robot manipulator (see Fig. 2) built by General Atomics [2].
The first three joints are prismatic, with maximum travel of 225cm, 56cm and 147 cm for the lat-
eral (X), vertical (Y) and longitudinal (Z) axes, respectively. The last three joints are revolute
joints. The first joint rotates parallel to the vertical (Y) axis and can rotate £90°. The last two
joints are used for small corrections around an axis of rotation parallel to the Z (roll) and X
(pitch) axes, and have a maximum rotation angle of £3°. The manipulator end-effector is a couch,
supporting the patient in a supine position, accommodating patients up to 188cm in height and
3001bs in weight in normal operation.

The intersection point of the proton beam with the gantry axis of rotation is called the system
isocenter. The treatment volume is defined by a treatment area on the couch of 50cm x 50cm and
a height of 40cm (see Fig. 2). This area covers all possible locations of treatment points (i.e. tumor
locations at a patient). The objective is that the PPS makes any point in this volume be coincident
with the isocenter at any orientation.

The joint parameters of the PPS are the displacements d,, d>, d; of the three prismatic joints and
the rotations 6, o, f of the three rotational joints. A 6-axis force/torque sensor is placed between
the couch and the last joint. By measuring the forces and moment at this point, it is possible to
calculate the patient weight and the coordinates of the patient center of gravity. The system mo-
tions are very slow and smooth due to safety requirements. Hence, the system is quasi-static, and
its dynamics do not influence the system accuracy and are neglected.

The accuracy of the PPS was measured using a Leica 3D Laser Tracking System. These mea-
surements were to evaluate the PPS repeatability, the nonlinearity of its weight dependent deflec-
tions, the inherent uncompensated PPS accuracy, and the method discussed in the previous
section.

Three targets were placed on the couch at the positions Py, P, and P;, shown in Fig. 6. The
targets are located about 10mm above the couch. The position accuracy of the measurements
is approximately 0.04 mm.
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Y Frame F; o NTP

Fig. 6. Close view of the PPS couch.

A reference frame Fr is fixed to the couch (see Fig. 6). The intersection point of the plane
(PP, P5) with the Y axis of the fixed reference frame is called Ot. A fixed reference frame, Fj,
is used to express the coordinates of all points. When the PPS is at its home configuration (all joint
variables set equal to zero) the reference frames Fr and Fy are coincident. The location of a tumor
on a patient, defined as the Nominal Treatment Point (NTP), is specified in the frame coordinate
Fr. For the results presented below, the NTP coordinates in Fr are taken as (0, 90, —840) mm.

From separate measurements of the couch compliance, it has been found that significantly lar-
ger clastic deformations (compared to the deformations of the rest of the system) are associated
with the couch. In order not to compromise the system calibration accuracy due to numerical er-
rors caused by such different magnitudes (i.e., numerical error propagation due to bad scaling),
the measurement points were carefully chosen not to include the couch compliance, see Fig. 6.
This is the reason why the targets were placed near the manipulator wrist, away from the Nominal
Treatment Point. Thus, the couch has been considered to be outside the robot model, and its
parameters were not included in the formulation. Separate measurements have been conducted
by General Atomics to identify the couch compliance, and the associated elastic deformations
(to be later included in the complete model, out of the scope of this work). This procedure allows
for a better identification of the Patient Positioning System parameters, while allowing couch
replacing without the need for recalibrating the entire system.

For more than 700 different configurations of the PPS and different weights, the location of
points P, P> and Ps in frame F, were measured and the NTP coordinates in frame F calculated.
From the system kinematic model with no errors, the ideal coordinates of NTP were calculated
and subtracted from the experimentally measured values to yield the vector AX(q,w). Four hun-
dred and fifty measurements were used to evaluate the basic uncompensated accuracy of the PPS
and the accuracy of the compensation method described above. Two different payloads were used:
one with no weight and another with a 1541b weight at the center of the treatment area. The PPS
configurations used were grouped into two sets:

Set (a) Treatment volume. The eight vertices of the treatment volume (see Fig. 2) are reached with
the NTP with angle 0 taking values from —90° to 90° with a step of 30°, for a total of 112
configurations.

Set (b) Independent motion of each axis. Each axis is moved independently while all other axes are
held at the home (zero) values. The step of motion for d; is 50mm, for d, 20mm, for d3
25mm and for 0 5°, resulting in 338 configurations.

The PPS uncompensated accuracy combining the two sets is shown in Fig. 7. The data points
represent the positioning errors of NTP. It is clearly seen that in spite of the high quality of the
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Fig. 7. Measured and residual errors after compensation.

PPS physical system, its uncompensated accuracy is on the order of 10 mm. This is approximately
20 times higher than the specification of +0.50 mm.

Part of the uncompensated error is the repeatability errors. These errors are due to the random
system errors, and they cannot be compensated by the calibration method. They represent the
accuracy limit of any error compensation algorithm and they also show how well an error com-
pensation technique performs. Here the system repeatability is based on how well the system
would return to the NTP from certain arbitrary configurations. A total of 270 measurements were
taken with zero payload weight. The repeatability error of the PPS is less than 0.15 mm (3¢). Thus
this system is a good candidate for model based error correction methods, since the repeatability
errors are relatively small compared to the +0.50 mm.

In implementing the computation method, a general nonlinear function of the wrench w can be
used. To help establish this function, the behavior of the PPS positioning errors for different pay-
load weights was examined with measurements made at the home (zero) configuration. The
weights ranged from 0 to 3001bs in steps of approximately 251bs. The results showed that the posi-
tioning errors of the PPS were nearly linear with the payload weight. The least square error is less
than 0.1 mm for the linear fit. Hence, the generalized errors were taken as linear functions of the
system wrench in Eq. (6).

The redundant error parameters are then eliminated from the error model. After the model
expansion to include elastic deformations, one redundant parameter is introduced due to the poly-
nomial representation of the errors. This remaining redundant parameter is easily removed using
classical numerical methods [8]. The generalized errors are then calculated with Eq. (6) using the
configurations of set (b) (independent motion of its axes) and half of the treatment volume data
(set a). For a Pentium PC 300 MHz, the computing time was less than one minute. The PPS is then
commanded to go to compensated points for the remaining configurations of set (a). The residual
positioning errors of the PPS after compensation for these points are shown in Fig. 7. The residual
errors are enclosed in a sphere of 0.38 mm radius, which is smaller than the sphere of 0.5mm ra-
dius that represents the accuracy specification. The required number of data points for this calcu-
lation was less than 400. The error distribution along each axis is shown in Fig. 8. Hence the
compensation method used in this paper enables the system to meet its specification. It is now
a key element in MGH’s operational software. Since the remaining errors after calibration using
400 points were comfortably under 0.5mm, a significantly smaller number of poses could have
been used in the calibration. In fact, applying the presented calibration method to a subset of only
125 measurement poses of the patient positioning system resulted in a maximum residual error of
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Fig. 8. The statistics of the compensated PPS errors at NTP.

0.49 mm. This absolute accuracy meets the specification, while significantly less than 400 measure-
ment points would be necessary. This number is indeed much smaller than it might be expected,
considering that not only elastic deformations, but also geometric errors that vary in their own
frames (such as a quasi-sinusoidal shape for the rail errors on the prismatic base, as discussed
below) are present in the system.

One of the main advantages of the polynomial approach is the ability to model non-linearities
or any other repeatable error source that can be represented as a function of the system param-
eters and of the payload wrenches. In particular, the errors along the Patient Positioner’s lateral
rail had an approximately sinusoidal shape (as it was expected from the respective manufacturing
process, due to eccentricities in its machining), which turned out to be an important error source
in this system. These errors were identified through the presented methodology using polynomial
expansions with relatively few terms (about eighth order).

Note also that the polynomial modeling automatically accounts for the elastic deformations
due to link masses. The polynomial terms that are a function of the system configuration (but
not of the task wrench w) are the ones that account for the contribution of the link masses to
the varying end-effector elastic errors. Since the link masses are constant, the constant polynomial
coefficients associated with these terms will automatically account for such configuration-depen-
dent effects. Therefore, all link masses are implicitly identified, and their associated elastic errors
are automatically compensated for.

5. Summary and conclusions

In this work, a high-accuracy large medical manipulator was calibrated, compensating for the
positioning end-effector errors under significant task loads. Both geometric and elastic deforma-
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tion errors were considered using polynomial approximations. The results showed that the basic
accuracy of the manipulator exceeded its specifications, but after applying the method to compen-
sate for end-effector errors the accuracy specifications were met. The error compensation routines
are now a key element of the patient positioning system software used to treat cancer patients.

Acknowledgement

The support of the National Institutes of Health via the Northeast Proton Therapy Center
from the Massachusetts General Hospital for this work are acknowledged. The important contri-
bution of P. Drouet is gratefully acknowledged.

References

[1] C. Vaillancourt, G. Gosselin, 1994. Compensating for the structural flexibility of the SSRMS with the SPDM, in:
Proceedings of the International Advanced Robotics Program, Second Workshop on Robotics in Space, Canadian
Space Agency, Montreal, Canada.

[2] J. Flanz, et al., 1996. Design approach for a highly accurate patient positioning system for NPTC, in: Proceedings
of the PTOOG XXV and Hadrontherapy Symposium, Belgium, pp. 1-5.

[3] W. Hamel, S. Marland, T. Widner, 1997. A model-based concept for telerobotic control of decontamination and
dismantlement tasks, in: Proceedings of the 1997 IEEE International Conference of Robotics and Automation,
Albuquerque, New Mexico.

[4] P. Drouet, S. Dubowsky, C. Mavroidis, 1998. Compensation of geometric and elastic deflection errors in large
manipulators based on experimental measurements: application to a high accuracy medical manipulator, in:
Proceedings of the 6th International Symposium on Advances in Robot Kinematics, Austria, pp. 513-522.

[5] P. Drouet, 1999. Modeling, identification and compensation of positioning errors in high accuracy manipulators
under variable loading: application to a medical patient positioning system, Ph.D. Thesis, Université de Poitiers,
France.

[6] Z.S. Roth, B.W. Mooring, B. Ravani, 1986. An overview of robot calibration, in: IEEE Southcon Conference,
Orlando, Florida, pp. 377-384.

[7]1 J. Hollerbach, A survey of kinematic calibration, in: O. Khatib, et al. (Eds.), Robotics review, MIT Press,
Cambridge MA, 1988.

[8] .M. Hollerbach, C.W. Wampler, The calibration index and taxonomy for robot kinematic calibration methods,
International Journal of Robotics Research 15 (6) (1996) 573-591.

[9] H. Zhuang, J. Wu, W. Huang, 1996. Optimal planning of robot calibration experiments by genetic algorithms, in:
Proceedings of IEEE 1996 International Conference on Robotics and Automation, Minneapolis, pp. 981-986.

[10] K. Waldron, V. Kumar, 1979. Development of a theory of errors for manipulators, in: Proceedings of the Fifth
World Congress on the Theory of Machines and Mechanisms, pp. 821-826.

[11] C. Wu, A kinematic CAD tool for the design and control of a robot manipulator, International Journal of
Robotics Research 3 (1) (1984) 58-67.

[12] R. Vaichav, E. Magrab, A general procedure to evaluate robot positioning errors, International Journal of
Robotics Research 6 (1) (1987) 59-74.

[13] C. Mirman, K. Gupta, Identification of position independent robot parameter errors using special Jacobian
matrices, International Journal of Robotics Research 12 (3) (1993) 288-298.

[14] P. Broderick, R. Cirpa, A method for determining and correcting robot position and orientation errors due to
manufacturing, Transactions of the ASME, Journal of Mechanisms, Transmissions and Automation in Design 110
(1988) 3-10.

[15] H. Zhuang, Z. Roth, F. Hamano, A complete and parametrically continuous kinematic model for robot
manipulators, IEEE Transaction in Robotics and Automation 8 (4) (1992) 451-462.



M.A. Meggiolaro et al. | Mechanism and Machine Theory 40 (2005) 415427 427

[16] J.H. Borm, C.H. Menq, Determination of optimal measurement configurations for robot calibration based on
observability measure, International Journal of Robotics Research 10 (1) (1991) 51-63.

[17] S. Dubowsky, J. Maatuk, N.D. Perreira, A parametric identification study of kinematic errors in planar
mechanisms, Transactions of ASME Journal of Engineering for Industry 1 (1975) 635-642.

[18] H. Zhuang, Z.S. Roth, 1993. A linear solution to the kinematic parameter identification of robot manipulators,
IEEE Transactions in Robotics and Automation 9 (2) (1993) 174-185.

[19] J. Flanz, et al., Overview of the mgh-northeast proton therapy center: plans and progress, Nuclear Instruments
and Methods in Physics Research B 99 (1995) 830-834.

[20] I. Rabinowitz, Accuracy of radiation field alignment in clinical practice, International Journal of Radiation
Oncology Biology and Physics 11 (1985) 1857-1867.

[21] C. Mavroidis, S. Dubowsky, P. Drouet, J. Hintersteiner, J. Flanz, 1997. A systematic error analysis of robotic
manipulators: application to a high performance medical robot, in: Proceedings of the 1997 IEEE Int. Conference
of Robotics and Automation, Albuquerque, New Mexico, pp. 980-985.

[22] A. Slocum, Precision Machine Design, Englewood Cliffs, 1992.

[23] J. Craig, Introduction to Robotics: Mechanics and Control, Addison-Willey, 1989.

[24] H. Zhuang, S.H. Motaghedi, Z.S. Roth, 1999. Robot calibration with planar constraints, in: Proceedings of the
IEEE International Conference of Robotics and Automation, Detroit, Michigan, pp.805-810.

[25] M. Meggiolaro, S. Dubowsky, 2000. An analytical method to eliminate the redundant parameters in robot
calibration, in: Proceedings of the International Conference on Robotics and Automation (ICRA ’2000), IEEE,
San Francisco, pp. 3609-3615.

[26] M. Meggiolaro, C. Mavroidis, S. Dubowsky, 1998. Identification and compensation of geometric and elastic errors
in large manipulators: application to a high accuracy medical robot, in: Proceedings of the 25th Biennial
Mechanisms Conference, ASME, Atlanta.



	Geometric and elastic error calibration of a high accuracy  patient positioning system
	Introduction
	Analytical background
	Geometric and elastic error compensation
	Application to the patient positioning system
	Summary and conclusions
	Acknowledgement
	References


