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Abstract. In field environments it is not usually possible to provide robots in advance with valid
geometric models of its task and environment. The robot or robot teams need to create these models
by scanning the environment with its sensors. Here, an information-based iterative algorithm to plan
the robot’s visual exploration strategy is proposed to enable it to most efficiently build 3D models
of its environment and task. The method assumes mobile robot (or vehicle) with vision sensors
mounted at a manipulator end-effector (eye-in-hand system). This algorithm efficiently repositions
the systems’ sensing agents using an information theoretic approach and fuses sensory information
using physical models to yield a geometrically consistent environment map. This is achieved by
utilizing a metric derived from Shannon’s information theory to determine optimal sensing poses
for the agent(s) mapping a highly unstructured environment. This map is then distributed among
the agents using an information-based relevant data reduction scheme. This method is particularly
well suited to unstructured environments, where sensor uncertainty is significant. Issues addressed
include model-based multiple sensor data fusion, and uncertainty and vehicle suspension motion
compensation. Simulation results show the effectiveness of this algorithm.

Key words: visual mapping, cooperative robots, information theory, unstructured environments, data
fusion.

1. Introduction

An important goal of robotics research is to develop mobile robot teams that can
work cooperatively in unstructured field environments (Baumgartner et al., 1998;
Huntsberger et al., 2000). Figure 1 shows an example of a representative system
and task, however several other tasks and systems can be considered. Potential
tasks include explosive ordinance removal, de-mining and hazardous waste han-
dling, exploration/development of space, environment restoration, and construction
(Baumgartner et al., 1998; Huntsberger et al., 2001). For instance, space and plan-
etary robotic missions will require robot scouts to lead the way, by exploring,
mapping, seeking or extracting soil and rock samples and eventually constructing
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Figure 1. Representative physical system.

facilities in complex terrains. Multiple cooperating robots will be required to set up
surface facilities in challenging terrain for in-situ measurements, communications,
and to pave the way for human exploration of planetary surfaces. This will require
the handling of relatively large objects, such as deploying of solar panels and sen-
sor arrays, anchoring of deployed structures, movement of rocks, and clearing of
terrain.

The use of robot teams working cooperatively to acquire and share data has
been proposed to succeed in those missions (Huntsberger et al., 2001; Pirjanian
et al., 2001; Schenker et al., 2001; Sujan and Dubowsky, 2002; Trebi-Ollennu et al.,
2002). The control of such systems typically requires models of the environment
and task. In unstructured field environments it is often not possible to have such
a-priori models. In such cases, the robot needs to construct these from sensory
information, usually from vision systems. A number of problems can make this
nontrivial. These include the uncertainty of the task in the environment, location
and orientation uncertainty in the individual robots, and occlusions, e.g., due to
obstacles, work piece, or other robots. If the systems are equipped with vision
sensors mounted at a manipulator end-effector (eye-in-hand systems), intelligent
planning of the sensor motion can alleviate problems of the occlusions, providing
an accurate geometrical model of the task and environment. If the system consists
of more than one robot, planning the behavior of these multi-information sharing
systems can further improve the system performance.

Environment mapping by mobile robots falls into the category of Simultaneous
Localization and Mapping (SLAM). In SLAM a robot is localizing itself as it maps
the environment. Researchers have addressed this problem for well-structured (in-
door) environments and have obtained important results (Anousaki and Kyriakopou-
los, 1999; Burschka et al., 1997; Castellanos et al., 1998; Choset and Nagatani,
2001; Kruse et al., 1996; Thrun et al., 2000; Tomatis et al., 2001; Victorino et al.,
2000; Yamauchi et al., 1998). These algorithms have been implemented for several
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different sensing methods, such as camera vision systems (Castellanos et al., 1998;
Hager et al., 1997; Park et al., 1999), laser range sensors (Tomatis et al., 2001;
Yamauchi et al., 1998), and ultrasonic sensors (Anousaki and Kyriakopoulos, 1999;
Choset and Nagatani, 2001). Sensor movement/placement is usually done sequen-
tially (raster scan type approach), by following topological graphs or using a variety
of greedy algorithms that explore regions only on the extreme edges of the known
environment (Anousaki and Kyriakopoulos, 1999; Choset and Nagatani, 2001;
Reklaitis et al., 2000; Victorino et al., 2000; Yamauchi et al., 1998). Geometric
descriptions of the environment are modeled in several ways, including gener-
alized cones, graph models and voronoi diagrams, occupancy grid models, seg-
ment models, vertex models, convex polygon models (Choset and Nagatani, 2001).
The focus of these works is accurate mapping. They do not address mapping
efficiency. Researchers have addressed mapping efficiency to a limited amount
(Kruse et al., 1996). However, sensing and motion uncertainties are not accounted
for. They also generally assume that the environment is effectively flat (e.g., the
floor of an office or a corridor) and readily traversable (i.e. obstacles always have
a route around them) (Anousaki and Kyriakopoulos, 1999; Choset and Nagatani,
2001; Thrun et al., 2000; Yamauchi et al., 1998) and have not been applied to
robot teams working in rough planetary environments. Also, prior work has not ad-
dressed optimizing the communication between agents for both multi-agent plan-
ning and cooperative map-building.

To achieve the localization function, landmarks and their relative motions are
monitored with respect to the vision systems. Several localization schemes have
been implemented, including topological methods such as generalized voronoi
graphs and global topological maps (Choset and Nagatani, 2001; Tomatis et al.,
2001; Victorino et al., 2000), extended Kalman filters (Anousaki and Kyriakopou-
los, 1999; Park et al., 1999), and robust averages (Park et al., 1999). Although
novel natural landmark selection methods have been proposed (Hager et al., 1997;
Simhon and Dudek, 1998; Yeh and Kriegman, 1995), most SLAM architectures
rely on identifying landmarks as corners or edges in the environment (Anousaki
and Kyriakopoulos, 1999; Castellanos et al., 1998; Choset and Nagatani, 2001;
Victorino et al., 2000). This often limits the algorithms to structured indoor-type
environments. Others have used human intervention to identify landmarks (Thrun
et al., 2000).

Some studies have considered cooperative robot mapping of the environment
(Jennings et al., 1999; Reklaitis et al., 2000; Thrun et al., 2000). Novel methods
of establishing/identifying landmarks and dealing with cyclic environments have
been introduced for indoor environments (Jennings et al., 1999; Thrun et al., 2000).
In some cases, observing robot team members as references to develop accurate
maps is required (Reklaitis et al., 2000). While the work done in this field has
had significant impact on robot control architectures, these results largely do not
address the problem of cooperative sensing in the context of mobile robots in
unknown, unstructured environments. The methods developed to date generally
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rely on assumptions that include: simple well-known terrains; accurate knowledge
of the environment; little or no task uncertainty; sufficient sensing capability and
sufficient communication capabilities. For real field environments, these assump-
tions are often not valid. In general, current research has not solved the problem of
controlling multiple mobile robots performing cooperative tasks in unknown envi-
ronments, where uncertainty, limited sensing capabilities, and incomplete physical
models of the system(s)/environment dominate the problem.

This paper presents a cooperative multi-agent algorithm for the visual explo-
ration of an unknown environment. The basic approach to the algorithm is given
in Figure 2 (Sujan and Dubowsky, 2002; Sujan et al., 2003). This algorithm fuses
sensory information from one or multiple agents using physical sensor models,
robot models, and environment maps to yield geometrically consistent surrogate
information in lieu of missing data due to the environment, task, robot and sensor
uncertainties. The multiple agents can have different shapes and kinematic con-
straints, as long as their models are known. The algorithm falls into the general
category of SLAM. The mapping and localization process is as follows. First, each
agent efficiently repositions its sensors using an information theoretic approach, in
order to optimally fill in uncertain/unknown regions of the environment map, based
on maximizing the expected new information obtained. Next, each agent fuses the
data to its known environment model by localizing itself with respect to a global
fixed reference frame. Finally, each agent shares its known environment map with
its team, which is then integrated by the other agents into their own environment
maps. The information is then used by the control and planning architecture to plan
further movements of the sensors for each agent. Thus a common environment map
is built by fusing the data available from the individual robots, providing improved
accuracy and knowledge of regions not visible by all robots. The algorithm is

Figure 2. An architecture for multi-robot cooperative sensing.
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unique in using the quantity of information of the environment that it currently has,
predicting high information-yielding viewpoints from which to continue exploring
the environment. This results in a significantly more efficient exploration process.
This algorithm is directly applicable to a team of robots as it is to a single explorer.
This generality also extends to data representation formats (e.g., 2-D, 2.5-D and
3-D representations). This is achieved through a unique information representation,
sharing and fusion architecture.

2. Algorithm Description

The algorithm may be broken down as follows. First, the vision sensors cooper-
atively scan the region around a target, generating a local 3D geometric model.
This allows the robots to locate themselves and the obstacles in the target reference
frame. Next, these models are used to find optimum environment viewing poses for
the multiple vision systems (Sujan and Dubowsky, 2002). The process is initialized
by visually finding the target and robots in a common reference frame. Then, a new
pose is found for each of the sensors by defining and optimizing a rating function
(RF) over the possible sensor positions, subject to kinematic constraints of the
sensor placement mechanisms for the individual robots. This rating function aims
to acquire as much new information about the environment as possible with every
sensing cycle, while maintaining or improving the map accuracy, and minimizing
the exploration time. The process is constrained by selecting goal points that are not
occluded and that can be reached by a collision-free traversable path. The sensors
then move to their new poses and acquire 3D data. Based on the sensor mount
kinematics, the motion of the sensor is known. However, small motions of the
robot base (due to suspension compliance) and errors in sensor mounts lead to
additional uncertainties. These are accounted for by measuring common features
during the vision sensor motion. Finally, the new data and its associated uncertainty
are fused with the current environment map, resulting in an updated probabilistic
environment map, which may then be shared with the other sensing agents. In
general, for each sensing agent the algorithm consists of four steps, described as
follows (see Figure 3).

2.1. STEP 1: SYSTEM INITIALIZATION

Here the environment map is initialized, the robots are localized, and a first map
is generated. The environment may be mapped using several different representa-
tions. In this paper, both 2.5-D elevation maps and 3-D occupancy grid maps are
addressed. In 2.5-D elevation maps, the map is a plane of grid cells where each grid
cell value represents the average elevation of the environment at that cell location.
Uncertainty in elevation is also maintained with each grid cell. In 3-D occupancy
grid maps, the map is modeled as a probabilistic discretized occupancy 3-D grid.
Every voxel in the 3-D grid has a value for probability-of-occupancy that ranges
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Figure 3. Outline of model building and placement algorithm.

from 0 (empty) to 1 (occupied). A value of 0.5 indicates maximum uncertainty in
occupancy of the voxel. Each representation has its advantages, as follows. The
2.5-D elevation maps are particularly useful for terrain profiling where there are
little or no terrain overhangs. On the other hand, the 3-D occupancy grid maps are
more useful in areas that do have a large number of significant overhangs, such as
caves, rooms, etc, since 2.5D maps only provide one data point, the elevation, for
each planar grid cell.

The map is built in a fixed reference frame defined by a well-known landmark
measurable by all the sensing agents. All robots contributing to or requiring use of
the map are localized with respect to the initial map. Localization may be achieved
by either:
(a) absolute localization, achieved by mapping a common environment landmark

that is visible by all robots; or
(b) relative localization, done by mapping fiducials on all robots by other robot

team members where one robot is selected as the origin.
Absolute localization is used in this application, although relative localization

has been applied in the past (Sujan et al., 2003). Other methods can be used for
either absolute or relative localization (Yamauchi et al., 1998). Searching for the
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target (which forms the absolute origin) by moving the robot sensors can be done in
many ways, such as exhaustive raster scanning, random walking, tracking “space
filling curves”, and model-based image understanding methods (Tarabanis et al.,
1995). In this study, sensor positioning for target searching is done in the same
way as sensor positioning for environment model building (described in Step 3,
Section 2.3). The absolute origin target is located by matching the known target el-
ement geometric CAD model with visual data (Lara et al., 1998). At this stage, the
environment model is considered empty, i.e. no points are known. The first stereo
range map (including the common target and all objects within the field of view)
is taken by each agent. It is assumed that only the geometry of the task elements
– such as parts of a solar panel that is to be assembled (Huntsberger et al., 2001) –
are well known. Obstacles and robot positions are unknown.

2.2. STEP 2: CRITICAL TERRAIN FEATURE IDENTIFICATION

In some applications, certain regions of the terrain may be critical, requiring early
identification, mapping and monitoring as the environment model grows (Hunts-
berger et al., 2003; Schenker et al., 2001; Sujan et al., 2003). An example is
determining regions of safe travel for the sensing agents. For this process, the
incomplete environment model is temporarily completed by a Markovian approxi-
mation for unknown environment grid point values. A nearest measured neighbor
average is performed and iterated till convergence.

2.3. STEP 3: OPTIMUM INFORMATION GATHERING POSE SELECTION

A rating function is used to determine the next location (position and orientation) of
the sensing agent from which to explore the unknown environment. The objective
is to acquire as much new information about the environment as possible with every
sensing cycle, while maintaining or improving the map accuracy, hence minimizing
the exploration time. The process is constrained by selecting goal points that are
not occluded and that can be reached by a collision-free feasible path.

In this paper the sensors are CCD stereo cameras. The new information (NI) is
equal to the expected information of the unknown/partially known region viewed
from the sensor pose under consideration. This is based on the known obstacles
from the current environment map, the field of view of the sensor and a framework
for quantifying information. Shannon showed that the information gained by ob-
serving a specific event among an ensemble of possible events may be described
by the following function:

H (q1, q2, . . . , qn) = −
n∑

k=1

qk log2 qk, (1)

where qk represents the probability of occurrence for the kth event. This definition
of information may also be interpreted as the minimum number of states (bits)
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needed to fully describe a piece of data. Shannon’s emphasis was in describing the
information content of 1-D signals. In 2-D the gray level histogram of an ergodic
image can be used to define a probability distribution:

qi = ni

N
for i = 1, . . . , Ngray, (2)

where ni is the number of pixels in the image with gray level i, N is the total
number of pixels in the image, and Ngray is the number of possible gray levels.
With this definition, the information of an image for which all the qi are the same
– corresponding to a uniform gray level distribution or maximum contrast – is a
maximum. The less uniform the histogram, the lower the information. Although
this is generally true, it is critical to note that images with ordered patterns may
result in the same information content as one with no order. For example, a uni-
form histogram may be mapped to two very different images, such as a random
arrangement of intensity values and a (uniform) smooth color gradient. Intuitively,
the former would be expected to contain more information but using Equations (1)
and (2), they result in the same value. This anomaly exists for both the 2.5-D and
3-D models. However, this is readily rectified using conventional lossless image
compression algorithms, defined below. Thus, before the information content of a
data set can be evaluated, it must be processed by a compression algorithm.

A compression program is used to convert data from an easy-to-use format
to one optimized for compactness. Likewise, an uncompression program returns
the information to its original form. Only compression is addressed here (since a
measure on the information present after compression is required, with no needs
for decompression of the data). Decompression techniques can be inferred from
the compression methods. Refer to (Smith, 1999) for complete descriptions.

There are many different forms of compression, classified in various ways. One
way to classify the compression techniques is lossless vs. lossy. A lossless tech-
nique means that the restored data file is identical to the original. This is absolutely
necessary for many types of data, for example: executable code, word-processing
files, tabulated numbers, etc. In comparison, data files that represent images and
other required signals do not have to be kept in perfect condition for storage or
transmission. All real world measurements inherently contain a certain amount of
noise. If the changes made to these signals resemble a small amount of additional
noise, no harm is done. Compression techniques that allow this type of degradation
are called lossy. This distinction is important since lossy techniques are much more
effective at compression than lossless methods. The higher the compression ratio,
the more noise added to the data. A few common methods of lossless compres-
sion are Simple Run-length compression, Lossless JPEG, Huffman coding, and
Lempel–Ziv–Welch (LZW) compression. An ideal compression algorithm would
remove all traces of any pattern in the data. Such an algorithm currently does not
exist, however the LZW compression algorithm is well recognized to approach this
limit. A thorough review is beyond the scope of this paper, but it can be found in



INTELLIGENT AND EFFICIENT STRATEGY FOR UNSTRUCTURED ENVIRONMENTS 225

(Smith, 1999). Limited studies on several of the above methods have been carried
out and results will be presented.

This concept of information content may now be extended to both 2.5-D en-
vironment elevation maps as well as 3-D environment occupancy grid maps. The
process is constrained by selecting goal points that are not occluded and that can
be reached by a collision free traversable path.

2.3.1. Extension to 2.5-D Environment Elevation Map

The new information content for a given sensor (camera) view pose is given by

H(camx,y,z,θp,θy
)

=
∑

i

nmax
grid − ni

grid

nmax
grid

{(
P i

V

2
log2

P i
V

2

)
+

(
1 − P i

V

2
log2

(
1 − P i

V

2

))}
, (3)

where H is an information measure summed over all grid cells i visible from
camera pose camx,y,z,θp,θy ; ni

grid is the number of environment points measured
and mapped to cell i; nmax

grid is the maximum allowable mappings to cell i; and P i
V is

the probability of visibility of cell i from the camera test pose. Note in Equation (3)
that when the number of environment points measured and mapped to cell i reaches
the maximum allowable mappings, its contribution to the new information content
is zero, as expected. Locations where the elevation is greater than the local average
elevation (+2σ) are considered as unoccupied and form candidate test poses for
the vision system, since these locations are least likely to be obstructed.

A single range observation of a point (x̄) is modeled as a 3-D Gaussian proba-
bility distribution centered at x̄, based on two important observations. First, the
use of the mean and covariance of a probability distribution function is a rea-
sonable form to model sensor data and it is a second order linear approximation
(Smith and Cheeseman, 1986). This linear approximation corresponds to the use
of a Gaussian (having all higher moments of zero). Second, from the central limit
theorem, the sum of a number of independent variables has a Gaussian distribution
regardless of their individual distributions. The standard deviations along the three
axes of the distribution correspond to estimates of the uncertainty in the range
observation along these axes. These standard deviations are a function of intrinsic
sensor parameters (such as camera lens shape accuracy) as well as extrinsic sensor
parameters (such as the distance to the observed point or feature). For most range
sensing systems, this model can be approximated as (Sujan and Dubowsky, 2002):

σx,y,z ≈ S · Tx,y,z · Ln, (4)

where S is an intrinsic parameter uncertainty constant, Tx,y,z is an extrinsic parame-
ter uncertainty constant, L is the distance to the feature/environment point, and n

is a constant exponent (typically 2).
The probability of visibility P i

V of a target cell (�x, �y) from the camera loca-
tion is evaluated by computing the likelihood of occlusion of a ray rayx,y,z using all
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Figure 4. Ray tracing to determine probability of visibility of a grid cell from a given camera
configuration.

the elevations of the obstructions, Obx,y,z, and the associated uncertainties, σx,y,z,
at cells lying along the ray path shot through each target in the environment grid to
the camera center. From Figure 4, if grid cell i falls within the camera field of view,
then its average elevation, Ptx,y,z (obtained either as an average of all measured
points mapped to cell i, or as the Markovian approximation of its neighborhood if
no points have currently been mapped to cell i) traces a ray to the camera center,
camx,y,z. Assuming z as the vertical direction, P i

V is given by the product of the
probability of visibility over all cells lying under the light ray from the target cell
(�x, �y) to the camera location:

P i
V =

∏

ray

{
sgn(rayz − Obz)

∫ rayz−Obz

0

1

σz

√
2π

exp

(
− z2

2σz

)
dz + 0.5

}
. (5)

Note that an exact solution for P i
V should be given by the volumetric integral about

dx, dy and dz. However, for computational simplicity we have only applied an
approximation by considering the single dimension, dz.

2.3.2. Extension to 3-D Environment Occupancy Grid

From the probabilistic geometric environment model, (x, y, z) locations with prob-
ability of occupancy smaller than 0.05 (2σ ) are considered as unoccupied. Such
points form candidate configuration space camera pose coordinates. In such an
instance the scene probability distribution for information analysis is still given by
Equation (2). However, N is the maximum number of voxels visible by the vision
system (limited by the depth of field and the field of view), and fi is the number
of voxels in the scene with gray level i. The equation is evaluated separately for



INTELLIGENT AND EFFICIENT STRATEGY FOR UNSTRUCTURED ENVIRONMENTS 227

mapped (known) versus unmapped (unknown) regions:

H(camx,y,z,θp,θy
)

= −
((

n∑

k=1

qk log2 qk

)

known

+
(

n∑

k=1

qk log2 qk

)

unknown

)
. (6)

The possible gray level values are defined as follows. For all unknown/un-
sampled voxels, an occupancy value p(x̄)unknown may be defined in the form of
a Markovian chain, i.e., p(x̄) of a particular voxel is the average value of p(x̄) of
the neighboring voxels. Intuitively, this results in unknown regions that are mapped
as averages of closest known regions. Thus, for all spatial voxels, a gray (proba-
bilistic) occupancy value between 0 and 1 is found. Next, the values for p(x̄) are
modified as follows:

stretching: p′(x̄) =






1

1 − p(x̄)
· 1

dvoxel
∀p(x̄) < 0.5,

1

p(x̄)
· 1

dvoxel
∀p(x̄) � 0.5,

(7)

+ scaling: p′′(x̄) =






p′(x̄) − 1

2
∀p(x̄) < 0.5,

1 − p′(x̄) − 1

2
∀p(x̄) � 0.5,

where dvoxel is the Euclidean distance of the voxel from the camera coordinate
frame. This process causes regions with probability densities closer to 0 or 1 (re-
gions of most certainty) to have a reduced effect on the new information expected.
Regions that have a probability density closer to 0.5 (regions of least certainty of
occupancy) are “stretched out” in the scene probability distribution, thus increasing
the new expected information associated with those regions. A uniform discretiza-
tion of this range of p′′(x̄) values may be performed to define the gray level
values i, fi, Ngray and N in Equation (2). With these definitions, qk of Equation (2)
is evaluated and the results applied to Equation (6), resulting in a metric for new in-
formation (NI). Alternatively, a possibly better choice is a uniform discretization of
p(x̄) to define the gray level values i, fi, Ngray and N . To increase the contribution
of regions with higher occupancy uncertainty to the information metric, the term
qk log2 qk of Equation (6) is premultiplied by −(pk log2 pk +(1−pk) log2(1−pk)),
reflecting the greater expected information available in such regions, resulting in

H(q) = −
(

n∑

k=1

{−[pk log2 pk + (1 − pk) log2(1 − pk)]
} · qk log2 qk

)

known

−
(

n∑

k=1

{−[pk log2 pk + (1 − pk) log2(1 − pk)]
} · qk log2 qk

)

unknown

. (8)
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Therefore, voxels with p(x̄) close to zero or one will result in less expected
information in the modified expression above, due to their greater level of cer-
tainty. The definitions for NI shown in Equations (3), (6) and (8), do behave in an
intuitively correct form. For example, for a given sensor pose, if the field of view
is occluded then NI decreases. If every point in the field of view is known to be
empty, then NI is equal to zero. NI increases as the number of unknowns in the
field of view increases. Further, the new expected information also increases in the
presence of regions that are known with median probabilistic values, i.e., values
that indicate with least amount of certainty whether a voxel is occupied or not.
On the other hand, regions with high probabilistic values for occupancy result in
reduced associated information.

2.3.3. Compensating for Poor Data Quality

During the mapping process, some regions that are expected to be visible may
not be, because of sensor characteristics (e.g., lack of stereo correspondence due
to poor textures or lighting conditions), and inaccuracies in the data model (e.g.,
expected neighboring cell elevations and uncertainties/occlusions), resulting in an
unsuccessful measurement for that specific cell. However, after repeated unsuc-
cessful measurements of cells expected to be visible, it becomes more likely that
sensor characteristics are the limitation. In this case, it may be impossible to im-
prove the measurements only by increasing their number. Therefore, instead of
dedicating too much time trying to unsuccessfully measure those cells, the robot
should lose interest in them and try to explore other areas. This is represented as a
data quality function that reduces as the number of unsuccessful measurements of
the visible grid cell increases. The information metric associated with such regions
are pre-multiplied by an “interest function” IF for the grid cell i given at the kth
unsuccessful measurement by

IF0
i = 1,

IFk
i = 1

eβP i
V

· IFk−1
i ,

(9)

where β is a scaling constant determined empirically, with larger values resulting
in faster decrease of IF. Note that occluded regions do not translate to low data
quality regions. This permits future “interest” in such regions that may be explored
later from another view location.

2.3.4. Data Fusion

The next step in environment map building is to fuse the newly acquired data
by each agent with the environment model currently available to that agent. At
any time, the sensors on each mobile robot can only observe a small part of their
environment. However, measurements obtained from multiple view-points can pro-
vide reduced uncertainty, improved accuracy, and increased tolerance in estimating
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Figure 5. Data fusion with sensor uncertainty.

the location of observed objects (Smith and Cheeseman, 1986). To fuse multiple
range measurements of a feature by sensors, a statistical model of sensor uncer-
tainty is employed (see Figure 5). Current and previous range sensor measurements
and their uncertainty models can be integrated to give an updated probabilistic
geometric model of the environment.

Each agent only fuses its own newly acquired data to the environment map
stored in its memory. Thus, as the environment map develops on an individual
agent level, it needs to be shared and integrated among the team to keep each agent
updated. Optimal map sharing protocols for multi agent systems is currently work
in progress, i.e., decentralized protocols instructing the team members when and
how to share their individual environment maps. However, once an agent shares its
map, the other agents fuse this shared map into their own environment maps using
the same method to fuse directly measured data, as described below.

Since the environment model has been developed in a fixed frame (see Step 1),
all agents contributing to the environment map require identification of their vision
system motion with respect to the fixed coordinate frame, i.e., the agents require
global localization. This compensation process during the coordinate transforma-
tion reduces robot positioning errors, such as sensor motion errors, and vehicle
suspension motions, and allows for accurate data fusion from multiple sources. The
process for data fusion is as follows. A single spatial point in the fixed reference
frame, r̄i , is related to the image point (ui, vi) in the sensor frame by the 4 × 4
transformation matrix g01, see Figure 6.

For motion calibration of a sensor, g01 needs to be identified:





kiui

kivi

kif

1



 = g01 · r̄i =
[ [R01]3×3 X3×1

0 0 0 1

]
·





rx
i

r
y

i

rz
i

1



 , (10)



230 V. A. SUJAN AND M. A. MEGGIOLARO

Figure 6. Relationship between sensor and target frames.

where R01 is the rotational matrix, X is the translation vector, f is the sensor (cam-
era system) focal length, and ki is a scaling constant. For computational reasons, it
is more convenient to treat the nine rotational components of R01 as independent,
rather than a transcendental relation of three independent parameters. Each spatial
point gives three algebraic equations, but also introduces a new variable ki . This
variable is a multiplicative constant to extend the ith image point vector (u, v, f )i

to the ith spatial point in the sensor coordinate frame. These ki may be found from
the disparity pair of the stereo images. For n points it is found that

u = g01 · r ⇒





k1u1 k2u2 . . . knun

k1v1 k2v2 . . . knvn

k1f k2f . . . knf

1 1 . . . 1





= g01 ·
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2 . . . r
y
n

rz
1 rz

2 . . . rz
n

1 1 . . . 1



 . (11)

This set of linear equations can be readily solved using conventional techniques.
A least mean square error solution is given by

g01 = u · (
rTr

)−1
rT. (12)

The rotation matrix R01 and the translation vector X of the sensor frame with
respect to the base frame are extracted directly from this solution of g01. However,
for real measured data and associated uncertainty, a larger number of spatial points
are required to more correctly identify the geometric transformation matrix g01.
Given the (i + 1)st spatial and image point, from the above equations, the new
estimates of the rotational matrix and translational vector, Ri+1 and Xi+1, can be
obtained. A recursive method is used to determine the mean and covariance C of
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X and R01 based on the previous i measurements as follows:

X̂i+1 = (iX̂i + Xi+1)

i + 1
,

CX
i+1 = iCX

i + [Xi+1 − X̂i+1][Xi+1 − X̂i+1]T

i + 1
,

(13)

R̂(l,m)

i+1 = (iR̂(l,m)
i + R(l,m)

i+1 )

i + 1
,

CR(l,m)

i+1 = iCR(l,m)
i + [R(l,m)

i+1 − R̂(l,m)

i+1 ][R(l,m)

i+1 − R̂(l,m)

i+1 ]T

i + 1
.

This method essentially maintains a measure on how certain the sensor motion
is with respect to its original configuration (assuming the original configuration is
known very precisely with respect to the common reference frame). This sensor
pose uncertainty must be accounted for to obtain an estimate on the position un-
certainty of a measured point in the environment. Let the measurement z̄ be related
to the state vector (actual point position) x̄ by a nonlinear function, h(x̄). The
measurement vector is corrupted by a sensor noise vector v̄ of known covariance
matrix R, giving

z̄ = h(x̄) + v̄. (14)

Assume that the measurement of the state vector x̄ is done multiple times. In
terms of the current measurement, a Jacobian matrix of the measurement relation-
ship evaluated at the current state estimate is defined as

Hk = ∂h(x̄)

∂ x̄

∣∣∣∣
x̄=x̄k

. (15)

The state (or position) may then be estimated as follows:

Kk = PkHT
k

[
HkPkHT

k + Rk

]−1
,

ˆ̄xk+1 = ˆ̄xk + Kk[z̄k − h(x̄k)],
Pk+1 = [1 − KkHk]Pk,

(16)

where Pk and Rk are the covariance of the state error and measurement noise after
k measurements.

This estimate is known as the Extended Kalman Filter (Gelb, 1974). Using this
updated value for both the measured point x̄ and the absolute uncertainty P, the
measured point may then be merged with the current environment model.

A method to obtain appropriate spatial points is now addressed. Spatial points
are a visible set of fiducials that are tracked during sensor motion. As the sensor
moves, the fiducials move relative to the sensor, eventually moving out of the
sensor view. This requires methods to identify and track new fiducials. Fiducials
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are selected from the probabilistic environment model based on three criteria: the
degree of certainty with which a sampled point is known, the visual contrast of
the sampled point with its surroundings, and depth contrast of the sampled point
with its surroundings. These are combined into a single fiducial evaluation function
(FEF):

FEF = f1(P (x)) + f2(C(u, v)) + f3(H(x)), (17)

where:
• f1(P (x)) ∼ P(x)/r is the fiducial certainty, where r is the radius of a sphere

centered at the potential fiducial within which neighboring voxels have de-
scending certainty levels (outside this sphere, voxel certainty levels increase,
and lower values for r suggest that the region surrounding a potential fiducial
is well known, a desirable property);

• f2(C(u, v)) ∼ contrast (C) × window size (w) is the fiducial visual contrast,
with contrast is defined as:

C(u, v) = I (x) − Īw

Īw
, (18)

where I (x) is the 2D image intensity value of the potential fiducial at x, Īw is
the average intensity of a window centered at the potential fiducial in the 2D
image, and w is the maximum window size after which the contrast starts to
decrease; and

• f3(H(x)) ∼ H(x) × window size (w) is the fiducial depth contrast, where
H(x) is the maximum spatial frequency (from a 3D Fourier transform) at the
potential fiducial within a window, and w is the maximum window size after
which the power spectrum (of the 3D Fourier transform) starts shifting to
higher frequencies (to simplify computation, this may be approximated with
some heuristics).

Additionally, a penalty is added if a potential fiducial is too close to other
identified fiducials. Using the identified fiducials, sensor motion can be obtained.
Fiducials can be tracked with simple methods such as region growing or image
disparity correspondence. An example of this process is shown in Figure 7. The
flow diagram of visual system motion identification is shown in Figure 8.

Once the sensor motion has been identified using spatial mapped and tracked
fiducials, the newly acquired data may be merged with the existing model as fol-
lows. Provided two observations are drawn from a normal distribution, the obser-
vations can be merged into an improved estimate by multiplying the distributions.
Since the result of multiplying two Gaussian distributions is another Gaussian
distribution, the operation is symmetric, associative, and can be used to combine
any number of distributions in any order. The canonical form of the Gaussian dis-
tribution in n dimensions depends on the standard deviations σx,y,z, a covariance
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Figure 7. Identification and tracking of 6 fiducials (� = tracked with previous image,
◦ = tracked with next image).

matrix (C) and the mean (x̄) (Stroupe et al., 2000, Smith and Cheeseman, 1986):

p(x̄′|ȳ) = 1

(2π)n/2
√|C| exp

(
−1

2
(ȳ − x̄′)TC−1(ȳ − x̄′)

)
, where

(19)

C =



σ 2

x ρxyσxyσxy ρzxσzxσzx

ρxyσxyσxy σ 2
y ρyzσyzσyz

ρzxσzxσzx ρyzσyzσyz σ 2
z



 ,

where the exponent is called the Mahalanobis distance. For uncorrelated measured
data, it is found that ρ = 0. The formulation in Equation (19) is in the spatial
coordinate frame. However, all measurements are made in the sensor coordinate
frame. This problem is addressed through a transformation of parameters from the
observation frame to the spatial reference frame as follows:

Ctransformed = R(−θ̄ )T · C · R(−θ̄ ), (20)

where R(θ) is the rotation matrix between the two coordinate frames. The angle
of the resulting principal axis can be obtained from the merged covariance matrix
(Smith and Cheeseman, 1986; Stroupe et al., 2000):

Cmerged = C1
(
I − C1(C1 + C2)

−1
)
, (21)
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where Ci is the covariance matrix associated with the ith measurement. Addition-
ally, a translation operation is applied to the result from Equation (19), to bring the
result into the spatial reference frame. To contribute to the probabilistic occupancy
environment model, all measured points corresponding to obstacles are merged.
That is, all measured points falling in a particular grid cell contribute to the error
analysis associated with that voxel.

Note that adding noisy measurements leads to a noisier result. For example,
the sensor pose uncertainty increases as the number of sensor steps increase. With
every new step, the current uncertainty is merged with the previous uncertainty
to get an absolute uncertainty in sensor pose. However, by merging redundant
measurements leads to a result with less noise.

2.3.5. Final Definition of Camera Pose Rating Function

In addition to maximizing information acquisition, it is also desirable to minimize
travel distance and maintain/improve the map accuracy, while being constrained
to move along feasible paths. An Euclidean metric in configuration space, with
individual weights αi on each degree of freedom of the sensor pose c̄, is used to
define the distance moved by the sensor:

d =
(

n∑

i=1

αi(ci − c′
i)

2

)1/2

, (22)

where ci and c′
i are the components of the vectors c̄ and c̄′ of the new and current

sensor poses respectively. Here, αi is set to unity. In general, this parameter reflects
the ease/difficulty in moving the vision system in the respective axis. Map accuracy
is based on the accuracy of localization of each sensing agent. This may be obtained
by adding the localization error (LE) of the agent along the path to the target.
Paths containing more promising fiducials for localization result in higher utility in
determining both the goal location and the path to the goal. The new information,
the travel distance and the net improvement of map accuracy are combined into a
single utility rating function (RF) that may be optimized to select the next view
pose:

RF = (wNI · NI − wdd − wLE · LE)(1 − Px,y,z), (23)

where wNI, wd and wLE are scaling constants. This rating function can be eval-
uated and optimized to find the next sensor configuration from which to make
future measurements of the environment. Although this choice of rating function
is somewhat arbitrary, good results were obtained. Additional constraints can also
be accommodated. The vision system pose selection algorithm is outlined in Fig-
ure 9. Note that the movement of the vision system may require motions by the
mobile robot (in addition to manipulator motions). The flowchart in Figure 9 in-
cludes a simple path planning approach based on the principle of convex hulls
(Sujan and Dubowsky, 2002).
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Figure 9. Flowchart for vision system pose selection of environment mapping algorithm.

2.4. STEP 4: MAP DISTRIBUTION

As each agent maps and fuses an environment section to the environment map, it
needs to distribute this updated map among the other agents. This is required so that
each agent may optimally plan its next move and add information to the map. Once
completed, the environment map needs to be distributed to the team (Huntsberger
et al., 2001, 2003; Sujan et al., 2003).

Due to communication bandwidth limitations of NASA/JPL present and near-
term rovers, an appropriate data transfer algorithm needs to be developed. For ex-
ample, during the 1997 Mars Sojourner mission, both the lander and rover carried
9600 baud radio modems, with an effective data rate of 2400 bps (NASA, 1997).
For the 2003 Mars Exploration Rover (MER) mission the data transfer rates of
MER-to-Earth is expected to vary from 3 Kbps to 12 Kbps and MER-to-orbiter
is expected to stay constant at 128 Kbps (NASA, 2003). These communication
limitations may be further exacerbated with multiple cooperating agents. Thus
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successful communication requires the reduction of the data set into relevant data,
i.e., only communicate data that is necessary for task execution.

The data reduction algorithm used here breaks down the environment map into
a quadtree of interest regions. This is achieved by first reducing the entire elevation
map with adaptive decimation. This removes highly insignificant objects, such as
small pebbles. The resulting data set is divided into four quadrants. The infor-
mation content of each quadrant is evaluated using Equations (1) and (2). This
information content reflects the amount of variation in the terrain quadrant (where
higher information content signifies higher variation in the terrain). Quadrants with
high information content are further divided into sub-quadrants and the evaluation

Figure 10. Inter-robot communication flow diagram.
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process is continued. Once it is determined that a quadrant does not require fur-
ther subdivision, an average elevation value of the particular quadrant is used for
transmission (rather than the elevation of all grid cells within that quadrant). This
cutoff threshold of information is based on a critical robot physical parameter (e.g.,
the wheel diameter). This results in a significantly reduced data set known as the
quadtree of interest regions. Conventional lossless compression schemes may then
be applied to the reduced data set to further reduce the number of transmission bits.
The flow diagram of this process is given in Figure 10.

3. Results

3.1. LOSSLESS COMPRESSION ALGORITHMS COMPARISON RESULTS

Nine techniques for data compression are compared here. These methods are listed
in Table I (Sujan and Dubowsky, 2002; Sujan et al., 2003). Five 2-D data set class
sizes were used, with each class size comprising of 500 different 2-D data sets
(formed from a variety of digital images). These sizes were: 162, 322, 642, 1282,
and 2562. Further, each class size also comprised of 100 randomly (uniform distri-
bution) generated 2-D data sets, used as control sets. Each of the methods presented
in Table I were applied and tested for performance with the above data class sets.
Comparison of information content before and after coding give the compression
ratio, i.e., number of bits needed to represent a pixel before and after compression
using the Shannon entropy function. These results are presented in Table II. As
expected, the data sets generated randomly showed little or no compression.

Due to its complexity, the LZW algorithm has not been explicitly coded, but it
was tested using available routines. It should be noted that for large data sets, this
algorithm is more efficient than the others that were tested (Smith, 1999). However,
this is not readily apparent for the tests conducted in this paper. Due to its inherent
simplicity and high performance, method 5 was selected as the compression algo-

Table I. Nine lossless compression algorithms for 2-D data

Method 1 No compression

Method 2 LZW compression

Method 3 Predictor: I (u, v) = I (u, v) − I (u − 1, v)

Method 4 Predictor: I (u, v) = I (u, v) − I (u − 1, v − 1)

Method 5 Predictor: I (u, v) = I (u, v) − (I (u, v − 1) + I (u − 1, v) − I (u − 1, v − 1))

Method 6 Predictor: I (u, v) = I (u, v) − (I (u, v − 1) + (I (u − 1, v) − I (u − 1, v − 1))/2)

Method 7 Predictor: I (u, v) = I (u, v) − {I (u − 1, v) + [I (u, v − 1) − I (u − 1, v − 1)]/2}
Method 8 Predictor: I (u, v) = I (u, v) − [I (u − 1, v) + I (u, v − 1)]/2

Method 9 Predictor: I (u, v) = I (u, v) − [I (u − 1, v) + I (u − 1, v − 1) + I (u, v − 1)]/3

Method 10 Huffman coding
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rithm for the remaining work presented in this paper. From Tables I and II, predictor
method 5 appears to give the highest compression ratios and is extended to the
information theoretic vision planning algorithm for the remaining work presented
in this paper.

3.2. ENVIRONMENT MAPPING STUDIES

Due to the qualitative similarity in performance, only the results using the rating
function for vision system pose selection to develop a 3-D probabilistic occu-
pancy model of a planar environment are given here. Two simulation results are
presented: single sensor/robot modeling of an unstructured environment, and two
cooperative sensors/robots modeling of an unstructured environment. Five sensor
pose selection methods are compared:

(i) random pose selection – the next sensor pose is selected randomly within the
known environment;

(ii) sequential/raster pose selection – the next sensor pose is selected as the next
free location in the known environment from which measurements have not
yet been made;

(iii) pose with maximum expected unmapped (new) region – the next sensor pose is
selected as the location with the largest expected new region while accounting
for known occlusions;

(iv) pose with minimum mapped (old) region (also known as the Frontier strategy)
– the next sensor pose is selected as the location that will map the smallest
previously mapped region; and

(v) pose with maximum expected information.

Table II. Comparison of compression methods on 2-D images

Compression ratio (CR ± σ )

Image: 162 Image: 322 Image: 642 Image: 1282 Image: 2562

pixels pixels pixels pixels pixels

Method 1 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Method 2 1.009 ± 0.038 1.142 ± 0.045 1.253 ± 0.063 1.375 ± 0.089 1.531 ± 0.146

Method 3 1.013 ± 0.033 1.142 ± 0.044 1.247 ± 0.064 1.358 ± 0.091 1.488 ± 0.147

Method 4 0.980 ± 0.025 1.060 ± 0.031 1.149 ± 0.046 1.250 ± 0.066 1.348 ± 0.101

Method 5 0.983 ± 0.041 1.143 ± 0.042 1.277 ± 0.068 1.416 ± 0.111 1.723 ± 0.234

Method 6 0.996 ± 0.041 1.156 ± 0.041 1.289 ± 0.063 1.427 ± 0.098 1.646 ± 0.184

Method 7 0.997 ± 0.039 1.157 ± 0.039 1.288 ± 0.064 1.422 ± 0.101 1.619 ± 0.181

Method 8 1.018 ± 0.035 1.159 ± 0.036 1.282 ± 0.056 1.414 ± 0.086 1.564 ± 0.145

Method 9 1.008 ± 0.031 1.126 ± 0.035 1.236 ± 0.052 1.358 ± 0.077 1.480 ± 0.123

Method 10 0.997 ± 0.001 0.996 ± 0.001 0.996 ± 0.001 0.996 ± 0.001 0.996 ± 0.001
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Figure 11. Unknown planar environment.

The first two methods reflect commonly used environment mapping schemes
(Burschka et al., 1997; Castellanos et al., 1998; Choset and Nagatani, 2001;
Reklaitis et al., 2000; Victorino et al., 2000). The latter three reflect with increased
complexity the algorithm developed here. The rating function (RF) cannot be op-
timized analytically. Furthermore, exhaustive searching though the entire n-point
configuration space (a process that takes O(n) time) is computationally very expen-
sive. Here, to reduce the search time, a finite set of goal configurations is employed.
This set of goal configurations may be selected in several ways (random, closest
to current pose, etc.). For m possible configurations, this process takes O(m) time,
where m often is a constant. Thus, while the best goal configuration would be the
one maximizing RF, any configuration with a high value for RF should suffice.
Such a configuration can be found with reasonable effort.

Figure 11 shows an unknown environment (100 m × 100 m) with occlusions
(black) to be mapped/modeled. It is assumed that all mobile mapping sensing
agents start at the center of this environment. Figures 12–14 show the results of
exploring this environment with a single robot (with a 90◦ field of view, 15 m depth
of field). Figure 12 shows examples of the area mapped using mapping/modeling
methods (i) and (v). Figure 13 shows the average accumulated motion error of
the vision system as it explores the environment as a function of traveled dis-
tance. Comparing Figures 13(a) and (b), it is seen that this error decreases sub-
stantially with redundancy of fiducials as well as with proximity of the fiducials.
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(a)

(b)

Figure 12. Mapped area by a single vision system (gray = empty space, black = obstacle,
white = unknown): (a) random walk pose selection; (b) maximum information pose selection.

Figures 14(a) and (b) show respectively the fraction of the environment mapped
and the net distance moved by the vision system for the five mapping methods,
using a single mobile vision system. The energy consumption by the system is
proportional to the net distance moved by the vision system. Hence it is desirable
to have large fraction of the environment mapped with small net displacements.

Note that with random walking you have the likelihood of ending up with a
solution that is not as good as the information theory approach, but it is better
than conventional methods such as (iii) or (iv). The problem with random walk
is the huge amount of energy spent in moving around and the computational load
in maintaining position information. The maximum expected unmapped method
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(a)

(b)

Figure 13. Accumulated r.m.s. translation error of vision system. Avg. fiducial distance
(a) 1100 mm, (b) 350 mm.

and minimum mapped region methods do not account for extrapolations on known
obstacles. Hence although they do consider the obstacle that has been mapped, they
do not try to figure out where the obstacle may exist. Additionally, when deciding
on amount of world mapped, the information theory approach accounts for the
certainty to which it is known. Hence, if certain areas have lower certainty (due
to distance) these are often remapped with the random walk and the maximum
information methods, but not so with methods (iii) or (iv). The max information
approach also results in a slightly higher distance traveled compared to, e.g., the
max expected unknowns, however the fraction of world viewed is so much higher
that this turns out to be an advantage. If comparing the ratio between fraction of
world viewed and distance traveled from these figures, the proposed approach turns
out to be the best and random walk the worst based on the obtained results.
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(a)

(b)

Figure 14. Results of single vision system modeling an unknown environment: (a) fraction of
environment modeled as a function of scan number; (b) distance moved by vision system as a
function of scan number.
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(a)

(b)

Figure 15. Mapped area by two cooperating vision systems (gray = empty space,
black = obstacle, white = unknown): (a) random walk pose selection; (b) maximum
information pose selection.

Figures 15, 16 show the results of exploring the same environment coopera-
tively using two robots (each with 75◦ field of view, 10 m depth of field). Figure 15
shows examples of the area mapped using mapping/modeling methods (i) and (v).
Figure 16 shows the fraction of the environment mapped in Figure 11 and the
net distance moved by the vision system for the five mapping methods, using the
two cooperating mobile vision systems. These results show the effectiveness of
the information theoretic approach to vision system pose selection in environment
modeling.

Figure 17 shows an unstructured indoor-type environment (100 m×100 m) with
rooms to be mapped/modeled. Figure 18 shows the fraction of the environment
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(a)

(b)

Figure 16. Results for two vision systems modeling an unknown environment: (a) fraction of
environment modeled as a function of scan number; (b) distance moved by vision system as a
function of scan number.
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Figure 17. Unstructured indoor-type planar environment.

mapped and the net distance moved by the vision system for the five mapping
methods, using a single mobile vision system (with 75◦ field of view, 10 m depth
of field). These results again show the effectiveness of the information theoretic
approach to vision system pose selection in environment modeling. It is important
to note that the information theoretic vision algorithm is the first to map the room
and find its way out into the corridor.

3.3. INTER-ROBOT COMMUNICATION STUDIES

The results in the previous sections demonstrate the effectiveness of the multi-
agent environment mapping architecture developed in this paper. To demonstrate
the effectiveness of the map reduction and distribution algorithm for robots in real
planetary exploration field environments, 32 different Mars elevation maps of fixed
dimensions, based on the statistics of Viking I/II Mars lander data, were tested. The
data of each elevation map was reduced with respect to a robot with varying wheel
diameter. To compare the data reduction, a terrain variation parameter dh is defined
as the terrain elevation variation normalized by the robot wheel diameter. Thus, it
is expected that robots with smaller wheel diameters (higher dh) require a greater
amount of terrain detail for navigation than those with larger wheel diameters
for the same terrain map. Figure 19 confirms this expectation. It shows the data



INTELLIGENT AND EFFICIENT STRATEGY FOR UNSTRUCTURED ENVIRONMENTS 247

(a)

(b)

Figure 18. Results of single vision system modeling an unknown environment: (a) fraction of
environment modeled as a function of scan number; (b) distance moved by vision system as a
function of scan number.
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Figure 19. Elevation map data reduction for transmission as a function of terrain elevation
range.

reduction factor as a function of dh using the algorithm described above (without
conventional lossless compression added at the end). The variation at each data
point represents the variation in data reduction expected for a given elevation map.

An example of this data reduction process is shown in Figures 20–23. It com-
pares the grayscale elevation map before and after the data reduction process –
lighter regions indicate higher elevations. Figure 20 shows a contour map of the
simulated environment. Figure 21 shows the quad-tree decomposition of the envi-
ronment. Note that higher divisions of regions indicate more complex terrain and
consequently higher relevant information content. Figure 22 shows the contour
map overlaid on the original grayscale elevation map. Finally, Figure 23 compares
the elevation map before and after the data reduction process.

For this example, a data reduction factor of approximately 10 was achieved with
a dh = 8. Although visually the left and right images of Figure 23 may appear
the same, closer inspection reveals regions in the transmitted image (such as the
bottom right corner) to contain very little information content. This indicates that
the region in the original elevation contained insignificant terrain variation with re-
spect to the particular wheel diameter. However, other regions such as the boulders,
indicated in the original elevation map, that are critical with respect to the wheel
diameter, are faithfully transmitted. It is seen that using this method, significant
data reduction can be achieved while maintaining the overall map structure.
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Figure 20. Simulated world contour map – gray color code indicates lighter regions to be of
higher elevation.

Figure 21. Quadtree decomposition of elevation map.
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Figure 22. Quadtree decomposition overlaid on original elevation map.

(a) (b)

Figure 23. The original (a) and the process/transmitted (b) environment elevation maps.
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4. Conclusions

In field environments it is often not possible to provide robotic teams with de-
tailed a priori environment and task models. In such unstructured environments,
cooperating robots will need to create a dimensionally accurate geometric model
by performing appropriate sensor actions. However, uncertainties in robot locations
and sensing limitations/occlusions make this difficult. A new algorithm based on it-
erative sensor planning and sensor redundancy is proposed to build a geometrically
consistent dimensional map of the environment for mobile robots with eye-in-hand
systems. The aim is to acquire new information that leads to more detailed and
complete knowledge of the environment. Controlling robots to maximize knowl-
edge is performed using Shannon’s information theory-based evaluation functions.
The work applies information theory to enhance the performance of cooperative
sensing robot teams compared with traditional pose selection methods. It may
be used by multiple distributed and decentralized sensing agents for efficient and
accurate environment modeling. The algorithm makes no assumptions of the envi-
ronment structure. Hence it is robust to robot failure since the environment model
being built is not dependent on any single agent frame, but is set in an absolute
reference frame. It accounts for sensing uncertainty, robot motion uncertainty, en-
vironment model uncertainty and other critical parameters. It allows for regions of
higher interest getting more attention by the agents. Simulations show promising
results.
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