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Jaime Tupiassú Pinho de Castroa,*, Marco Antonio Meggiolaroa,

Antonio Carlos de Oliveira Mirandab

aMechanical Engineering Department, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rua Marques de Sao Vicente 225,

Rio de Janerio 22453-900, Brazil
bTecgraf, Computer Graphics Group, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil

Available online 2 September 2005

Abstract

In this work, three classes of mechanisms that can cause load sequence effects on fatigue crack growth are discussed: mechanisms acting

before, at or after the crack tip. After reviewing the crack closure idea, which is based on what happens behind the crack tip, quantitative

models are proposed to predict the effects at the crack tip due to crack bifurcation. To predict the behavior ahead of the crack tip, a damage

accumulation model is proposed. In this model, fatigue cracking is assumed caused by the sequential failure of volume elements or tiny 3N

specimens in front of the crack tip, calculated by damage accumulation concepts. The crack is treated as a sharp notch with a small, but not

zero radius, avoiding the physically unrealistic singularity at its tip. The crack stress concentration factor and a strain concentration rule are

used to calculate the notch root strain and to shift the origin of a modified HRR field, resulting in a non-singular model of the strain

distribution ahead of the crack tip. In this way, the damage caused by each load cycle, including the effects of residual stresses, can be

calculated at each element ahead of the crack tip using the correct hysteresis loops caused by the loading. The proposed approach is

experimentally validated and extended to predict fatigue crack growth under variable amplitude loading, assuming that the width of the

volume element broken at each cycle is equal to the region ahead of the crack tip that suffers damage beyond its critical value. The reasonable

predictions of the measured fatigue crack growth behavior in steel specimens under service loads corroborate this simple and clear way to

correlate da/dN and 3N properties.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In a classical work, Paris taught us in 1961 that the

fatigue crack growth (FCG) rate da/dN was controlled by

the stress intensity range DK and not by the stress range Ds

applied on the structure. He measured the growth of a

fatigue crack in two identical cracked aluminum plates

subjected to the same DsZDP/wt (where DP is the force

range applied on the plate, w is the width and t is the

thickness of the plate), but had the bright idea of applying

DP on the crack faces in one of the plates and on the plate

borders in the other. If the stress range Ds was
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the controlling factor for the fatigue crack propagation

process in those plates, it was expected that their da/dN

history should be equal (or at least should vary in the same

way). But instead the FCG rate da/dN increased with the

crack length a in the plate loaded by its borders, while da/dN

decreased as the crack grew in the plate loaded by the crack

faces. However, when plotting the da/dN vs. DK curves of

both plates they coincided, proving that DK was the FCG

controlling parameter in those tests, see Fig. 1 [1,2].

Since Paris’ discovery, DK has been successfully used to

predict the fatigue life of cracked structures under constant

amplitude loading. But as Miner’s rule type calculations

turned out to be too conservative in many variable

amplitude loading problems, it was early realized that

load sequence effects can be very significant in fatigue crack

growth problems.

Due to the great practical importance of these problems,

fatigue crack growth under real service loading has been
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Fig. 1. Paris’ classical experiment which proved that the fatigue crack growth controlling parameter was the stress intensity range DK, not the stress range

Ds [2].
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a fascinating and challenging research field since the 1960 s,

yet to be completely understood. No one disputes that, e.g.

an overload (OL) can stop or retard the subsequent fatigue

crack growth, but why and how this happens is still far from

being a settled issue. There are many who firmly believe that

plasticity-induced crack closure [3,4] can explain all such

effects [5,6], and many others who are convinced that crack

closure cannot be used at all [7,8]. And to make things more

interesting, there is plenty of experimental evidence to

(at least in part) support both views!

This is no surprise, as there are so many mechanisms that

can retard or accelerate the growth of a fatigue crack after

significant load amplitude variations [9–11]. These several

load interaction mechanisms can act behind, at or ahead of

the crack tip, and among them the most important are

† crack closure (behind the crack tip), which can be caused

by plasticity, oxidation or roughness of the crack faces,

or even by strain induced phase transformation, e.g.

† crack tip blunting, kinking or bifurcation (at or close to

the crack tip), and

† residual stress and strain fields (ahead of the crack tip).

Moreover, these various load interaction mechanisms

generally can act simultaneously, with their relative

importance in any problem depending on several factors

such as crack and piece sizes, dominant stress state at the

crack tip, microstructure of the material, mean load, and

environment.

Despite some important limitations [7,8,12,13], plas-

ticity-induced crack closure probably still is the most used
mechanism to model and explain load sequence effects in

fatigue crack propagation. Fatigue crack closure does occur

in real life, and can be measured, e.g. from the slope changes

in the compliance (or in the load versus displacement, P!d)

curves of predominantly linear elastic cracked structures, as

discovered by Elber in the early 1970 s [3,4] and illustrated

in Fig. 2 [14]. If plasticity-induced crack closure is the

controlling load sequence mechanism, then the expected

FCG retardation after an OL can be described as follows

(see Fig. 3). The OL blunts the fatigue crack tip, suddenly

and locally increasing da/dN (due to the consequent tip

stretching) but, as the crack enters the plastic zone swollen

by the overload PZol, da/dN quickly decreases and then

slowly increases again until reaching its regular value after

the crack crosses PZol (regular is the da/dN rate at which the

crack would be growing in the absence of the OL), as

described by von Euw et al. in 1972 [15].

The schematics of the plasticity-induced crack closure or

the Elber retardation mechanism in fatigue crack growth

after an overload (when the stress intensity range DK, the

plastic zone size PZ and the crack opening load Kop are

elsewhere constant) is illustrated in Fig. 4. After crossing

the crack tip blunted by the overload, the crack opening load

Kop increases due to the oversized PZol and thus decreases

the effective stress intensity range DKeffZKmaxKKop. This

decrease in DKeff would be the reason for the delays on the

subsequent crack growth rate, as da/dN (supposedly) should

depend on DKeff and not on DK, since the fatigue crack

could grow only after fully opened. In other words, the

central arguments of this idea are (i) if the fatigue crack tip



Fig. 2. Typical crack closure measurement, where the non-linear part of the P!d curve is enhanced by a technique called linearity-subtraction [14].

Fig. 3. Expected fatigue crack growth retardation after an overload due to

plasticity-induced crack closure [15].
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is closed it cannot be stretched, and thus cannot grow, and

(ii) Kop increases inside PZol.

This DKeff concept has been successfully applied both for

design and for analysis in many important variable

amplitude loading fatigue problems [11,16–20], since it

can indeed be used to model several experimentally

observed load sequence effects in FCG.

For example, McEvily suppressed overload-induced

FCG delays in 12.7 mm thick aluminum specimens after

symmetrically machining their faces until reaching half of

the original thickness, to eliminate the surface increase in

closure levels due to the OL (supporting in this way an

Elber-controlled retardation mechanism), as illustrated in

Fig. 5 [21]. Schijve [22] studied the effects of overloads

(OLs), OLs followed by underloads (ULs) and of ULs

followed by OLs in the fatigue lives of Al 2024-T3 plates,

and found a behavior also compatible with elberian crack

retardation mechanisms, as shown in Fig. 6. The success in

explaining the overall fatigue crack growth behavior of

these and many other similar problems is probably the

reason why there still are scholars and engineers who

believe that the Elber mechanism could explain all load

sequence effects. However, this generalization can be

unwise.

Let us avoid at this point the arguments of those who

seriously question if plasticity-induced crack closure can be

a realistic or a physically admissible model, and let us

assume that it at least can be a reasonable phenomenological

model to explain many load sequence effects. But even if

and when this is the case, assuming that the FCG rate is

always controlled by DKeff and not by DK has some serious

consequences not yet as well emphasized as they should be
among fatigue designers. In design and structural integrity

evaluations we generally assume that reliable fatigue life

predictions can be made (at least for simple loading) by

integrating a properly measured da/dN vs. DK curve of the

material. And these are usually obtained by testing small

specimens following a standard procedure.

In practice, the load range DP can in principle be

measured, and nowadays a proper stress-intensity

expression DK can be reliably calculated using available

numerical tools to solve the stress analysis problem (which

depends on DP and on the structure and crack geometries)

even in non-trivial cases, as illustrated later on. This allows

designers to accurately calculate the DK load history which

is used in integrating the da/dN vs. DK curve to predict the

structure fatigue life. But if the FCG rate da/dN is really a

function of DKeff instead of DK, one cannot simply assume

that the da/dN curve measured in the standard specimen was



Fig. 4. Schematics of the plasticity-induced crack closure (or the Elber [3–4]) retardation mechanism after an overload when DK is elsewhere constant.
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obtained under the same DKeff that loads the structure, as in

general the stress intensity factor that opens the crack Kop

and thus DKeff do not depend only on DK. And there is still

no reliable way to calculate Kop in complex structures.

Indeed, Newman’s classical finite-element calculations

of crack opening loads on simple plates [16] showed that

DKeff has a quite strong dependence on the plate thickness

and on the applied smax/Sfl ratio, where SflZ ðSY CSUÞ=2 is

the so-called flow stress and SY and SU are the yield and

ultimate strengths of the material, and smax is the maximum

applied stress.

Therefore, predicting thick plate fatigue lives using

da/dN vs. DK properties measured by testing thinner

specimens could be a dangerous practice. In fact, if the

fatigue crack growth rate is controlled by DKeff instead of by

DK, generally unsafe predictions could be made when using

da/dN vs. DK data measured under plane stress (plane-s)

conditions to predict the residual life of cracked structures

that work under a dominantly plane strain (plane-3) state.

This general assertion is based on the reasonable expec-

tation that crack closure levels in plane-3 are normally

smaller than in plane-s. This is a condition that can easily

occur in practice if FCG tests made on relatively thin
Fig. 5. McEvily’s measured crack lengths, who avoided overload-induced

FCG delays in 12.7 mm thick Al specimen by machining their faces until

half the original thickness to eliminate the surface closure [21].
standard specimens are used to predict the life of much

thicker structures (a practice, by the way, not forbidden in

the ASTM widely used E-647 standard test method for

measuring fatigue crack growth rates [23]).

For example, if da/dNZADK3.25 is the measured FCG

curve under (dominant) plane-s conditions, and if DKeff,s

and DKeff,3 are the Newman’s predicted plane-s and plane-3

effective stress intensity factor ranges shown in Fig. 7, the

error in plane-3 life predictions based on plane-s data would

depend on the (DKeff,s/DKeff,3)
3.25 ratio, and would be non-

conservative when DKeff,sODKeff,3.

This quite alarming prediction is illustrated in Fig. 8,

where it can be seen that thick plate fatigue lives of only 1/5

of the expected lives predicted from the thin plate tests

could be obtained in practice. But it should be pointed out

that such a strong da/dN dependence on the specimen

thickness is not observed in all cases. For example, as

illustrated in Fig. 9 [24], the da/dN vs. DK data measured in

2.5 and 25 mm thick specimens of Al 7475, under plane-s

and plane-3 dominated conditions, respectively, shows no

dependence on the thickness. This result supports the ASTM

E-647 standard, which does not forbid the use of thin

specimens to measure the FCG behavior of a given material.
Fig. 6. Effect of overloads (OLs), OLs followed by underloads (UL) and of

ULs followed by OLs in Al 2024-T3 plate lives reported by Schijve, a

behavior also compatible with elberian mechanisms [22].



Fig. 9. da/dN vs. DK data measured in 2.5 and 25 mm thick specimens of Al

7475, showing no significant thickness dependence [24].

Fig. 7. Ratio DKeff,s/DKeff,3, which could be much smaller than one

according to Newman’s finite element based calculations of the opening

loads in plates [16].
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The conflicting approaches presented above indicate that

there is still a need for improving the fatigue crack closure

modeling procedures, as discussed next.
2. Limitations of DKeff as a prediction tool

Plasticity-induced crack closure is the most popular load

sequence effect mechanism, but certainly it is not the only

one, as there are several important fatigue problems that

cannot be explained by the DKeff concept. For example,

Sadananda and Vasudevan support their strong objections

against crack closure using convincing experimental

evidence such as fatigue crack growth threshold values

DKth that are higher in vacuum than in air [7,8]. Another

important problem that cannot be explained by the Elber

mechanism is the crack delays or arrests under high RZ
Kmin/Kmax ratios, when the minimum value Kmin of the

applied range DKZKmaxKKmin always remains above Kop,

the (measured) load that opens the fatigue crack. Exper-

iments presented in Figs. 10–13 [13] illustrate this point.

Fatigue crack growth retardation can be clearly observed
Fig. 8. Non-conservative plane-3 fatigue life predictions obtained by using a

da/dNZADK3.25 FCG curve measured under plane-s conditions, assuming

Newman’s DKeff,s/DKeff,3 expressions.
in Fig. 10 after applying 50% overloads (KolZ1.5Kmax) on a

crack growing at a quasi-constant baseline DKblZ
10 MPa

ffiffiffiffi
m

p
under a quite high tensile mean load RZ0.7

in a C(T) specimen of an A-542/2 (2.25Cr1Mo) martensitic

steel (SYZ769 and SUZ838 MPa, da/dN vs. DK curves at

RZ0.05 and at RZ0.70 presented in Fig. 11).

The fatigue test reported in Fig. 10 was made under

predominantly plane-3 conditions, as both the constant

baseline PZbly300 mm and the overload PZoly675 mm

plastic zones were smaller than w/16, where wZ12 mm was

the specimen thickness (assuming, as usual, that the E-399

[25] plane-3 definition can also be used here, and assuming

PZy(Kmax/SY)2/2p, which is the maximum plastic zone

dimension according to the HRR field). The test frequency

was 50 Hz, but the OLs were applied at a much smaller

0.1 Hz or less, to maintain a close control of the

servohydraulic testing machine. The overall crack retar-

dation behavior is very similar to the plane-s case, but the

mechanism that caused it certainly was not plasticity-

induced crack closure, as demonstrated in Fig. 12. The

compliance measurements presented in this figure clearly

indicate Kop!Kmin and DKeffZDK both before and after the

overload. Therefore, as the fatigue crack was fully opened

before and after the OL, plasticity-induced variations on Kop

cannot be used to justify these load-sequence effects.

It is important to emphasize that these compliance

measurements were particularly careful. They were made

using a highly sensitive linearity subtractor circuit con-

nected to an analog computer, which differentiated its

output. These instruments were specially designed and built

to enhance the non-linear part of the P!3 signal, as reported

in [14]. The C(T) back face strain 3 was a more robust signal

than the crack mouth opening displacement d in the tests

reported here, but both were used in all the measurements



Fig. 10. Fatigue crack growth retardation after 50% overloads applied at a high RZ0.7, on a crack growing at a quasi-constant DKblZ10 MPa
ffiffiffiffi
m

p
under plane-

3 conditions.
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and presented identical results. The Kop measurement

uncertainty of this experimental set-up is small, and it can

easily detect variations of only 1% in the opening loads.

And, by the way, the growth of the fatigue crack could also

be easily measured by compliance changes, with a crack

increment resolution similar to that obtained in potential

drop systems [26]. This can be seen in Fig. 12, where the

noticeable change in the P!3 slope after the crack restarted

to grow reflects the measurement sensitivity.

Fig. 13 shows several compliance measurements made

before and after stopping, by an 100% overload, a crack that

was growing at a DKblZ10 MPa
ffiffiffiffi
m

p
and RZ0.70 baseline

load. In this case the E399 standard requirement cannot be

used to claim dominant plane-3 conditions after the OL

(assuming the HRR estimate PZ y (Kmax/SY)2/2p, the OL

plastic zone was PZolyw/10, whereas the E399 requirement

is PZ!w/16 for plane-3). Despite that, no crack closure was

again observed before or after the OL (Fig. 14).
Fig. 11. A542-2 (2.25Cr1Mo martensitic steel)
Keeping an open mind and avoiding dogmatic arguments

(such as ‘when fatigue crack closure is measured the test is

correct, but when it is not the results must obviously be

wrong, as closure should always be there’), the only

reasonable conclusion is that at a such high RZ0.7 ratio

Kop simply was not interfering with the fatigue crack growth

process. Moreover, the set of results presented in Figs. 15

and 16 is a still more striking argument against the

‘plasticity-induced crack closure explaining all load

interaction effects in FCG’ dogma, since in these cases

closure was definitely measured before and after the

overloads, but DKeff increased in the retardation zone [13].

Fig. 15(a) presents a test on a 12!50 mm C(T) of the

same 2.25Cr1Mo A-542/2 martensitic steel reported above,

tested at a DKblZ10 MPa
ffiffiffiffi
m

p
baseline load, but this time at

a much smaller RZ0.05. In this test, the crack stopped after

a 200% OL despite a 31% increase in DKeff, a result that

clearly cannot be explained by the Elber mechanism either.
da/dN vs. DK curves at RZ0.05 and 0.7.



Fig. 12. P!3 curves showing no closure neither before nor after the 50% OL that delayed this crack.
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The test conditions were clearly plane-3 dominated, as

PZolyw/25.

Fig. 15(b) presents the overall FCG delay obtained after

100% OLs applied on another 12!50 mm C(T) of the same

material under the same baseline loading conditions. In this

test, the plane-3 conditions were even more clearly

dominant, with PZbly30 mm and PZoly120 mm less than

1/100 of the C(T) thickness (assuming again that

PZ yðKmax=SYÞ2=2p). Fig. 16(a) shows the opening loads

of this crack measured at the nine cycles preceding the OL

(numbered K9 to K1, as the OL cycle was arbitrarily called

cycle 0), all obtained using the described setup. It was found

that Pop/PmaxZ0.28 in all those tests. Note that the

measurements had a very low dispersion, which supports

the 1% uncertainty claim made before.

Just after the overload was applied, the closure

measurements were repeated and the next eight cycles

presented a significantly smaller Pop/PmaxZ0.23 ratio,

implying that the OL caused a 22% increase in DKeff, as
Fig. 13. P!3 curves, where no closure was detected, neither before nor after the ov

baseline load DKblZ10 MPa
ffiffiffiffi
m

p
and RZ0.7.
shown in Fig. 16(b). This increase should cause a sudden

acceleration of the crack, but even the quite sensitive

instrumentation used in this test had no resolution to

measure very small crack increments. Despite some claims

on the contrary, both potential drop and compliance-based

crack length measurements a have 10–30 mm range for their

uncertainty as proved in [26], and this is one of the reasons

why plane-3 FCG results are not only far less common than

those obtained under plane-s, but also a bit more difficult to

judge. Therefore, one cannot conclude from Fig. 16 whether

in this case occurred the delayed retardation behavior

frequently described in plane-s tests.

However, Fig. 16(c) presents concluding evidence

against such a behavior. During the following 104 cycles

no crack growth was detected either, and the opening load

remained below its pre-overload value maintaining the Pop/

PmaxZ0.23 measured just after the OL. And 7.5!104

cycles after the OL, when a small 40 mm crack increment

had already been detected, the retardation on the FCG rate
erload in a crack arrest test after a single 100% OL, applied over a constant



Fig. 14. DKeff,3 /DK ratio predicted from Newman’s FE closure model [16],

indicating that no closure is expected for R-ratios higher than RZ0.5 under

CA loading.
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started to decrease, but the crack opening load increased to

Pop/PmaxZ0.25 and kept increasing (causing, therefore,

DKeff to decrease) until reaching its pre-overload Pop/

PmaxZ0.28 value at 2.0!105 cycles after the OL, when its

effect had almost disappeared. In other words, the maximum

delay was obtained when the value of DKeff was minimum, a

behavior completely incompatible with an elberian retar-

dation mechanism.
Fig. 16. P!3 curves showing crack closure measurements before and after

a 100% overload during the entire retardation region.

Fig. 15. (a) Crack arrest after a 200% overload associated with a 31%

increase in DKeff, applied at a low RZ0.05 baseline load on a crack

growing at a quasi-constant DKblZ10 MPa
ffiffiffiffi
m

p
under plane-3 conditions.

(b) Fatigue crack growth retardation after 100% overloads on a similar

specimen under plane-3 conditions.
These results show that crack closure cannot explain all

load sequence effects observed in fatigue crack propagation.

However, several crack closure models have been able to

successfully predict the post-overload retardation behavior.

These models are based on parameters that must be fitted to

the considered material, specimen and loading levels. After

such calibration, even simple equations such as the ones

based on yield-zone models can result in reasonable

predictions, as discussed next.
3. Fatigue life predictions using phenomenological

models

Despite all doubts about the mechanisms responsible for

the load sequence effects, reasonable life predictions can be

made even for non-trivial problems such as FCG in complex

two-dimensional (2D) structures that work under variable

amplitude (VA) loading. This can be achieved by

experimentally fitting the parameters of phenomenological



Fig. 17. da/dN equation fitted to the SAE 1020 steel data.
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or engineering models that describe the overall crack growth

behavior, when the FCG law for the material and the DK

expression for the cracked structure are known. These

models are so versatile that they can be used even to predict

the retardation behavior on curved cracks, as shown below.

The generally curved crack path on real equipments and

the associated stress intensity factors (SIF) KI and KII can be

efficiently predicted by finite element (FE) procedures.

However, the time-consuming remeshing and FE recalcula-

tions of the entire structure stress/strain field after each VA

event require such a large computer effort that this global

approach is simply not useful in most practical cases.

Moreover, the FE modeling of load sequence effects is, at

best, only a partially solved question, and still cannot be

reliably used to predict lives in most VA fatigue problems.

On the other hand, these problems can be efficiently treated

by directly integrating the material da/dN law to obtain the

crack increment caused by each VA event, considering

crack growth retardation or acceleration. But this local

approach requires the SIF expression for the crack, usually

unknown in real cases.

As the advantages of these two approaches are

complementary, the life prediction problem can be

successfully divided into two tasks. First, the crack path

and its SIF are calculated in a specialized FE program,

supposing constant amplitude (CA) loading and using pre-

fixed small crack increments and automatic remeshing

schemes. An analytical expression KI(a) is fitted to the mode

I SIF calculated at each crack step, where a is the length

along the crack path, which then is used in a local approach

fatigue program to predict the VA fatigue life. This hybrid

(global–local) methodology has been implemented in two

specially developed pieces of software named Quebra

(global) and ViDa (local), and then experimentally validated

[27–29]. These academic codes, shared with all groups with

joint research programs, are used in the calculations

presented in this work. Details on these programs are

available elsewhere [30].

The FE calculations involve automatic remeshing at

small discrete crack steps to predict the generally curved

crack path and its KI(a) and KII(a) under simple load, using

quarter-point elements. Three crack increment methods are

studied: Displacement Correlation, Modified Crack Closure,

and J-integral with an Equivalent Domain Integral. The new

crack growth direction after each crack step can be predicted

by the Maximum Potential Energy Release Rate, the

Minimum Strain Energy Density, or the Maximum

Circumferential Stress criteria. The local approach calcu-

lations require the integration of the da/dN curve including

load sequence effects.

To verify this hybrid methodology, tests are made on

C(T) specimens, modified with holes designed and

machined to curve the crack path. The material was 1020

steel (SYZ285 and SUZ491 MPa, DK0 ZDKthðRZ0ÞZ
11:5 and KCZ280 MPa

ffiffiffiffi
m

p
, with the da/dN vs. DK curves

shown in Fig. 17). Before the tests, the hole-modified
specimens were FE modeled following the procedures

described above, and the hole position was varied in the

(numerical) models to obtain the most interesting prediction

for the curved crack path, by means of a simple trial-and-

error process. After that, the chosen specimen geometries

are machined, measured and FE remodeled, to account for

small deviations in the manufacturing process.

Even though the curved (but unwarped) crack path

geometry is 2D, once it is calculated the crack can be

described by its 1D length a measured along the crack path.

Hence, its KI expression can be written as a function of a,

KI(a)Zs(pa)$f(a/w). The discrete values of the geometry

factors f(a/w) are calculated for each crack step in the global

approach program and exported to the local one. Then,

using this KI(a) data and the 1020 da/dN vs. DK equation,

the load program for the test is calculated to maintain a

quasi-constant stress-intensity range around DKI-

z20 MPa
ffiffiffiffi
m

p
, with RZ0.1. These values are well within

the Paris regime of the 1020 steel, see Fig. 17.

Cracks are fatigue propagated in several modified C(T)

specimens, each with a 7 mm diameter hole positioned at a

slightly different horizontal A and vertical distance B from

the notch root, see Fig. 18. This odd configuration was

chosen because two different crack growth behaviors had

been predicted by the FE modeling of the holed C(T)

specimens, depending on the hole position. The predictions

indicated that the fatigue crack was always attracted by the

hole, but it could either curve its path and grow toward the

hole, or else could be deflected by the hole and continue to

propagate after missing it. To test the accuracy of the

adopted FE modeling, the transition point between the ‘sink

in the hole’ and the ‘miss the hole’ crack growth behaviors

was identified and two borderline specimens were dimen-

sioned: one with the hole only half a millimeter below that

point and the other with the hole half a millimeter above it.

These specimens were then remodeled to account for

machining errors to predict the actual crack path. The

measured and the predicted crack paths are compared in



Fig. 18. Measured dimensions of the hole-modified C(T) specimens (mm).
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Fig. 19. Using initial and final (after the simulated FCG)

meshes with about 1300/2300 and 2200/5500 elements/

nodes, the required computation time in a 500 MHz PC was

less than 15 min.

To evaluate the efficiency of phenomenological crack

retardation models in curved cracks, two specimens

(CT1(CA) and CT2(CA)) are tested under CA and two

other under VA loading, one of them being a standard C(T)

and the other a holed specimen CT1(VA). The goals of this

experiment are: (i) to check whether the curved crack paths

predicted under CA loading would give good estimates for

the measured paths under VA; and (ii) to verify if

phenomenological crack retardation models calibrated for

straight cracks in the standard C(T) could be used to predict

the fatigue life of the holed specimen. The VA load histories

applied to the tested specimens are shown in Fig. 20.
Fig. 19. Predicted and measured crack paths f
The predicted and measured crack paths for the three

modified specimens tested under CA and VA loading are

shown in Fig. 19. This suggests that the crack path under VA

loading is the same as the one predicted under CA.

Therefore, assuming that only the crack growth rate (but

not its path) is influenced by load interaction effects, the

discussed two-step methodology can be generalized to deal

with the VA problem. Thus, the SIF values calculated under

CA along the crack path can be used to predict fatigue life,

considering load interaction effects.

To evaluate whether the load interaction models

calibrated for straight-crack experiments can also be applied

to specimens with curved cracks, several crack retardation

models are fitted to the data measured on the standard C(T)

data under VA loading. The better results are obtained by

the Constant Closure model, where Kop was calibrated as

26% of the maximum overload SIF, Kol,max; by the Modified

Wheeler model, with the adjustable exponent estimated as

0.51; and by Newman’s closure model (generalized for the

VA case), with the stress-state constraint fitted as 1.07

(a value more appropriate to model dominant plane-s FCG

conditions, despite the small PZs in this test), see [29] for

further details. The measured and fitted growth behaviors

are shown in Fig. 21.

The fitted parameters are then used to predict the crack

growth behavior of the hole-modified CT1(VA) specimen

under VA loading, see Fig. 22. The significant retardation

effects of that test are quite well predicted using these three

models. In particular, the very simple Modified Wheeler

model generated as good a prediction as the more elaborated

ones, possibly because its simplistic empirical yield-zone

formulation can account for both closure and residual stress
or the modified C(T) specimens (mm).



Fig. 20. Applied load history (in kN) for the standard C(T) and for the modified CT1(VA) specimens.
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effects. These results suggest that many such load

interaction engineering models can be used to reasonably

predict the crack retardation behavior of curved cracks

under VA after being calibrated by testing much simpler

straight cracks.

The VA histories in Fig. 20 are not identical, but they

have similar stress levels and OL ratios. This might be one

of the reasons why the same adjustable parameters could be

used to describe both tests, as the possible load-spectrum

dependency of these parameters might result in poor

predictions if completely different VA histories are

considered.

In addition, the very high sensitivity of the crack growth

predictions with these adjustable parameters is another error
Fig. 21. Measured crack sizes and results of the fitted load sequence effects engi

loading.
source that cannot be ignored. This sensitivity is particularly

high when the crack growth rates approach stage I (or near

threshold) values, as seen in the post-overload regions with

almost horizontal slope in Figs. 21 and 22.

In this threshold region, miscalculations of just a few

percent for the effective SIF can be the difference between

crack growth or crack arrest. Since most life cycles are spent

during stage I growth, this is the dominant (and most

important) region in fatigue design, where the crack growth

rates and load interaction effects should be better modeled

and measured.

These points must be carefully considered before

generalizing crack retardation experiments made under the

Paris regime, where the high fatigue life sensitivity of
neering models on the standard C(T) tested under variable amplitude (VA)



Fig. 22. Crack growth predictions on the holed C(T) made by the several crack propagation models (with adjustable constants calibrated by testing the standard

C(T) presented in Fig. 21).
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the load interaction model parameters is masked by the

smaller effect of crack closure or residual stress fields.

Finally, it must be emphasized that the quite reasonable

fatigue life predictions shown in Fig. 22 were made using

three engineering models based on different mechanistic

assumptions. This clearly proves that reasonable fatigue life

predictions by no means imply that the supposed mechan-

ism used in the (numerical) load interaction model did cause

the VA sequence effects observed in fatigue tests. It only

means that the model is mathematically versatile and can

describe the overall crack growth behavior.

Since plasticity-induced crack closure cannot explain all

sequence effects in FCG, it is important to quantitatively

explore other possible retardation mechanisms. In the next

sections, mechanisms acting at or ahead the crack tip are

discussed, providing quantitative models to predict crack

retardation without the need of adjustable parameters.
Fig. 23. Typical propagation behavior of a bifurcated fatigue crack.
4. Mechanisms that can cause load sequence effects

acting at the crack tip

Crack tip blunting is not an efficient retardation

mechanism (because Kt, the stress concentration factor of

a blunt fatigue crack, is always very high), but crack

branching can be. Overloads can cause crack branching,

inducing mixed-mode conditions near to its tip even when

the far-field stress is pure traction. Such crack branching can

retard or even arrest the subsequent fatigue crack growth

behavior because the equivalent SIF Kb and Kc of the longer

and shorter branches can be considerably smaller than that

of a straight crack with the same projected length.

Moreover, very small differences between the branch

lengths b and c are enough to cause the shorter branch c
to arrest as the longer one b keeps propagating, in the

general case changing its curvature and retarding its growth

rate until reaching approximately its pre-OL SIF and growth

direction and rate, see Fig. 23.

Some analytical solutions have been obtained for the SIF

of kinked and branched cracks, but it is very difficult to

develop complete analytical solutions to describe their

complex propagation behavior. Thus, numerical methods

are usually the only practical means to predict the

propagation behavior of branched cracks. A summary of

such SIF solutions as a function of the deflection angle and

the length of the deflected part of the crack is presented in

[31]. The implemented FE global approach program

predicts the (generally curved) path of a branched crack

and calculates the associated Modes I and II SIF. Its

meshing algorithm is fundamental to avoid elements with



Fig. 24. Crack branching after a 100% overload in an SAE 4340 SE(T)

specimen (the crack was growing at DKblZ16.2 MPa m and RZ0.05).

Note that the shorter branch stopped, while the longer one continued to

propagate to the left.

Fig. 26. Opening load measurements, including the linearity subtractor

output to enhance the non-linear part of the load versus back face strain 3,

made before and after the overload test reported in Fig. 25.
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poor aspect ratio, since the ratio between the size scale of

the larger and smaller elements can be above 1000 in crack

bifurcation calculations.

Details of these calculations, too long to be included

here, are available elsewhere [32–35]. But some exper-

imental results are worth mentioning. Fig. 24 shows a crack

bifurcated by a 100% OL in a 4340 steel specimen. Fig. 25

shows the resulting retardation effect of a similar branched

crack, which last around 12,600 delay cycles along a

process zone of about 0.3 mm. Fig. 26 shows closure, but

Pop remained below Pmin before and after the OL. Thus, this

is another test, where the measured retardation cannot be

explained by crack closure. In fact, the bifurcation reduced
Fig. 25. Fatigue crack growth retardation induced by a 100% overload that

caused crack branching in a SAE 4340 SE(T) specimen for DKblZ
12.8 MPa m and RZ0.5.
Pop by 25% due to the increase in the specimen compliance

caused by the crack branches. But assuming that crack

bifurcation was the dominant growth retardation mechan-

ism, the branching model mentioned above predicted a

process zone of 307 mm and 12,000 delay cycles. In several

other tests similar fatigue life predictions were within a

factor of two of the measured delay cycles, a quite

reasonable result that justifies further research to continue

exploring quantitatively the potential of crack branching as

a load sequence mechanism.
5. A non-singular critical damage model to quantify

what is happening ahead of the crack tip during the

fatigue process

Contrary to the laborious modeling of the bifurcation

delay mechanism mentioned above, the damage ahead of a

fatigue crack tip can be estimated using simple, but sound

hypotheses and standard fatigue calculations. The basic

ideas in this modeling process are to suppose that fatigue

cracks grow by sequentially breaking small volume

elements (VE) ahead of their tips, and that these VE

fracture when the crack tip reaches them after accumulating

all the damage the material can support. In this way, the so-

called 3N procedures, which are generally used only to

model fatigue crack initiation, can be combined with

fracture mechanics concepts to predict fatigue crack growth

too, using the cyclic properties of the material and the strain

distribution ahead of the crack tip. These models can

consider the VE width in the FCG direction as being the

distance that the crack grows on each cycle, or the FCG rate

as being the element width divided by the number of cycles

that the crack would need to cross it.

Critical damage models are not new [36–42], but they

still need improvements. Most models that assume a



Fig. 27. Estimated (solid line) non-singular strain distribution ahead of a

real (blunt) crack tip, limiting the HRR field by the strain range at the crack

tip D3tip, calculated by a strain concentration rule.
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singular stress/strain field ahead of the crack tip (concen-

trating in this way all the damage next to the tip) need some

adjustable constant to fit the da/dN data, compromising their

prediction potential. But the supposed singularity at the

crack tip is a characteristic of the mathematical models that

postulate a zero radius tip, not the case of real cracks, which

have a blunt tip when loaded (and finite strains at their tip, or

else they would be unstable).

To avoid this problem, the actual finite strain range at the

crack tip D3tip can be estimated using the stress concen-

tration factor Kt for the blunt crack [43] and a strain

concentration rule. The strain range field ahead of the crack

tip can then be upper-bounded by a value D3tip, e.g. by

assuming D3tip constant inside region I in Fig. 27, where the

singular solution would predict higher strains.
Fig. 28. Schematics of the fatigue crack growth behavior, assumed to be caused by

load cycle, loaded by an increasing strain history as the crack tip approaches the
Supposing that all fatigue damage occurs inside this

region I next to the tip, the number of cycles N* associated

with D3tip can be obtained from Coffin–Manson’s rule, and

the FCG rate da/dN can then be estimated as the length of

region I divided by N*. But such models have two

shortcomings. First, neglecting the fatigue damage outside

region I concentrates it in the few very last N* cycles, a non-

conservative hypothesis. Second, assuming an intermittent

(grouped by N* cycles) and not a cycle-by-cycle FCG,

although valid in some cases of crazing in polymers, is

certainly not true for most metallic structures, as verified by

microscopic observations of fatigue striations.

To avoid these limitations, the model proposed here

[40–42] (i) uses Schwalbe’s modification [37] of the HRR

field [44–46] to represent the strain range distribution ahead

of the crack tip, and (ii) removes the crack tip singularity by

shifting the origin of the strain field from the crack tip to a

point inside the crack, located by matching the tip strain

with D3tip predicted by a strain concentration rule, such as

Neuber [47], Molsky and Glinka [48], or the Linear rule

[49], the latter one considering that the strain concentration

factor K3 is equal to the geometric stress concentration

factor Kt. This approach recognizes that the strain range

D3(r,DK) in an unbroken VE increases and causes damage

in each load cycle as the crack tip approaches it, see Fig. 28.

Therefore, the VE closest to the tip breaks due to the sum of

all damages it suffered during the previous load cycles. In

this way, the fatigue crack growth rate under constant DK is

modeled by the sequential failure of identical VE ahead of

the crack tip.
the sequential fracture of volume elements (or tiny 3N specimens) at every

m.
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This model is then extended to deal with the VA loading

case, which has idiosyncrasies that must be treated

appropriately. First, the VE that breaks in any given cycle

has variable width, which should be calculated by locating

the point ahead of the crack tip, where the accumulated

damage reaches a specified value (e.g. 1.0 when using

Miner’s rule). Load sequence effects, such as overload-

induced crack growth retardation, are associated with

hysteresis loop shifts and with mean load effects on the

material 3N curve, and can be calculated using the powerful

numerical tools available in the ViDa software [30].

Moreover, this model can recognize an opening load, and

thus can separate the cyclic damage from the closure

contributions to the crack growth process.
6. Constant amplitude loading

In every load cycle, each VE ahead of a fatigue crack tip

suffers strain hysteresis loops of increasing range as the tip

approaches it (Fig. 29). It suffers a damage increment that

depends on the strain range in that cycle, a function of the

distance ri from the ith VE to the tip and of the load DKj at

that event. The fracture of a VE near the crack tip occurs

when its accumulated damage reaches a critical value,

quantified, e.g. by Miner’s rule, Snj/NjZ1, where nj is the

number of cycles of the jth load event and Nj is the number

of cycles that the piece would last if loaded solely by that

event. Therefore, under constant DK (or DKeff) it can be

assumed that the fatigue crack advances a fixed distance da

in every load cycle.

If, for simplicity, the damage outside the cyclic plastic

zone PZc is neglected, there are thus PZc/da VE ahead of the

crack tip at any instant. Since the plastic zone advances with

the crack, each new load cycle breaks the VE adjacent to the

crack tip, induces an increased strain range in all other
Fig. 29. Schematics of the hysteresis loops at a fixed VE at different crack growth

0.47 is already present in this VE when it is reached by the cyclic plastic zone P
unbroken VE (because the crack tip approaches them by da,

Fig. 30), and adds a new element to the damage zone. Thus,

as each load cycle causes a growth increment, njZ1.

Moreover, since the VE are considered as small 3N

specimens, they break when:

XPZc=da

iZ0

1

NðPZcKidaÞ
Z
XPZc

riZ0

1

NðriÞ
Z 1 (1)

where N(ri)ZN(PZcKida), the fatigue life corresponding to

the plastic strain range D3p(ri) acting at a distance ri from the

crack tip, can be calculated using the coefficient 3f’ and the

exponent c of the plastic part of Coffin–Manson’s rule:

NðriÞ Z
1

2

D3pðriÞ

230f

� �1=c

(2)

where D3p(ri) in its turn can be described by Schwalbe’s

[37] modification of the HRR field:

D3pðriÞ Z
2SYc

E

PZc

ri

� �1=ð1Cn0Þ

(3)

In the above equation, SYc is the cyclic yield strength, n 0

the Ramberg-Osgood cyclic hardening exponent, and PZc is

the cyclic plastic zone size in plane strain, which can be

estimated, e.g. by [41]

PZc Z
ð1K2nÞ2

4pð1 Cn0Þ

DK

SYc

� �2

(4)

where n is Poisson’s coefficient. Therefore, substituting (4)

in (3) results in:

NðriÞ Z
1

2

SYc

E30f

PZc

ri

� �ð1=ð1Cn0ÞÞ
" #1=c

(5)

The next step is approximating the VE width da by a

differential da at a distance dr ahead of the crack tip
stages, under constant DK loading, showing that an accumulated damage of

Zc.



Fig. 30. Schematics of the increasing strain ranges in any given VE as the

crack grows and its tip approaches the VE.
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and the Miner’s summation by an integral, which is easier to

deal with:

da

dN
Z

ðPZc

0

dr

NðrÞ
(6)

The HRR field describes the plastic strains ahead of an

idealized crack tip, thus it is singular at rZ0. But an infinite

strain is physically impossible (which does not mean that

singular models are useless, but only that the damage close

to the crack tip is not predictable by them). To eliminate this

unrealistic strain singularity, the origin of the HRR

coordinate system is shifted into the crack by a small

distance X, copying Creager and Paris idea [43]. In this case,

(3) and (6) become

D3pðr CXÞ Z
2SYc

E

PZc

r CX

� �1=ð1Cn0Þ

(7)

da

dN
Z

ðPZc

0

dr

Nðr CXÞ
(8)

To determine X and N(rCX) two paths can be followed.

The first uses Creager and Paris’ XZr/2, r being the actual

crack tip radius, estimated by rZCTOD/2, thus

X Z
r

2
Z

CTOD

4
Z

K2
maxð1K2nÞ

pESYc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ð1 Cn0Þ

r
(9)
The second path is more reasonable. Instead of

arbitrating the strain field origin offset, it determines X by

first calculating the crack (linear elastic) stress concen-

tration factor Kt [43]:

Kt Z 2DK=ðDsn

ffiffiffiffiffiffi
pr

p
Þ (10)

For any given DK and R it is possible to calculate r and

Kt from (9) and (10), and then the strain range D3tip at the

crack tip using a strain concentration rule. The solution

depends on the material stress–strain behavior, which has

been assumed parabolic with cyclic strain hardening

coefficient K 0 and exponent n 0, with a negligible elastic

range. The Linear concentration rule is the simplest,

assuming that K3 is equal to Kt, resulting in a plastic strain

range at the crack tip given by:

D3tip Z
KtDsn

E
Z

2DK

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pCTOD=2

p (11)

Neuber’s rule requires solving both the crack tip stress

and strain ranges Dstip and D3tip:

DstipD3tip Z
ðKtDsnÞ

2

E
Z

8DK2

EpCTOD

D3tip Z 2
Dstip

2K 0

0
@

1
A1=n0

8>>>>>><
>>>>>>:

(12)

And according to Molsky and Glinka, D3tip is calculated

by:

2DK2

EpCTOD
Z

Ds2
tip

4E
C

Dstip

1 Cn0

Dstip

2K 0

0
@

1
A1=n0

D3tip Z 2
Dstip

2K 0

0
@

1
A1=n0

8>>>>>>><
>>>>>>>:

(13)

After calculating D3tip at the crack tip using one of these

rules, the shift X of the HRR field origin is obtained from (7)

using rZ0, resulting in

D3tip Z
2SYc

E

PZc

X

� �1=ð1Cn0Þ

0

X Z PZc

2SYc

ED3tip

� �1Cn0
(14)

The strain distribution at a distance r ahead of the crack

tip, D3p(rCX), without the singularity problem at the crack

tip, can now be readily obtained from (7) and (14). The

fatigue crack propagation rate is then calculated from (8) as:

da

dN
Z

ðPZc

0

2
230f

D3pðr CXÞ

� �1=c

dr (15)

This prediction was experimentally verified in SAE1020

and API 5L X-60 steels and in a 7075 T6 Al alloy, using (15)
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to obtain the constant of a McEvily-type da/dN equation

[21], which describes the da/dN vs. DK curves using only

one adjustable parameter

da

dN
Z A½DKKDKthðRÞ�

2 Kc

KcK½DK=ð1KRÞ�

� �
(16)

where Kc and DKth(R) are the material fracture toughness

and crack propagation threshold at the load ratio R. To

guarantee the consistency of this experimental verification,

Kc, DKth(R), the 3N and the da/dN data were all obtained by

testing proper specimens manufactured from the same stock

of the three materials, following ASTM standards.

The various da/dN vs. DK experimental curves are

compared with the predictions from this simple model in

Figs. 31–33. Both the shape and the magnitude of the data are

quite reasonably reproduced by the model, with the Linear

rule generating better predictions probably because the tests

were made under predominantly plane-3 conditions. Since no

adjustable constant was used in this modeling, it can be

concluded that this performance is no coincidence.

But some remarks are required. First, damage beyond PZc

was neglected to simplify the numerical calculations, but as it

accumulates at all points ahead of the crack tip, it is wiser to

choose the damage origin by numerically testing its influence

on da/dN, or better by comparing the predictions with crack

propagation tests, as done later on. Second, FE calculations

[50] indicate that there is a region adjacent to the blunt crack

tip with a strain gradient much lower than predicted by the

HRR field. The above model does not reproduce such low
Fig. 31. da/dN vs. DK behavior measured and predicted by the various strain conc

steel at RZ0.1 and 0.7 (P&C, Paris and Creager; M&G, Molsky and Glinka).
gradient, nor account for the required stress redistribution

due to the coordinate system origin shifting into the crack.

These shortcomings could be avoided by shifting the origin

away from the tip by x2 and assuming the crack-tip strain

range D3tip constant over the region I of length x1Cx2 shown

in Figs. 34(a) and (b). The value of x1 can be obtained by

equating D3tip and the HRR-calculated strain range, and the

crack-tip stress range Dstip from:

Dstip Z Dsðr Z x1Þ Z 2SYc

PZc

x1

� �n0=ð1Cn0Þ

Z 2SYc

ED3tip

2SYc

� �n0

(17)

Then, following Irwin’s classical idea, the value of the

shift x2 is obtained by integrating the stress field s(r),

guaranteeing that the shadowed areas below the curves in

Fig. 34(b) are the same:

ðN
0

DsðrÞdr Z

ðx1Cx2

0

Dstipdr C

ðN
x1

DsðrÞdr0

ðx1

0

DsðrÞdr

Z

ðx1Cx2

0

DstipðrÞdr (18)

Since x1!PZc, Ds(r) in the above integral can be

described by the HRR solution, resulting in
entration rules used in the critical damage model, for SAE 1020 low carbon



Fig. 32. da/dN vs. DK behavior measured and predicted by the various strain concentration rules used in the critical damage model, for API-5L-X60 pipeline

steel at RZ0.1 and 0.7.

Fig. 33. da/dN vs. DK behavior measured and predicted by the various strain concentration rules used in the critical damage model, for 7075 T6 high strength

aluminum alloy at RZ0.1 and 0.7.
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Fig. 34. (a) Singular and shifted HRR strain distributions ahead of the crack

tip, limited by D3tip. (b) Singular and shifted HRR stress distributions ahead

of the crack tip, limited by Dstip, with the shadowed areas equalized to

maintain equilibrium. (c) Proposed strain range distribution, divided in four

regions to consider both the elastic and the plastic contributions to the

damage ahead of the crack tip.
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ðx1
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2SYc

PZc

r

� �n0=ð1Cn0Þ

dr Z Dstipx1ð1 Cn0Þ

Z Dstipðx1 Cx2Þ0x2 Z x1n0 (19)
These simple tricks generate a more reasonable strain

distribution model, as shown in Fig. 34(c)
D3ðrÞ Z D3tip; 0%r%x1 Cx2ðregion IÞ (20)
D3ðrÞ Z
2SYc

E

PZc

rKx2

� �1=ð1Cn0Þ

;
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(21)
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kE
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2pðrKPZ=2Þ

p ;
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where kZ1 for plane stress and kZ1=ð1K2nÞ for plane

strain, and

PZ Z
1

pk2

Kmax

SYc

� �2

and PZc Z
1

4pk2ð1 Cn0Þ

DK

SYc

� �2

(24)

Both CA and VA fatigue crack growth can then be

calculated using these Eqs. (20–24), which consider all the

damage ahead of the crack tip (inside and outside the cyclic

and monotonic plastic zones) and probably provide a more

realistic model of the FCG process.

However, as significant elastic stress components act

beyond rZPZc, Eqs. (2), (5) and (15) must be modified to

include Coffin–Manson’s elastic coefficient sc and exponent

b. And in this case it is certainly better to use 3N equations

which can account for the mean load sm effects on the VE

life such as Morrow elastic (25), Morrow elastic–plastic

(26) or Smith–Watson–Topper (27):

D3

2
Z

s0
f Ksm

E
ð2NÞb C30fð2NÞc (25)

D3

2
Z

s0
f Ksm

E
ð2NÞb C30f

s0
f Ksm

s0
f

� �c=b

ð2NÞc (26)

D3

2
Z

s02
f

Esmax

ð2NÞ2b C
s0

f3
0
f

smax

C ð2NÞbCc (27)

But the life N in these equations cannot be explicitly

written as a function of the VE strain range and mean load

and thus must be calculated numerically, a programming

task that, despite introducing no major conceptual difficulty,

is far from trivial [30].
7. Variable amplitude loading

The da/dN vs. DK curve predicted for CA can be used

with some load interaction engineering model in the ViDa

software for VA problems. But the idea here is to directly

quantify the fatigue damage induced by the VA load
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considering the crack growth as caused by the sequential

fracture of variable size VE ahead of the crack tip. Since the

Linear strain concentration rule generated better predictions

above, it is the only one used here, and as load interaction

effects can have a significant importance in FCG, they are

modeled by using Morrow equation to describe the VE

fatigue life:

Nðr CXÞ Z
1

2

D3pðr CXÞ

230f
1K

sm

230f

� �Kc=b� �1=c

(28)

To account for mean load effects, a modified stress

intensity range can be easily implemented for RO0 to filter

the loading cycles that cause no damage by using

DKeff Z Kmax KKPR Z
DK

1KR
KKPR (29)

where KPR is a propagation threshold that depends on the

considered retardation mechanism, such as Kop or K�
max from

the Unified Approach [7–8]. The damage function for each

cycle is then:

diðr CXiÞ Z
ni

Niðr CXiÞ
(30)

If the material ahead of the crack is supposed virgin, then

its increment da1 caused by the first load event is the value
Fig. 35. Schematics of the critical damage calculations, which under

variable amplitude loading recognize variable crack increments by forcing

the crack to grow over the region, where DZ1.
rZr1 that makes Eq. (30) equal to one, therefore:

d1ðr1 CX1Þ Z 10da1 Z r1 (31)

In all subsequent events, the crack increments take into

account the damage accumulated by the previous loading,

in the same way it was done for the constant loading case.

But as the coordinate system moves with the crack, a

coordinate transformation of the damage functions is

necessary:

Di Z
Xi

jZ1

dj r C
XiK1

pZj

dap

 !
(32)

Since the distance rZri, where the accumulated

damage equals one in the ith event is a variable that

depends on DKi (or DKeffi) and on the previous loading

history, VE of different widths may be broken at the crack

tip by this model. This idea is illustrated by the events

schematized in Fig. 35.
8. Results and discussions

FCG tests under VA loading were performed on API-5L-

X52 steel 50!10 mm C(T) specimens, pre-cracked under

CA at DKZ20 MPa m until reaching crack sizes

ay12.6 mm. These cracks were measured within 20 mm

accuracy by optical methods and by a strain gage bonded at

the back face of the C(T) [26]. The basic monotonic and

cyclic properties, measured in computer-controlled servo-

hydraulic machines using standard ASTM testing pro-

cedures, are EZ200!103, SUZ527, SYZ430, SYcZ370,

K 0Z840, and s0
f Z720 (all in MPa), n 0Z0.132, 30f Z0:31,

bZK0.076 and cZK0.53. About 50 specimens were

tested under deformation ratios varying from RZK1 to 0.8

(at least 2 at each strain range) to obtain the 3N curve, see

Fig. 36. Morrow’s strain-life Eq. (25), which includes the

mean stress effect only in Coffin–Manson’s elastic term,

best fit the experimental data. The basic da/dN curve,
Fig. 36. Measured strain-life data for the API 5L X52 steel, best fitted by the

Morrow elastic model.



Fig. 37. Variable amplitude load block applied to the API-5L-X52 steel C(T), with a high average R-ratio.
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measured using the same testing equipment, is fitted by da

=dNðRZ0:1ÞZ2!10K10ðDKK8Þ2:4 (in m/cycle), where

DKth(RZ0.1)Z8 MPa
ffiffiffiffi
m

p
.

Two FCG tests were then conducted under VA loading.

In the first one, 50 000 load blocks containing 100 reversals

each were applied, see Fig. 37. The high mean stress levels

were chosen to avoid crack closure effects. The load history

was counted by the sequential rain-flow method, using the

ViDa software [30]. The damage calculation was made

using a specially developed code following all the

procedures discussed above. The crack growth predictions

based solely on 3N parameters are again quite reasonable,

see Fig. 38. The prediction assuming no damage outside the

cyclic plastic zone PZc underestimated the crack growth.

However, when the small (but significant) damage in the

material between the cyclic and monotonic plastic zone

borders is also included in the calculations, an even better

agreement is obtained. Note also that crack growth is

slightly underestimated after 1.8!106 cycles, probably due
Fig. 38. Comparison between the crack growth measurements and the

3N-based predictions for the variable amplitude load presented in Fig. 37

(API-5L-X52 steel).
to having neglected the elastic damage and the (small) mean

stress effects.

A similar test was conducted on AISI 1020 steel C(T)

specimen of the same dimensions described above. The

measured monotonic and cyclic properties of this material

are EZ205 GPa, SUZ491, SYZ285, SYcZ270, K 0Z941

and s0
f Z815 MPa, n 0Z0.18, 30f Z0:25, bZK0.114, and

cZK0.54. The FCG curve fit is da=dNZ5!10K10!
ðDKKDKthÞ

2 !fKc=½Kc KDK=ð1KRÞ�g, where DKthZ11.6

and KcZ277 (DK, DKth and Kc in MPa
ffiffiffiffi
m

p
and da/dN in

m/cycle).

The VA load history is a series of blocks containing 101

peaks and valleys, as shown in Fig. 39, with a duration of

two seconds each. Again a high mean R-ratio was used in

this test, to avoid the interference of possibly significant

closure effects, which could mask the model performance.

Fig. 40 compares the predictions with the experimentally

obtained data. This other prediction of fatigue crack growth

under VA based only on 3N properties turns out to be again

quite accurate. Therefore, these tests indicate that the ideas

behind the proposed critical damage model make sense and

deserve to be better explored.
Fig. 39. Variable amplitude load block applied to the SAE 1020 steel C(T).



Fig. 40. Comparison between the crack growth measurements and the

3N-based predictions for the variable amplitude load presented in Fig. 39

(SAE 1020 steel).
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9. Conclusions

Several mechanisms can cause load sequence effects on

fatigue crack growth, and they may act before, at or after the

crack tip. Plasticity-induced crack closure is the most

popular of them, but it cannot explain sequence effects in

various important problems. A damage accumulation model

ahead of the crack tip based on 3N cyclic properties, which

can explain those effects in the absence of closure, was

proposed for predicting fatigue crack propagation under

variable amplitude loading. The model treats the crack as a

sharp notch with a small, but finite radius to avoid

singularity problems, and calculates damage accumulation

explicitly at each load cycle. Experimental results show a

good agreement between measured crack growth both under

constant and variable amplitude loading and the predictions

based purely on 3N data.
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