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Abstract

Overload-induced fatigue crack branching is a well-known crack growth retardation or arrest mechanism, which can
quantitatively explain such effects even when arguments based on plasticity induced crack closure cannot be applied,
e.g. in high R-ratio or in plane strain controlled fatigue crack growth. However, the few results available for branched
cracks cannot be used to predict the subsequent crack growth nor account for the delays observed in practice. In this
work, specialized finite element (FE) and fatigue life assessment software are used to solve this problem. The crack path
and associated stress intensity factors (SIF) of kinked and bifurcated cracks are numerically obtained by the FE pro-
gram for several angles and branch lengths, and the companion life assessment program is used to estimate the number
of delay cycles associated with them. From these results, crack retardation equations are proposed to model the number
of delay cycles and the retardation factor along the crack path, allowing for a better understanding of the influence of
crack deflection in the propagation life of structural components.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that fatigue cracks can significantly deviate from their Mode I growth direction, gener-
ating crack kinking or branching [1] as illustrated in Fig. 1, due to the influence of overloads, multi-axial
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Fig. 1. Bifurcated crack geometry and nomenclature [1].
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stresses, microstructural inhomogeneities such as grain boundaries and interfaces, or environmental effects.
A fatigue crack deviated from its nominal Mode I plane induces mixed-mode near-tip conditions even if the
far-field stress is purely Mode I. For instance, as shown in Fig. 1, a pure Mode I stress intensity factor (SIF)
KI induces Modes I and II SIF k1 and k2 near the longer branch of a bifurcated crack and k

0
1 and k02 near the

shorter one. Since these SIF associated to deflected or branched fatigue cracks can be considerably smaller
than the SIF of a straight crack with the same projected length, such deviations can retard or even arrest the
subsequent crack growth [2]. In addition, the fracture surface roughness generated by such deviations can
also alter the crack closure level, leading to further perturbations on the crack propagation rates.
It is experimentally observed that very small differences between the crack branch lengths b and c are

enough to cause the shorter branch to arrest as the larger one propagates, generally changing its curvature
until reaching approximately its pre-overload SIF and growth direction and rate. Therefore, although many
branches can be developed along the main crack path, only the fastest one continues to grow, while all oth-
ers are brought to a stop due to its shielding effect. This typical propagation behavior has been observed in
many structural components, e.g. on a branched crack on an aircraft wheel rim made of 2014-T6 aluminum
alloy [3].
Analytical and approximate solutions have been obtained for the SIF of kinked and branched cracks,

but it is generally recognized that it is very difficult to develop accurate analytical solutions to their complex
propagation behavior [2,4–7]. Presently, therefore, numerical methods such as finite elements (FE) and
boundary elements (BE) seem to be the only practical means to predict the propagation behavior of
branched cracks. A summary of such SIF solutions as a function of the deflection angle and the length
of the deflected part of the crack are presented in [8].
To predict the (generally curved) path of a branched crack and to calculate the associated Modes I and II

SIF, a specially developed interactive FE program named Quebra2D (meaning 2D Fracture in Portuguese)
is used [9]. This program simulates two-dimensional fracture processes based on a FE self-adaptive strat-
egy, using appropriate crack tip elements and crack increment criteria. The adaptive FE analyses are cou-
pled with modern and very efficient automatic remeshing schemes. The remeshing algorithm developed for
Quebra2D works both for regions without cracks and for regions with one or multiple cracks, which may
be either embedded or surface breaking. Moreover, this algorithm is numerically stable even when the ratio
between the largest and the smallest FE is higher than 103. The program is validated through experiments
on ESE(T) and modified C(T) specimens made of 4340 and 1020 steel, and from comparisons with analy-
tical solutions.
The crack path and its associated SIF are then exported to ViDa, a general-purpose fatigue design pro-

gram developed to predict both initiation and propagation fatigue lives under variable loading by all clas-
sical design methods [10]. It includes comprehensive databases of stress concentration and intensity factors,
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crack propagation models and material properties, rain-flow counters, graphical output for all computed
results, including elastic–plastic hysteresis loops and 2D crack fronts. In particular, its crack propagation
module accepts any stress-intensity factor expression, including the ones generated by FE software. In this
way, ViDa works as a companion life assessment program to the Quebra2D crack path and SIF predic-
tions, and it is used to estimate the number of delay cycles associated with crack bifurcation. In the next
sections, these two pieces of software are used to calculate the propagation behavior of kinked and bifur-
cated (branched) cracks.
2. Mixed-mode crack growth calculations

In FE mixed-mode crack growth calculations, three methods are generally used to compute the stress
intensity factors along the (generally curved) crack path: the displacement correlation technique [11], the
potential energy release rate computed by means of a modified crack-closure integral technique [12,13],
and the J-integral computed by means of the equivalent domain integral (EDI) together with a mode
decomposition scheme [14,15]. The EDI method replaces the J-integral along a contour by another one
over a finite size domain, using the divergence theorem, which is more convenient for FE analysis.
Since Bittencourt et al. [16] showed that for sufficiently refined FE meshes all three methods predict

essentially the same results, only the EDI method is considered in the calculations presented here. However,
the other two methods also provide good results even for relatively coarse meshes.
The calculated Modes I and II SIF KI and KII are then used to obtain an equivalent SIF Keq. The fatigue

crack growth rate can then be computed from the equivalent stress intensity range DKeq by a simple
McEvily-type model [17]:
da
dN

¼ A � ðDKeq � DK thÞm ð1Þ
where DKth is the threshold SIF and A and m are the conventional tensile crack growth rate parameters for
the given material. An alternative Elber-type equation can be used based on the maximum equivalent stress
intensity Keq and on the crack opening value Kop, namely
da
dN

¼ A � ðKeq � KopÞm ð2Þ
Several models have been proposed to obtain Keq from KI and KII (and KIII, when it is important). For
example, Tanaka [18] obtained an equivalent stress intensity model based on the displacements behind the
crack tip reaching a critical value, leading to
Keq ¼ K4
I þ 8 � K4

II þ
8 � K4

III

1� m

� �1=4
ð3Þ
where m is Poisson�s coefficient.
Another expression for Keq can be derived for elastic loading under plane stress conditions, based on the

relations between the potential energy release rate G and the SIF [19], leading to
Keq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
I þ K2

II þ ð1þ mÞ � K2
III

q
ð4Þ
Hussain et al. [20] used complex variable mapping functions to obtain G at a direction h with respect to
the crack propagation plane under Modes I and II combined loading. They assumed that crack extension
occurs in a direction h = h0 that maximizes G, leading to the maximum fracturing energy release rate (Gmax)
criterion. Thus, an equivalent SIF is obtained at h = h0 that maximizes the expression
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Keq ¼


4

ð3þ cos2hÞ2
1� h=p
1þ h=p

� �h=p

ð1þ 3cos2hÞK2
I � 8 sin h cos h � KIKII þ ð9� 5cos2hÞK2

II

ihs
ð5Þ
The computed h0 values at each calculation step are used to obtain the crack incremental growth direc-
tion—and thus the fatigue crack path—in the linear-elastic regime.
Sih [21] proposed a criterion for mixed-mode loading based on the strain energy density S around the

crack tip. It is assumed that the crack propagates in a direction h ¼ h0
0 that minimizes S. The associated

equivalent SIF is then calculated at h ¼ h0
0 that minimizes the expression
K2
eq ¼

1

4ð1� 2mÞ

n
ð3� 4m � cos hÞð1þ cos hÞ � K2

I þ 2 sin h � ½cos h � 1þ 2m	 � KIKII

þ ½4ð1� mÞð1� cos hÞ þ ð1þ cos hÞð3 cos h � 1Þ	 � K2
II þ 4K2

III

o
ð6Þ
Erdogan and Sih [22] proposed the maximum circumferential stress (rhmax) criterion, which considers
that crack growth should occur in the direction that maximizes the circumferential stress in the region close
to the crack tip. They considered the stresses at the crack tip under combined Modes I and II loading, given
by summing up the stress fields generated by each mode:
rr ¼
1ffiffiffiffiffiffiffi
2pr

p 1

4
5 cos

h
2
� cos

3h
2

� �
� KI �

1

4
5 sin

h
2
� 3 sin

3h
2

� �
� KII

� 
ð7Þ

rh ¼
1ffiffiffiffiffiffiffi
2pr

p 1

4
3 cos

h
2
þ cos

3h
2

� �
� KI �

3

4
sin

h
2
þ sin

3h
2

� �
� KII

� 
ð8Þ

srh ¼
1ffiffiffiffiffiffiffi
2pr

p 1

4
sin

h
2
þ sin

3h
2

� �
� KI þ

1

4
cos

h
2
þ 3 cos

3h
2

� �
� KII

� 
¼ � 2

3

orh

oh
ð9Þ
where rr is the normal stress component in the radial direction, rh is the normal stress component in the
tangential direction and srh is the shear stress component. These expressions are valid both for plane stress
and plane strain. The maximum circumferential stress criterion assumes that crack growth begins on a
plane perpendicular to the direction in which rh is maximum. The maximum value of rh is obtained when
orh/oh is zero, which is equivalent to equating srh = 0, according to Eq. (9). The equation srh = 0 has a triv-
ial solution h = ±p (for cos(h/2) = 0), and a non-trivial solution h ¼ h00

0 given by
h00
0 ¼ 2 arctan

1

4

KI

KII

� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KI

KII

� �2
þ 8

s0
@

1
A ð10Þ
where the sign of h00
0 is the opposite of the sign of KII. According to the rhmax criterion, the equivalent SIF is

calculated at the value h ¼ h00
0, which maximizes the expression
Keq ¼
1

4
3 cos

h
2
þ cos

3h
2

� �
� KI �

3

4
sin

h
2
þ sin

3h
2

� �
� KII ð11Þ
Several other criteria have been proposed in the literature, such as the ones by Nuismer, Amestoy et al.,
Richard, Schöllmann et al., and Pook, as presented in [23]. A few of these criteria even predict the warping
angle of a 3-D crack subject to Mode III loading. A comprehensive review of the proposed equivalent SIF
and propagation angle expressions can be found in [23].
All presented models have notable differences if the amount of Mode II loading is significant. For in-

stance, under pure Mode II loading, the propagation angle h is ±70.5�, ±75� and ±82� according to the
rhmax, Gmax and Smin models, respectively, leading to Keq values of approximately 1.15 Æ KII, 1.60 Æ KII
and 1.05 Æ KII (assuming m = 0.3). In addition, Tanaka�s model results in this case in Keq = 1.68 Æ KII, while



Fig. 2. Crack propagation direction h as a function of the KII/KI ratio according to the rhmax, Gmax and Smin models.

Fig. 3. Equivalent SIF Keq as a function of the KII/KI ratio according to several models.
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Eq. (4) furnishes Keq = KII. The values of h and Keq obtained from each model are plotted in Figs. 2 and 3
as a function of the KII/KI ratio.
The differences among the studied models might be significant for mixed-mode fracture predictions,

however they turn out to be negligible for fatigue crack propagation calculations. In fact, since all above
models predict crack path deviation (h 5 0) under any KII different than zero (see Fig. 2), they imply that
fatigue cracks will always attempt to propagate in pure Mode I, minimizing the amount of Mode II loading,
curving their paths if necessary to avoid rubbing their faces. As soon as the crack path is curved to follow
pure Mode I, all models agree that Keq is equal to KI. Therefore, not only the crack path but also the asso-
ciated SIF values calculated by any of the above criteria are essentially the same. This has been verified by
Bittencourt et al. [16], who concluded from FE simulations that these criteria provide basically the same
numerical results. Since the maximum circumferential stress criterion is the simplest, even presenting a
closed form solution, it is the one adopted in the present work.
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3. Crack kinking calculations

In this section, the Modes I and II SIF k1 and k2 are evaluated for cracks of length a with a small kink of
length b0 at an angle h, see Fig. 4(a). According to [24,25], if b0 is much smaller than all other crack dimen-
sions, then k1 and k2 can be calculated from the Modes I and II SIF KI and KII of the straight crack (with-
out the kink) using the approximate expressions:
k1 ¼
1

4
3 cos

h
2
þ cos

3h
2

� �
� KI �

3

4
sin

h
2
þ sin

3h
2

� �
� KII ð12Þ

k2 ¼
1

4
sin

h
2
þ sin

3h
2

� �
� KI þ

1

4
cos

h
2
þ 3 cos

3h
2

� �
� KII ð13Þ
As discussed in [26], the exact analytical solution for k1 and k2 rests on the works in [27,28]. However, for
all studied cases in this work, it is found that the average error resulting from the above approximate
expressions is 1%, within the error tolerance of the FE calculations. It is interesting to note from Eqs.
(12) and (13) that the stresses at the tip of a straight crack under combined Modes I and II may be related
with the above solution by
rh ¼
k1ffiffiffiffiffiffiffi
2pr

p and srh ¼
k2ffiffiffiffiffiffiffi
2pr

p ) k2 ¼ � 2
3

ok1
oh

ð14Þ
where the above relation between k2 and k1 can be obtained differentiating Eq. (12) and comparing it with
(13), or from an analogy with Eq. (9).
Eqs. (12)–(14) are only valid for very small b0/a ratios. On the other hand, when b0/a is greater than 0.5,

k1 and k2 are a weak function of b0/a (being independent as b0/a approaches infinity) for both kinked and
symmetrically bifurcated cracks. This agrees with the fact that the solutions for kinked cracks with
b0/a  0.5 approach those for an inclined crack:
k1 ¼ ðcos2hÞ � KI � ðcos h � sin hÞ � KII ð15Þ
k2 ¼ ðcos h � sin hÞ � KI þ ðcos2hÞ � KII ð16Þ
To validate the Quebra2D program, the Modes I and II SIF k1 and k2 of an infinitesimally kinked crack
(b0/a ! 0 in Fig. 4(a)) are obtained and compared to the approximate solutions
k1 ¼
1

4
3 cos

h
2
þ cos

3h
2

� �
� KI ð17Þ

k2 ¼
1

4
sin

h
2
þ sin

3h
2

� �
� KI ð18Þ
Fig. 4. Schematic representation of a kinked crack before propagation (a) and at the onset of propagation (b).
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where KI is the Mode I SIF of the straight crack without the kink (here KII of the straight crack is assumed
to be zero).
In order to numerically reproduce Eqs. (17) and (18), very small b0/a ratios must be considered. Kitagawa

et al. [29] performed numerical analyses using b0/a = 0.1, however this ratio was not small enough to
converge to the infinitesimal kink solution. In this work, a standard C(T) specimen is FE modeled with
width w = 32.0 mm, crack length a = 14.9 mm, and a very small kink with length b0 = 10 lm. The ratio
b0/a = 10 lm/14.9 mm = 6.7 · 10�4 � 0.1 of this small kink is found appropriate to validate the infinites-
imal kink assumption, through a convergence analysis on the calculated SIF. Note that this 10 lm choice is
not related to the material or the grain size, since no micromechanisms are considered in the analysis, just
the macroscopic behavior through the ratio b0/a.
An efficient meshing algorithm is fundamental to avoid elements with poor aspect ratio when FE mod-

eling this kink, since the ratio between the size scale of the larger and smaller elements is above 1000 in this
case. To accomplish that, Quebra2D uses an innovative algorithm incorporating a quadtree procedure to
develop local guidelines to generate elements with the best possible shape. The internal nodes are generated
simultaneously with the elements, using the quadtree procedure only as a node-spacing function. This ap-
proach tends to give a better control over the generated mesh quality and to decrease the amount of heu-
ristic cleaning-up procedures. Moreover, it specifically handles discontinuities in the domain or boundary
of the model. Finally, to enhance the quality of the shape of the mesh element, an a posteriori local mesh
improvement procedure is used [30].
It must be noted, however, that linear-elastic FE calculations can only lead to accurate solutions if the

lengths of the crack branches b and c are significantly larger than the size scale of both the microstructure
and the near-tip plastic (or process) zone. Microstructural effects are an important factor to determine the
bifurcation event as well as the bifurcation angle and branch lengths. But as the crack branches grow fur-
ther, the FE method can give a reasonable estimate of their behavior, in special for small process zones. In
addition, the growth of branched cracks is typically transgranular, as verified from optical microscope
observations performed by Shi et al. [31], which is one of the requirements to allow for the simulation
of fatigue behavior in isotropic linear-elastic regime.
Fig. 5 shows a comparison between the analytical approximations and the FE-predicted k1 and k2 (nor-

malized by the straight crack SIF KI) for several kink angles h, showing a very good agreement. The equiv-
alent SIF Kb0, which is the crack rate controlling parameter, is then calculated based on the rhmax criterion
from Eq. (11), using KI � k1 and KII � k2. This Kb0 can also be interpreted as the Mode I SIF of the kinked
Fig. 5. Validation of the Quebra2D software for a kinked crack.
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crack immediately after it starts propagating, soon after the expected sharp deflection is developed, see Fig.
5. Note that Kb0 is only significantly smaller than the straight crack KI (e.g. beyond 5%) for kink angles
larger than 45�. Therefore, crack kinking is not a significant cause of retardation for kink angles smaller
than 45�.
The equivalent SIF Kb0 at the onset of the propagation can be calculated using the rhmax criterion

through Eqs. (10)–(13), however its expression is quite lengthy, see Eq. (19), where sign(x) is the sign func-
tion returning either 1, 0 or �1. Alternatively, a simple and practical function of h (in degrees) can be suc-
cessfully fitted to the calculated data within less than 1%, see Eq. (20).
Kb0

KI

¼ 1

16
3 cos

h00
0

2
þ cos

3h00
0

2

� �
3 cos

h
2
þ cos

3h
2

� �
� 3

16
sin

h00
0

2
þ sin

3h00
0

2

� �
sin

h
2
þ sin

3h
2

� �

h00
0 ¼ 2 arctan

1

4
� 3 cos h=2þ cos 3h=2
sin h=2þ sin 3h=2

� 1

4
� sign sin

h
2
þ sin

3h
2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 cos h=2þ cos 3h=2
sin h=2þ sin 3h=2

� �2
þ 8

s2
4

3
5
ð19Þ

Kb0

KI

¼
1; if h 6 10�

1� 0.37 � h � 10�

80�

� �2.4
; if h > 10�

8>><
>>: ð20Þ
The initial propagation angle hb0, defined in Fig. 4(b), can also be calculated using the rhmax criterion
and fitted within less than 1% by the function:
hb0 ¼
0�; if h 6 10�

37� � h � 10�

80�

� �1.7
; if h > 10�

8>><
>>: ð21Þ
In the next section, FE calculations are used to study the propagation behavior of kinked cracks,
evaluating the crack retardation behavior and associated process zone size.

4. Propagation of kinked cracks

FE crack propagation simulations are performed to evaluate the retardation behavior of kinked cracks
with angles h equal to 15�, 30�, 45�, 60�, 75� and 90�. The crack parameter b is varied from its initial size b0
to a final one bf (measured along the crack path), where bf is defined at the point beyond which the retar-
dation effect ends, see Fig. 6. More specifically, the criterion to define bf is to find the value of b beyond
which the SIF of the bifurcated branch is equal to the original SIF within 1%. The ratios bf/b0 are calculated
Fig. 6. Calculated crack paths for several kink angles.



Fig. 7. Fitted and FE-calculated values of the equivalent SIF Kb along the crack path as a function of b.
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as 1.1, 1.46, 2.07, 2.49, 3.18 and 3.78, respectively, for each of the kink angles considered in the simulations.
These ratios are then fitted within 5% by the function of h (in degrees):
bf
b0

¼
1; if h 6 10�

1þ 2.8 � h � 10�

80�

� �1.3
; if h > 10�

8<
: ð22Þ
The equivalent SIF Kb is then numerically calculated as a function of the crack length parameter b along the
retardation region b0 6 b 6 bf. An equation is then fitted within 2% to describe Kb as a function of KI, Kb0,
b, b0 and bf (see Fig. 7), resulting in
Kb ¼ Kb0 þ ðKI � Kb0Þ � atan 3
b� b0
bf � b0

� ��
1.25

� �0.4
ð23Þ
where atan is the arc-tangent function (in radians). Note that beyond the process zone, where b > bf, Kb is
equal to the straight crack KI.
It can be concluded that crack kinking can reduce KI by up to 37% if h = 90�. However, the process zone

size ahead of the crack tip, estimated by the difference (bf � b0), is always relatively small (at most 2.8 Æ b0
for h = 90�).
Finally, substituting Eqs. (20) and (22) into (23), a single expression is obtained to model the retardation

factor Kb/KI of kinked cracks within 2%, valid for b0 6 b 6 bf:
Kb

KI

¼ 1� 0.37 � /2.4 1� atan 3 � b=b0 � 1

2.8 � /1.3

� ��
1.25

� �0.4( )
ð24Þ
where / � (h � 10�)/80� if h > 10�, otherwise / � 0. This expression can be readily used to predict the retar-
dation behavior and number of delay cycles associated with crack kinking. In the next section, the present
analysis is extended to bifurcated cracks.
5. Crack bifurcation predictions

In this section, the Modes I and II SIF are evaluated for cracks of length a with a small bifurcation of
branch lengths b0 and c0 (b0 P c0) forming an angle 2h, see Fig. 8(a). The calculations were performed on a
standard C(T) specimen, FE modeled using Quebra2D assuming width w = 32.0 mm, crack length



Fig. 8. Schematic representation of a branched crack at the onset of propagation (a) and during propagation (b).
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a = 14.9 mm, and bifurcations with initial crack branch lengths b0 = 10 lm and c0 = 5, 7, 8, 9, 9.5 and
10 lm. The Modes I and II SIF k1 and k2 of each crack branch are obtained considering bifurcation angles
2h between 15� and 168�. Note that typical overload-induced bifurcated cracks can have initial branch
lengths between 10 and 100 lm, with 2h varying between 30�, e.g. for very brittle materials such as glass,
and 180�, e.g. in the vicinity of the interface of a bi-material composite, when a crack propagates from the
weak to the strong material [32]. However, the studied 15� < 2h < 168� covers the range of most practical
branched fatigue cracks in structural metallic alloys.
Fig. 9 shows the FE results for the SIF k1 and k2 (normalized by the Mode I SIF KI of the straight crack)

of symmetrically bifurcated cracks (which have b0 = c0). Note that k2 vanishes for a bifurcation angle
2h = h* = 53�. The bifurcation angle 2h* for which k2 vanishes on a symmetrically branched crack is an
important parameter, because it is associated with a self-similar propagation of the crack branches. Since
k2 is equal to zero, no crack path deflection will occur in this case, thus both their branches will continue
propagating at an angle h* = ±26.5� with respect to the horizontal. Note however that the value of 2h* is a
function of the ratio b0/a. For b0/a < 0.001, 2h* tends to approximately 53�, but for b0/a = 0.025 the value
of 2h* drops to 36� [24] and for b0/a = 0.1 it has been predicted that 2h* = 32� [33]. Therefore, the infini-
tesimal kink solution shown in Fig. 9 can only be numerically reproduced using very refined FE calcula-
tions with b0/a ratios much smaller than 0.1 or 0.025, such as the value considered in this work,
b0/a = 10 lm/14.9 mm = 6.7 · 10�4.
The FE-obtained k1 and k2 are now used to compute, using Eq. (11), an equivalent SIF Kb0 of both

branches that will characterize the propagation behavior immediately after the bifurcation event.
Note from Fig. 9 that Kb0/KI is approximately constant for symmetrically bifurcated cracks with
Fig. 9. Normalized stress intensity factors for symmetrically bifurcated cracks.
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2h < 140�, estimated equal to 0.75 within 3%. But special care must be taken when calculating the SIF of
bifurcated cracks with 2h approaching 180�. In this case, the effective SIF increases considerably at the very
beginning of the propagation. For instance, a symmetrically bifurcated crack with 2h = 160� has Kb0/KI
equal to 0.688 for both branches (as suggested in Fig. 9), however after a brief propagation of less than
0.1 Æ b0 this value jumps to 0.751. Therefore, the decrease in Kb0/KI for 2h > 140� shown in Fig. 9 is only
valid at the onset of propagation, almost immediately increasing to approximately 0.75 after that. It is con-
cluded from further simulations that Kb0/KI can be estimated as 0.75 within 3% for all symmetrically bifur-
cated cracks with 40� 6 2h 6 168�.
Figs. 10 and 11 show the FE results for the equivalent SIF Kb0 and Kc0 of the longer and shorter

branches respectively (normalized by the Mode I SIF KI of the straight crack), and the initial propagation
angles, of both symmetrically and asymmetrically bifurcated cracks. Note once again the apparent decrease
in Kb0 for 2h > 140�, an effect that disappears soon after the propagation starts. This high initial sensitivity
can be explained by the small projected length of crack branches with 2h approaching 180�. This projected
Fig. 10. Normalized equivalent stress intensity factors for symmetrically and asymmetrically bifurcated cracks.

Fig. 11. Initial propagation angles for symmetrically and asymmetrically bifurcated cracks.
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length is easily overcome even by a very small propagation step, significantly changing the crack geometry
and SIF. For instance, a bifurcated crack with 2h = 170� has an initial propagation angle around 35�
(Fig. 11), thus the crack branch b0 has the same projected length as the one generated by a propagation
step of only b0 Æ cos(0.5 Æ 170�)/cos(35�) ffi 0.11 Æ b0.
Another interesting conclusion is that the initial propagation direction of the longer branch is always

below 40� (with respect to the pre-overload growth direction), independently of the considered bifurcation
angle 2h, see Fig. 11. Therefore, for values of 2h greater than 80�, a sharp deflection can be clearly noted in
the beginning of the propagation. This deflection has been experimentally confirmed by Lankford and
Davidson [1], who carried out overload fatigue crack tests on a 6061-T6 aluminum alloy in a scanning elec-
tron microscope using a special in situ servo-controlled hydraulic loading stage, obtaining growth retarda-
tion caused by crack bifurcation. They have found that the bifurcated crack would grow only a short
distance in the same direction of the overload-induced bifurcation, before a sharp deflection in the crack
path would occur, see Fig. 1.
This deflection causes a sudden increase in the Mode I SIF almost immediately after the propagation

begins, resulting in a significantly smaller retardation effect if compared to simplistic predictions based
on branched crack solutions that do not include the propagation phase. However, if the equivalent stress
intensity ranges of both branches are below DKth, then the entire crack arrests and therefore no sharp
deflection has the chance to develop.
The FE-obtained results shown in Fig. 10 are used to fit empirical equations to the initial SIF Kb0 and

Kc0 of the longer and shorter branches, resulting in
Fig. 12
2h.
Kb0

KI

¼ 0.75þ ð1� sin hÞ � 1� c0
b0

� �
ð25Þ

Kc0

KI

¼ 0.75� ð1� sin hÞ � 1� c0
b0

� �
ð26Þ
Eqs. (25) and (26) generate errors smaller than 2% for 40� 6 2h 6 168� and 0.7 6 c0/b0 6 1.0. Fig. 12
plots the FE results against the proposed equations, showing a good fit. In the next section, further FE
analyses are conducted to evaluate the subsequent propagation behavior of these bifurcated cracks.
. Initial equivalent SIF of both branches of a bifurcated crack as a function of the asymmetry ratio c0/b0 and bifurcation angle
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6. Propagation of branched cracks

In this section, crack retardation equations are proposed to model the retardation effect along the path
of the crack branches as a function of their ratio c0/b0, the bifurcation angle 2h, and crack growth exponent
m, considering no closure effects (Kop = 0). These equations are fitted to FE results obtained from the
Quebra2D program using the same C(T) specimen described above. A fixed crack growth step of
Db = 3 lm (or 1 lm during the first propagation steps, corresponding respectively to 30% and 10% of
the initial branch length) is considered for the propagation of the longer branch b. A sensitivity analysis
using several crack propagation steps was performed to evaluate the convergence of the obtained crack
path and stress intensity factors, validating the chosen calculation step. This growth step is calculated in
the direction defined by the rhmax criterion. Due to the differences in the crack growth rate, a growth step
Dc smaller than Db is expected for the shorter branch. This smaller step is obtained assuming a crack prop-
agation law that models the first two growth phases,
da
dN

¼ A � ðDK � DK thÞm ð27Þ
where A and m are material constants and DKth is the propagation threshold. The effect of the R ratio can
be considered if the constants A and m above are calibrated under the desired mean load condition. If DKb
and DKc are respectively the stress intensity ranges of the longer and shorter branches, then the growth step
Dc of the shorter branch c should be
Dc ¼ Db � DKc � DK th

DKb � DK th

� �m

ð28Þ
Interestingly, the ratio between the propagation rates of the two branches is independent of the material
constant A. In this analysis, the exponent m is assumed to be 2.0, 3.0, and 4.0, which are representative
for the range of the measured exponents for steels.
Once a (small) growth step Db is chosen for the numerical propagation of the longer branch, the growth

of the shorter branch Dc is readily obtained from Eq. (28). Both the crack path and the associated SIF
along each branch are then obtained using the FE program.
Fig. 13 shows the contour plots of the normal stress component in the load direction axis and propaga-

tion results for a bifurcated crack with angle 2h = 150�, obtained from the FE analysis for c0/b0 = 0.91,
m = 2 and no closure. In this figure, the deformations are highly amplified to better visualize the crack path.
Note that the crack path deviates from the original branch angles, deflecting from ±75� to approximately
±28�. In addition, the originally shorter branch arrests after propagating (only) about 29 lm, while the
longer branch returns to the pre-overload growth direction and SIF (even though the subsequent crack
growth plane may be offset from the pre-overload one, see Fig. 13).
Fig. 14 shows the crack paths obtained from the FE analyses of bifurcated cracks with 2h = 130� and

c0/b0 = {0.5, 0.8, 0.95, 1}, considering m = 2 and no closure effects. The dashed lines show the theoretical
propagation behavior of a perfectly symmetric bifurcation (c0/b0 = 1). In this case, the retardation effect
would never end because both branches would propagate symmetrically without arresting. Clearly, such
behavior is not observed in practice, since the slightest difference between b0 and c0 would be sufficient
to induce an asymmetrical behavior.
The angles of the symmetrical dashed lines in Fig. 14 for small b0/a ratios are found to be h* = ±26.5�

with respect to the horizontal, where 2h* has been previously defined as the bifurcation angle for which k2
vanishes on a symmetrically branched crack. As the symmetrical branches grow following the ±26.5� direc-
tions, it is found that the ratio between the equivalent SIF and the SIF of a straight crack with same pro-
jected length is approximately constant and equal to 0.757, a value compatible with the 0.75 estimate for
Kb0. Note that the directions ±26.5� are independent of 2h, m, and the closure level, therefore symmetrical



Fig. 14. Bifurcated crack paths for several c0/b0 ratios.

Fig. 13. Propagation simulation of a bifurcated crack on a C(T) specimen (left), and close-up view of the two original 11 lm and 10 lm
branches with angle 2h = 150� (right).
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bifurcations with any initial angle 2h would tend to the self-similar solution 2h* = 53� as long as the ratio
b/a of the propagating branches is sufficiently small. FE calculations also showed that the slopes of the
dashed lines are gradually decreased as both branches grow, resulting in angles ±18� in the vicinity of
b/a = 0.025, ±16� close to b/a = 0.1, and ±15.3� for b/a  1. This last result has been obtained from a
FE analysis of a symmetrical bifurcation starting at the edge of a very large plate (therefore with a = 0
and b/a ! 1).
Fig. 14 also shows that lower c0/b0 ratios result in premature arrest of the shorter crack branch, leading

to smaller retardation zones. Also, the propagation path of the longer branch is usually restrained to the
region within the dashed lines, while the shorter one is ‘‘pushed’’ outside that envelope due to shielding ef-
fects. This can also be implied from Fig. 11, which shows that the initial propagation angles of the shorter
branch are always larger than the angles from the longer one.
The size of the retardation zone can be estimated from the ratio bf/b0, where bf is the value of the length

parameter b of the longer branch beyond which the retardation effect ends (in the same way that it was
defined for kinked cracks). The ratio bf/b0 is then calculated through FE propagation simulations for all



Fig. 15. Normalized process zone size as a function of the bifurcation angle and branch asymmetry c0/b0 (m = 3).
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combinations of c0/b0 = {0.5, 0.8, 0.9, 0.95}, 2h = {40�, 80�, 130�, 168�} and m = {2, 3, 4}, and fitted by the
proposed function:
bf
b0

¼ exp
2h � 30�

56þ 17 � ðm� 2Þ2=3

 !,
ð1� c0=b0Þð12�mÞ=20 ð29Þ
Fig. 15 shows a comparison between the fitted and the FE-obtained data. Note that a greater symmetry
between the branches (as c0/b0 approaches 1.0) results in a longer retardation zone, as expected from the
delayed arrest of the shorter branch.
The FE-calculated equivalent SIF Kb and Kc of the longer and of the shorter branches are now evaluated

along the obtained crack paths. Fig. 16(a) and (b) plot the crack retardation factors (defined as the ratios
between Kb or Kc and the Mode I SIF KI of a straight crack) for 2h = 130� and m = 2, as a function of the
normalized length (b � b0)/b0 of the longer branch (measured along the propagation path). Because of the
different crack branch lengths, the SIF at the longer one is much higher than that at the shorter branch.
Assuming Kb and Kc to be the crack driving force, it can be seen from Fig. 16(a) and (b) that the longer
branch reaches its minimum propagation rate right after the bifurcation occurs, returning to its pre-over-
load rate as the crack tip advances away from the influence of the shorter branch. As seen in the figure, the
retardation behavior is misleadingly similar to closure-related effects, even though no closure is present in
that case.
In addition, as the length difference between both branches increases, it is expected that the propagation

rate of the shorter one is reduced until it arrests, after which the larger branch will dominate. Note that even
small differences between the branch lengths, such as in the case c0/b0 = 0.95 shown in Fig. 16(a) and (b),
are sufficient to cause subsequent arrest of the shorter branch, as verified in [34,35].
Fig. 17 shows the effect of the bifurcation angle 2h on the retardation factor Kb/KI for c0/b0 = 0.9 and

m = 3. Note that the retardation effect lasts longer for larger bifurcation angles, not only because the asso-
ciated Mode I SIF is smaller, but also because the shielding effect is weaker since both branch tips are fur-
ther apart, delaying the arrest of the shorter one.
An empirical expression is here proposed to model the SIF Kb of the longer branch during the transition

between Kb0 (immediately after the bifurcation event) and the straight-crack KI (after the end of the retar-
dation effect), valid for b0 6 b 6 bf and 0.7 < c0/b0 < 1:
Kb ¼ Kb0 þ ðKI � Kb0Þ � atan 3
b� b0
bf � b0

� ��
1.25

� �2c0=b0
ð30Þ



Fig. 16. Normalized equivalent SIF for (a) the longer branch and (b) the shorter branch of a bifurcated crack during its propagation
(2h = 130�, m = 2).

Fig. 17. Normalized SIF Kb/KI of the longer branch during its propagation as a function of the normalized length (b � b0)/b0 for
c0/b0 = 0.9, m = 3.
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where Kb0 and bf are given in Eqs. (25) and (29). From these results, the predicted retardation behavior is
plotted for several values of c0/b0, 2h and m, as shown in Figs. 18–22.



Fig. 18. Normalized SIF Kb/KI of the longer branch during its propagation as a function of the normalized length (b � b0)/b0 for
2h = 40�, m = 3.

Fig. 19. Normalized SIF Kb/KI of the longer branch during its propagation as a function of the normalized length (b � b0)/b0 for
2h = 80�, m = 3.

Fig. 20. Normalized SIF Kb/KI of the longer branch during its propagation as a function of the normalized length (b � b0)/b0 for
2h = 80�, m = 4.
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Fig. 21. Normalized SIF Kb/KI of the longer branch during its propagation as a function of the normalized length (b � b0)/b0 for
2h = 130�, m = 3.

Fig. 22. Normalized SIF Kb/KI of the longer branch during its propagation as a function of the normalized length (b � b0)/b0 for
2h = 168�, m = 3.

2664 M.A. Meggiolaro et al. / Engineering Fracture Mechanics 72 (2005) 2647–2671
Finally, it should be noted that all proposed equations are, at least in theory, applicable to any bifur-
cated crack in any specimen, provided that the crack branches are small if compared to the specimen geom-
etry and that the propagation behavior of the material can be described using Eq. (27).
7. Experimental results

In this section, both qualitative and quantitative validations are performed on the presented methodol-
ogy. A qualitative validation of the predicted bifurcated crack growth behavior is performed using 63 mm-
wide, 10 mm-thick compact tension C(T) test specimens, made of SAE 1020 steel with yield strength
SY = 285 MPa, ultimate strength SU = 491 MPa, Young�s modulus E = 205 GPa, and reduction in area
RA = 54%, measured according to the ASTM E 8 M-99 standard. The analyzed weight percent composi-
tion of this steel is: C 0.19, Mn 0.46, Si 0.14, Ni 0.052, Cr 0.045, Mo 0.007, Cu 0.11, Nb 0.002, Ti 0.002. The
tests are performed at frequencies between 20 and 30 Hz in a 250 kN computer-controlled servo-hydraulic
testing machine. The crack length is measured following ASTM E 647-99 procedures.



Fig. 23. Crack bifurcation experiments on 1020 steel.
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Fig. 23 shows the measured paths of a branched crack induced by a 70% overload. As predicted, the
shorter branch tends to arrest as the longer one continues to grow, returning to its original propagation
direction. Note that the overload-induced bifurcation event caused large plastic zones, along which the
branches extended. The main effects of these plastic zones would be crack closure, which would need to
be combined with the bifurcation effects using an elastic–plastic approach. However, in all considered
experiments, the loading ratio R was kept high enough to avoid closure-induced effects, therefore minimiz-
ing the effect of the plastic zone that always accompanies the crack tip. Beyond this overload plastic zone
region, the zigzag pattern observed in the figure is probably caused by microstructural effects, however
these zigzag kinks under 30� do not significantly influence the stress intensity factors, as indicated by
Fig. 5. Despite the microstructurally induced zigzag pattern, the overall bifurcated crack propagation path
is typically transgranular, showing a good match between the measured and the FE predicted crack paths.
In addition, scanning electron micrographs of the specimen fracture surface show a through-the-thickness
bifurcation front, see Fig. 24, validating the 2D approach adopted in the FE analysis.
The same crack growth behavior is observed on Eccentrically loaded Single Edge Crack Tension speci-

mens ESE(T) made from an annealed SAE 4340 alloy steel with SY = 377 MPa, SU = 660 MPa,
E = 205 GPa, and RA = 52.7%, and with the analyzed weight percent composition: C 0.37, Mn 0.56, Si
0.14, Ni 1.53, Cr 0.64, Mo 0.18, S 0.04, P 0.035. The specimen dimensions are given in Fig. 25. The tests
are performed under the same conditions used on the SAE 1020 specimens, with a baseline stress intensity
range DKI = 12.8 MPa

p
m and R = 0.5.

Fig. 26 shows the measured paths of a branched crack induced by a 50% overload when the crack length
was a = 25.55 mm. In this case the original crack experienced kinking before the actual bifurcation event.
However, the subsequent bifurcated crack propagation path showed good agreement with the linear elastic
FE calculations. The zigzag pattern is also present at this branched propagation, however it does not sig-
nificantly affect the SIF values. Scanning electron micrographs also confirm the through-the-thickness con-
dition of the bifurcation front in all 4340 steel experiments.
Fig. 27 shows the retardation effect induced by the bifurcation, leading to approximately 12,600 delay

cycles along a process zone of about 0.3 mm.
Fatigue crack opening loads are obtained in this work from the slope changes in the compliance P · e

(or in the load versus displacement, P · d) curves of the test specimens. Fig. 28 shows opening load mea-
surements versus back face strain e for the SAE 4340 specimen, before and after the overload that caused
the bifurcation. These curves are shifted in the figure for clarity, and their linear portion is subtracted
using a highly sensitive linearity subtractor circuit connected to an analog computer that differentiated



Fig. 25. Geometry of the tested 4340 steel ESE(T) specimen.

Fig. 24. Scanning electron micrograph of the 1020 steel specimen fracture surface, showing a through-the-thickness bifurcation front.

2666 M.A. Meggiolaro et al. / Engineering Fracture Mechanics 72 (2005) 2647–2671
its output [36]. These instruments were specially designed and built to enhance the non-linear part of the
P · e signal. The back face strain e is a more robust signal than the crack mouth opening displacement d
in the tests reported here, but both are used in all the measurements and presented identical results. The
Kop measurement uncertainty of this experimental setup is small, and it can easily detect variations of only
1% in the opening loads. As seen in Fig. 28, the R = 0.5 level resulted in no closure effects neither before nor
after the overload, because the opening load always remained below the minimum value of the applied load
range DP. Therefore, it can be concluded that the measured retardation effect cannot be explained by crack
closure. In fact, the bifurcation event even reduced the closure level by 25% due to the increased compliance
caused by the crack branches. Clearly, retardation effects associated with a reduction in Kop would be
incompatible with any retardation model based on crack closure. It is implied then that bifurcation is
the dominant retardation mechanism.
The proposed retardation equations were implemented in a fatigue life assessment program named

ViDa. This program is used to estimate the number of delay cycles associated with the experimen-
tally obtained bifurcation on the 4340 steel ESE(T) specimen. The measured initial branch lengths are



Fig. 26. Crack branching on an SAE 4340 ESE(T) specimen.

Fig. 27. Fatigue crack growth retardation after a 100% overload, R = 0.5 (SAE 4340).
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approximately b0 = 20 lm and c0 = 16 lm, with a bifurcation angle 2h = 150�. The fatigue crack growth in
this material is modeled using Eq. (27) using A = 9 · 10�11 m/cycle and m = 2.2, and a propagation thresh-
old DKth = 3.8 MPa

p
m, all measured under R = 0.5. Since no closure effects were present under such high

load ratio, it can be concluded that 3.8 MPa
p
m is in fact the intrinsic threshold SIF of this material. From

Eqs. (25) and (26), it is found that
Kb0

KI

¼ 0.75þ ð1� sin 75�Þ � 1� 16

20

� �
ffi 0.757 ð31Þ

Kc0

KI

¼ 0.75� ð1� sin 75�Þ � 1� 16

20

� �
ffi 0.743 ð32Þ



Fig. 28. Opening load measurements, including a linearity subtractor [36] to enhance the nonlinear part of the load versus back face
strain e (SAE 4340).
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For the baseline stress intensity range DKI = 12.8 MPa
p
m, Eqs. (31) and (32) lead to DKb0 = 0.757 Æ D-

KI = 9.69 and DKc0 = 0.743 Æ DKI = 9.51 MPa
p
m. Since both ranges are greater than DKth(R = 0.5) =

3.8 MPa
p
m, both branches are expected to start propagating, as verified experimentally. Since the mea-

sured Kop was smaller than the minimum applied SIF (Fig. 28), no closure effects need to be considered,
and the size of the process zone can be estimated from Eq. (29):
bf
b0

¼ exp
150� � 30�

56þ 17 � ð2.2� 2Þ2=3

 !,
1� 16

20

� � 12�2.2
20ð Þ

ffi 15.33 ð33Þ
which results in bf = 15.33 · 20 lm ffi 307 lm, matching very well the measured process zone size of
0.3 mm.
The number of cycles spent to grow the crack in the retardation region is then calculated by integrating

the da/dN equation along the longer crack branch, from b = b0 to b = bf. Assuming that the longer branch
path is approximately parallel to the original straight crack, then the number of delay cycles nD can be esti-
mated by integrating Eqs. (27)–(30):
nD ¼
Z bf

b0

db
AðDKb � DK thÞm

�
Z bf

b0

db
AðDKI � DK thÞm

¼
Z 307

20

db� 10�6

9� 10�11 5.89þ 3.11 � atan 3 b�20
307�20

! "#
1.25

$ %1.6n o2.2 �
Z 307

20

db� 10�6

9� 10�11ð12.8� 3.8Þ2.2

¼ 37; 361� 25; 337 ¼ 12; 024 cycles ð34Þ
which is very close to the measured 12,600 delay cycles. Therefore, both process zone size and number of
delay cycles are reasonably well estimated from the proposed equations.
8. Conclusions

In this work, a specialized FE program was used to calculate the propagation path and associated stress
intensity factors (SIF) of kinked and bifurcated cracks, which can cause crack retardation or even arrest. A



M.A. Meggiolaro et al. / Engineering Fracture Mechanics 72 (2005) 2647–2671 2669
total of 52 crack propagation simulations were obtained from approximately 1250 FE calculation steps to
fit empirical equations to the process zone size and crack retardation factor along the curved crack path. In
particular, the bifurcation simulations included several combinations of bifurcation angles 2h = {40�, 80�,
90�, 130�, 168�}, branch asymmetry ratios c0/b0 = {0.5, 0.7, 0.8, 0.9, 0.95, 1.0}, and crack growth exponents
m = {2, 3, 4}.
It was found that crack kinking is not a significant cause of retardation for kink angles smaller than 45�,

however it can reduce the SIF by up to 37% for angles approaching 90�. Crack bifurcation can also reduce
the SIF to about 0.63 of its original value. However, soon after the branches start propagating, this value
stabilizes at 0.75, as long as the branches are approximately symmetrical. It was also shown that very small
differences between the lengths of the bifurcated branches are sufficient to cause the shorter one to eventu-
ally arrest as the longer branch returns to the pre-overload propagation conditions. The process zone size
was found to be smaller for lower bifurcation angles and for branches with greater asymmetry, in both
cases due to the increased shielding effects on the shorter branch. The retardation zone was reduced as well
for materials with higher crack growth exponents, due to the increased difference between the crack growth
rates of the longer and shorter branches.
Experiments were performed to validate the proposed equations. In the experiments, the separation be-

tween closure-induced and bifurcation-induced retardation was done using high R-ratio loading programs,
guaranteeing closure-free conditions through compliance measurement tests. It was found that the pro-
posed model predictions were able to both physically and quantitatively explain crack growth retardation
as a result of crack kinking and branching, without the need to fit empirical constants.
The proposed equations, besides capturing all above described phenomena, can be readily used to pre-

dict the propagation behavior of branched and kinked cracks in an arbitrary structure, as long as the pro-
cess zone is small compared to the other characteristic dimensions. These expressions were qualitatively and
quantitatively validated through bifurcation experiments on 1020 and 4340 steel specimens. Careful inspec-
tion of the fracture surfaces using a scanning electron microscope revealed that all tests resulted in a uni-
form bifurcation front along the specimen thickness. The bifurcation front was approximately straight and
through-the-thickness, validating the adopted FE hypotheses. Comparisons were made between the exper-
iments and life assessment calculations obtained from a specialized fatigue design program. From these
results, it was shown that crack bifurcation might provide an alternate mechanistic explanation for over-
load-induced crack retardation, in special to justify load interaction effects under high R ratios, where
closure-free conditions may arise in the presence of dominantly plane-strain conditions and low overload
ratios (typically up to 100%).
It must be pointed out, however, that the presented mixed-mode equations might have some limitations,

because actual bifurcations can be of a size comparable to the scale of the local plasticity (e.g., of the plastic
zone size) or microstructural features (e.g., of the grain size). Moreover, possible closure and environmental
effects should be considered when comparing the bifurcation model predictions with measured crack
growth rates [2]. A more detailed analysis could include micromechanisms leading to crack propagation
considering, e.g., cleavage. The presented FE calculations assume linear-elastic, isotropic and homogeneous
conditions that would not be applicable if micromechanisms were to be considered. Instead, the traditional
fracture mechanics approach is taken, using stress intensity factor concepts to evaluate crack propagation
on a macroscopic scale. It is a fact that near-threshold crack propagation rates can be as low as one atomic
distance per cycle, in addition to the fact that all fatigue cracks cut through previously generated plastic
zones. However, in all these cases, the macroscopic approach has proven to be successful. Assuming that
the entire crack-front deflects uniformly, the specimen thickness itself may provide the size scale require-
ments for the validity of the presented equations, as the calculated SIF may be averaged considering the
(several) grains present along the thickness, which validates the proposed approach. Otherwise, if the crack
deflections vary significantly along the thickness, then further modeling including Mode III effects should
be considered.
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In summary, even though microstructure can be the cause for the observed bifurcations (which are not
predicted beforehand using FE elements), the subsequent propagation can be calculated using a macro-
scopic approach as long as the bifurcation geometry is given as an input.
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