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Abstract

The stress intensity factors (SIF) associated with branched fatigue cracks can be considerably smaller than that of a straight crack with the

same projected length, causing crack growth retardation or even arrest. This crack branching mechanism can quantitatively explain

retardation effects even when plasticity induced crack closure cannot be applied, e.g. in high R-ratio or in some plane strain controlled fatigue

crack growth problems. Analytical solutions have been obtained for the SIF of branched cracks, however, numerical methods such as Finite

Elements (FE) or Boundary Elements (BE) are the only means to predict the subsequent curved propagation behavior. In this work, a FE

program is developed to calculate the path and associated SIF of branched cracks, validated through experiments on 4340 steel ESE(T)

specimens. From these results, semi-empirical crack retardation equations are proposed to model the retardation factor along the crack path.

The model also considers the possible interaction between crack branching and other retardation mechanisms.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Fatigue cracks can significantly deviate from their Mode

I growth direction due to the influence of overloads, multi-

axial stresses, micro structural inhomogeneities (such as

inclusions, grain boundaries and interfaces), or environ-

mental effects, generating crack kinking or branching [1]. A

fatigue crack deviated from its nominal Mode I plane

induces mixed-mode near-tip conditions even if the far-field

stress is pure traction. For instance, a pure Mode I stress

intensity factor (SIF) KI locally induces Modes I and II SIF

k1 and k2 near the longer branch b of a bifurcated crack and

k 0
1 and k 0

2 near the shorter c one. The equivalent SIF Kb and

Kc of the longer and shorter branches, calculated respect-

ively from (k1, k2) and (k 0
1, k 0

2) using e.g. the sqmax criterion
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[2], can be considerably smaller than that of a straight crack

with the same projected (on the original crack plane) length,

see Fig. 1. Therefore, such branching can retard or even

arrest subsequent crack growth [3].

It is experimentally observed that very small differences

between the crack branch lengths b and c are enough to

cause the shorter branch c to arrest while the larger one b

propagates, generally changing its curvature at a retarded

rate until returning approximately to its pre-overload SIF

and growth direction and rate, see Fig. 1. Therefore,

although many branches can be developed along the main

crack path, only the fastest branch continues to grow, while

all others are brought to a stop due to a shielding effect. This

typical propagation behavior has been observed in many

structural components, e.g. on a branched crack on an

aircraft wheel rim made of 2014-T6 aluminum alloy [4].

Some analytical solutions have been obtained for the SIF

of kinked and branched cracks, but it is generally recognized

that it is very difficult to develop accurate analytical

solutions to their complex propagation behavior [5–9].

Therefore, numerical methods such as Finite Elements (FE)

and Boundary Elements (BE) are the only practical means to

predict the propagation behavior of branched cracks [10].
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Fig. 1. Bifurcated crack propagation behavior.
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A summary of such SIF solutions as a function of the

deflection angle and the length of the deflected part of the

crack is presented in [11].

To predict the (generally curved) path of a branched

crack and to calculate the associated Modes I and II SIF,

a specially developed interactive FE program named

Quebra (meaning fracture in Portuguese) is used [12].

This program simulates 2D fracture processes based on a

FE self-adaptive strategy, using appropriate crack tip

elements and crack increment criteria. The adaptive FE

analyses are coupled with modern and very efficient

automatic remeshing schemes. An efficient meshing

algorithm is fundamental to avoid elements with poor

aspect ratio and numerical instabilities, since the ratio

between the size of the larger and smaller elements can

be above 1000 in crack bifurcation calculations. To

accomplish that, Quebra uses an innovative algorithm

incorporating a quadtree procedure to develop local

guidelines to generate elements with the best possible

shape. The internal nodes are generated simultaneously

with the elements, using the quadtree procedure only as a

node-spacing function. This approach tends to give a

better control over the generated mesh quality and to

decrease the amount of heuristic cleaning-up procedures.

Moreover, it specifically handles discontinuities in the

domain or boundary of the model. Finally, to enhance

the mesh element shape quality, an a posteriori local

mesh improvement procedure is used [13]. The crack

propagation calculations are described in the next section.
2. Propagation of branched cracks

The growth of branched cracks is studied using the

Quebra program to model a C(T) specimen with width wZ
32.0 mm, crack length aZ14.9 mm, and a very small

bifurcation with angle 2q ranging from 40 to 1688, initial

longer branch length b0Z10 mm and initial shorter branch

lengths ranging from c0Z5 to 10 mm. A fixed crack growth

step of DbZ3 mm (or 1 mm during the first propagation

steps) is considered for the propagation of the longer branch

b. This growth step is calculated in the direction defined by

the sqmax criterion [2]. Due to the differences in the SIF and

crack growth rate, a growth step Dc smaller than Db is

expected for the shorter branch. This smaller step is

obtained assuming a crack propagation law that models

the first two growth phases

da

dN
Z A!½DKKDKthðRÞ�

m (1)

where A and m are material constants and DKth(R) is the

fatigue crack propagation threshold at the RZKmin/Kmax

ratio of the test. If DKb and DKc are, respectively, the stress

intensity ranges of the longer and shorter branches, then the

growth step Dc of the shorter branch c should be

Dc Z Db
DKc KDKthðRÞ

DKbKDKthðRÞ

� �m

(2)

Interestingly, the ratio between the propagation rates of

the two branches is independent of the material constant A.



Fig. 2. Propagation simulation of a bifurcated crack on a C(T) specimen (left), and close-up view of the two original 11 and 10 mm branches with angle

2qZ1508 (right).

Fig. 3. Bifurcated crack paths for several c0/b0 ratios (KPRZ0).
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In this analysis, the exponent m is assumed to be 2.0, 3.0,

and 4.0, which are representative for the range of the

measured exponents for structural alloys. A similar

expression can be obtained if other crack retardation

mechanisms are considered, through Lang and Marci’s

propagation threshold KPR [14] with A and m parameters

fitted for each considered load ratio R

Dc Z Db
Kmax;c KKPR

Kmax;bKKPR

� �m

(3)

where Kmax,b and Kmax,c are the maximum SIF of the longer

and shorter branches, respectively. Or this threshold KPR can

be replaced by the limiting value K�
max or the threshold of the

maximum of Sadananda and Vasudevan’s Unified

Approach [15,16], which assumes that a crack can

propagate only when DKODK�
th and Kmax OK�

max, where

DK�
th ZDKthðR/1Þ.

Both the crack path and the associated SIF along each

branch are obtained using the Quebra program. Several

calculations were performed for different values of the

exponent m, bifurcation angle 2q, relation c0/b0, and SIF,

considering or not the effect of KPR, as described next.

2.1. Branched crack propagation with KPRZ0

In this section, the propagation behavior of branched

cracks is studied using FE but neglecting any retardation

mechanism other than the bifurcation itself (i.e. assuming

KPRZ0). Fig. 2 shows the contour plots of the normal stress

component in the load direction axis and propagation results

for a bifurcated crack with angle 2qZ1508, obtained from

the FE analysis for c0/b0Z0.91, mZ2 and no closure. In this

figure, the deformations are highly amplified to better

visualize the crack path. Note that the crack path deviates

from the original branch angles, deflecting from G75 to

approximately G288. In addition, the originally shorter

branch arrests after propagating (only) about 29 mm, while

the longer branch returns to the pre-overload growth
direction and SIF (even though the subsequent crack growth

plane may be offset from the pre-overload one, see Fig. 2).

Fig. 3 shows the crack paths obtained from the FE

analyses of bifurcated cracks with 2qZ1308 and c0/b0Z
{0.5, 0.8, 0.95, 1}, considering mZ2 and KPRZ0. The

dashed lines show the theoretical propagation behavior of a

perfectly symmetric bifurcation (c0/b0Z1). In this case, the

retardation effect would never end because both branches

would propagate symmetrically without arresting. Clearly,

such behavior is not observed in practice, since the slightest

difference between b0 and c0 would be sufficient to induce

an asymmetrical behavior. Fig. 3 also shows that lower c0/b0

ratios result in premature arrest of the shorter crack branch,

leading to smaller retardation zones. Also, the propagation

path of the longer branch is usually restrained to the region

within the dashed lines, while the shorter one is ‘pushed’

outside that envelope due to shielding effects.

The size of the retardation zone can be estimated from

the ratio bf/b0, where bf is the value of the length parameter

b of the longer branch (measured along the crack path)

beyond which the retardation effect ends. The ratio bf/b0 is

then calculated through FE propagation simulations for all



Fig. 4. Normalized process zone size as a function of the bifurcation angle

and branch asymmetry c0/b0 (mZ3, KPRZ0).
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combinations of c0/b0Z{0.5, 0.8, 0.9, 0.95}, 2qZ{40,80,

130,1688} and mZ{2,3,4}, and fitted by the proposed

empirical function:

bf

b0

Z exp
2qK308

56 C17ðmK2Þ2=3

� �
=ð1Kc0=b0Þ

ð12KmÞ=20 (4)

Fig. 4 shows a comparison between the fitted and the FE-

obtained data. Note that a greater symmetry between the

branches (as c0/b0 approaches 1.0) results in a longer

retardation zone, as expected from the delayed arrest of the

shorter branch.

The FE-calculated equivalent SIF Kb and Kc of the longer

and shorter branches are now evaluated along the obtained

crack paths. Fig. 5 plots the crack retardation factors

(defined as the ratios between Kb or Kc and the Mode I SIF

KI of a straight crack) for 2qZ1308 and mZ2, as a function

of the normalized length (bKb0)/b0 of the longer branch.

Because of the different crack branch lengths, the SIF at the

longer one is much higher than that at the shorter branch.

Assuming Kb and Kc to be the crack driving force, it can be

seen from Fig. 5 that the longer branch reaches its minimum

propagation rate right after the bifurcation occurs, returning

to its pre-overload rate as the crack tip advances away from

the influence of the shorter branch. As seen in the figure,
Fig. 5. Normalized equivalent SIF for the (a) longer and (b) shorter branch o
the retardation behavior is misleadingly similar to closure-

related effects, even though no closure is present in that

case.

In addition, as the length difference between both

branches increases, it is expected that the propagation rate

of the shorter one is reduced until it arrests, after which the

larger branch will dominate. Note that even small

differences between the branch lengths, such as in the

case c0/b0Z0.95 shown in Fig. 5, are sufficient to cause

subsequent arrest of the shorter branch.

An empirical expression is here proposed to model the

SIF Kb of the longer branch during the transition between

Kb0 (the value of Kb immediately after the bifurcation event)

and the straight-crack KI (after the retardation effect ends),

valid for b0%b%bf and 0.7!c0/b0!1

Kb Z Kb0
C ðKI KKb0

Þ a tan 3
bKb0

bf Kb0

� �
=1:25

� �2c0=b0

(5)

where bf is given in Equation (4) and Kb0 (and Kc0) by

Kb0

KI

Z 0:75 C ð1Ksin qÞ 1K
c0

b0

� �
;

Kc0

KI

Z 0:75Kð1Ksin qÞ 1K
c0

b0

� � (6)

It must be pointed out, however, that the presented FE

results and empirical models might have some limitations,

because actual bifurcations can be of a size comparable to

the scale of the local plasticity (e.g. of the plastic zone size)

or microstructural features (e.g. of the grain size). More-

over, possible environmental effects should be considered

when comparing the bifurcation model predictions with

measured crack growth rates [3]. However, one could argue

that similar limitations would also apply to straight and in

particular to curved crack propagation problems, since the

crack increments (which are of the order of the CTOD, or of

K2/ESY, where E is Young’s modulus and SY the yield

strength) are at least two orders of magnitude smaller than

the scale of the local plasticity (which is proportional to

(K/SY)2) in all these cases. But nevertheless 2D LEFM
f a bifurcated crack during its propagation (2qZ1308, mZ2, KPRZ0).
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concepts are highly successful in modeling those problems

when the local plasticity is much smaller than cracked piece

dimensions [12,13]. In other words, experience has

validated the use of a global SIF elastic parameter to predict

the direction and the amount of the local crack increment,

which is much smaller than the size of the plastic zones that

always accompany the crack tip. Using these same concepts

to describe the path and propagation life of a bifurcated

crack under similar small scale yielding conditions (but not

to describe how it bifurcates after an overload, e.g.) thus

seems a very reasonable initial modeling approach for such

problems (pending, of course, support by proper exper-

imental verification). The interaction between crack

branching and other retardation mechanisms is studied next.

Fig. 6. Normalized process zone size of bifurcated cracks as a function of

KPR and branch asymmetry c0/b0 (2qZ1308, mZ3).

Fig. 7. Normalized process zone size of bifurcated cracks as a function of

KPR and bifurcation angle 2q (c0/b0Z0.8, mZ3).
2.2. Influence of other mechanisms on branched

crack propagation

All presented branched growth simulations so far have

not included the effect of other retardation mechanisms.

This effect is easily accounted for in the FE calculations

using Eq. (3). The limiting value KPR is assumed to be the

same at both branch tips and always larger than the

minimum SIF of each branch. Further simulations are then

conducted considering several KPR values, normalized by

the maximum Mode I SIF KI of the straight crack, namely

KPR/KIZ{0.067,0.08,0.10,0.13,0.20,0.25,0.40,0.57}.

A generalized version of Eq. (4) is then proposed to fit

the calculated process zone sizes including the combined

effects of other mechanisms:

bf

bo

Z
a

ð1Kc0=b0Þ
ð12KmÞ=20

!exp
Kb

ð1Kc0=b0Þ
g

KPR

KI

� �
(7)

where

a Z exp
2qK308

56 C17ðmK2Þ2=3

� �
(8)

b Z
2q

110 C60ðmK2Þ0:6

� �5=2

(9)

g Z
1808K2q

280K130ðmK2Þ0:3
(10)

Note that the ratio KPR/KI in Eq. (7) should be replaced

with zero if KPR is smaller than the minimum SIF of both

branches. Figs. 6 and 7 show a comparison between the

fitted and the FE-obtained data as a function of the ratio

KPR/KI. Note that greater KPR levels result in shorter

retardation zones, because the shorter branch is more easily

arrested due to the reduction in its stress intensity range.

Fig. 8 shows the effect of KPR at the branch tips on the

retardation factor for 2qZ1308, c0/b0Z0.9 and mZ2. Note

that higher KPR levels reduce the size of the retardation

process zone, due to premature arrest of the shorter branch.

In Fig. 8, e.g. the normalized size of the process zone is
reduced from 18 to 3.6 as KPR/KI approaches 0.74, a factor

of 5. In this example, 0.74 is the minimum KPR/KI level that

prevents the shorter branch to even start propagating.

Therefore, at any level above 0.74 the normalized process

zone size will also be 3.6, because the propagation geometry

will remain unchanged as long as the shorter branch remains

arrested at cZc0.

Note, however, that a smaller process zone does not

necessarily mean fewer delay cycles, since the longer

branch will also experience a reduction in the crack

propagation rate due to other retardation mechanisms.

Therefore, a competition between lower growth rates of

the longer branch and smaller bifurcation process zone sizes

will take place to determine the real effect of combining

bifurcation with other retardation mechanisms.

Eqs. (7)–(10) and (6) can then be applied to Eq. (5) to

model the SIF Kb of the longer branch during the transition

between Kb0 (the SIF immediately after the bifurcation

event) and the straight-crack KI (the SIF after the end of the

retardation effect), completing this analysis.



Fig. 8. Normalized SIF of the longer branch during its propagation as a

function of the normalized length (bKb0)/b0 for several KPR levels (c0/b0Z
0.9, mZ2).
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3. Experimental results

Quantitative validations of the predicted bifurcated crack

growth behavior are performed on Eccentrically-loaded

Single Edge Crack Tension specimens ESE(T) made from

an annealed SAE 4340 alloy steel with SYZ377 MPa, SUZ
660 MPa, EZ205 GPa, and RAZ52.7%, and with the

analyzed weight percent composition: C 0.37, Mn 0.56, Si

0.14, Ni 1.53, Cr 0.64, Mo 0.18, S 0.04, P 0.035. The tests

are performed at frequencies between 20 and 30 Hz in a

250 kN computer-controlled servo-hydraulic testing

machine. The crack length is measured following ASTM

E 647 procedures [17]. Special attention is given for crack

closure measurements, made using a high-speed data

acquisition system to obtain data and to avoid intervention

during the tests. In this way, the load and Crack-Opening

Displacement (COD) data are used to precisely compute the

crack closure load using a digital implementation of the

linearity subtractor circuit developed to enhance the

opening load, [18] (the accuracy of such careful closure

load measurements is in the order of Kmax/100 [19]).

The proposed retardation equations are implemented in a

fatigue life assessment program named ViDa [12–13]. This
Fig. 9. Crack bifurcation experiments on S
program is used to estimate the number of delay cycles

associated with the experimentally obtained bifurcation on

the 4340 steel ESE(T) specimen. The number of cycles

spent during the propagation in the retardation region is then

calculated by integrating the da/dN equation along the

longer crack branch, from bZb0 to bZbf.

Four tests are performed on ESE(T) specimens subject to

100% overloads, namely tests I, II, III and IV: (I) RZ0.7,

DKZ13.9 MPaOm, resulting in approximately 22,000 delay

cycles; (II) RZ0.7, DKZ14.2 MPaOm, resulting in

approximately 20,000 delay cycles; (III) RZ0.7, DKZ
13.7 MPaOm, resulting in approximately 27,000 delay

cycles; (IV) RZ0.05, DKZ16.2 MPaOm, resulting in

approximately 32,000 delay cycles, see Figs. 9–18.

It is found that the minimum load levels in tests I and II are

always above the opening load, therefore, no crack closure is

present nor before nor after the overloads. For test I, the

measured initial branch lengths are approximately b0Z9 mm

and c0Z8.5 mm, with a bifurcation angle 2qZ1608, see

Fig. 9(a). The material is modeled using Eq. (1) with crack

growth constants AZ9!10K11 m/cycle and mZ2.1, and a

propagation threshold DKthZ2.8 MPaOm, measured under

RZ0.7. From Eq. (6), it is found that Kb0/KIZ0.751 and Kc0/

KIZ0.749, leading to DKb0Z0.751 DKIZ10.437 MPaOm

and DKc0Z0.749 DKIZ10.413 MPaOm. Since both ranges

are greater than DKth(RZ0.7)Z2.8 MPaOm, both branches

are expected to start propagating, as verified experimentally.

The size of the process zone can be estimated from Eq. (4),

which results in bfZ36.95!9 mmy332 mm. The number of

delay cycles nD is then calculated by:

nD Z

ðbf

b0

db

AðDKbKDKthÞ
m

K

ðbf

b0

db

AðDKI KDKthÞ
m

Z

ð332

9

db!10K6

9,10K11 7:64 C2:27 a tan 3 bK9
332K9

� �
=1:25

� 	1:88
n o2:1

K

ð332

9

db!10K6

9,10K11ð13:9K3:8Þ2:1
Z 9; 664 cycles ð11Þ
AE 4340 steel: (a) test I, (b) test II.



Fig. 10. Fatigue crack growth retardation after a 100% overload, RZ0.7

(test I).
Fig. 12. Fatigue crack growth retardation after a 100% overload, RZ0.7

(test III).
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which is approximately half of the measured 22,000 delay

cycles (Fig. 10).

For test II, the measured initial branch lengths are

approximately b0Z10 mm and c0Z9.5 mm, but with a larger

bifurcation angle 2qZ1608, see Fig. 9(b), resulting in:

nD Z

ðbf

b0

db

AðDKbKDKthÞ
m

K

ðbf

b0

db

AðDKI KDKthÞ
m

Z 36; 093K25; 424 Z 10; 669 (12)

which is also about half of the measured 20,000 delay cycles

(Fig. 11).

Fig. 12 shows a crack retardation of approximately

22,000 delay cycles resulting from test III. However, in this

case the external polished surfaces of the specimen did not

present any signs of bifurcation. But careful inspection of

the fracture surfaces using a scanning electron microscope

revealed that not only tests I and II but also test III resulted

in a bifurcation front along the specimen thickness, see

Figs. 13–15. The bifurcation front is approximately straight

and through-the-thickness for tests I and II, but surprisingly
Fig. 11. Fatigue crack growth retardation after a 100% overload, RZ0.7

(test II).
for test III the front is discontinuous towards the specimen

faces, indicating an internal bifurcation. Despite its 3D

geometry, the retardation behavior is still reasonably

reproduced by the proposed 2D model within a factor of 2

in number of delay cycles.

For test IV, the initial branch lengths are approximately

b0Z10 and c0Z9.5 mm, with a bifurcation angle 2qZ1508,

see Fig. 16. The material is modeled using Eq. (1) with crack

growth constants AZ9!10-11 m/cycle and mZ2.2, and a

propagation threshold DKthZ8.1 MPaOm, all measured

under RZ0.05. The size of the process zone is calculated

from Eqs. (7–10), resulting in aZ6.97, bZ1.35, gZ0.15,

and bfZ11.6!10 mmy116 mm. Using the same process

described previously, the delay cycles nD is estimated by:

nD Z

ðbf

b0

db

AðDKbKDKthÞ
m

K

ðbf

b0

db

AðDKI KDKthÞ
m

Z 33; 961K16; 645 Z 17316 (13)

which is about half of the measured 32,000 delay cycles, see

Fig. 17.

Note that in all tests there was no retardation induced by

crack closure. The only test in which crack closure was

detected was test IV, however after the overload the opening

load in fact decreased, see Fig. 18. The opening load

remained lower than before the overload along the entire

process zone, only returning to its original value after the

bifurcation effect had ended. Therefore, even if closure

affected the constant amplitude growth behavior in test IV,

it would not be able to explain the measured overload-

induced retardation. This behavior has already been

described in the literature [20].

The errors in the predictions performed using the

proposed semi-empirical equations can be explained by

inaccuracies in the estimation of the initial branch lengths b0

and c0, since the retardation effect is highly dependent on

the ratio c0/b0. In addition, other retardation mechanisms



Fig. 13. Scanning electron micrographs of fracture surfaces (test I): (a) bifurcation front through the specimen thickness, and (b) detailed view indicating

different height levels.

M.A. Meggiolaro et al. / International Journal of Fatigue 27 (2005) 1398–1407 1405
besides bifurcation (except for closure, as discussed above)

might be contributing to increase the number of delay

cycles, such as unmodeled environmental effects or further

kinking of the branch tips due to microstructure inhomo-

geneities. Another factor could be a specimen thickness

effect, where the plane strain condition assumed in the 2D

calculations would result in less retardation than the actual

3D stress state. However, the retardation mechanism behind

a possible thickness effect in the performed experiments
Fig. 14. Scanning electron micrographs of fracture surfaces (test II): (a) bifurcat

different height levels.
could not be crack closure, as shown in Fig. 18. Small

differences between the actual crack growth behavior and

the assumed crack propagation rule (particularly in the

curvature of the transition from the threshold or phase I to

the Paris or phase II regions) can also be a cause for these

prediction inaccuracies. In any case, the presented predic-

tions are of the same order of magnitude of the experimental

scatter. Therefore, the quantitative approach presented in

this work is a quite promising tool for modeling and
ion front through the specimen thickness, and (b) detailed view indicating



Fig. 15. Scanning electron micrographs of fracture surfaces (test III): (a) bifurcation front through the specimen thickness, and (b) detailed view indicating

different height levels.

Fig. 16. Crack bifurcation experiments on SAE 4340 steel (test IV): (a) front face of specimen (b) back face of specimen.
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calculating overload-induced retardation effects where other

mechanisms have failed to give a satisfactory explanation.

Finally, it must be noted as well that all measured

bifurcations occurred throughout the thickness in an

approximately uniform pattern (except near the specimen

faces for test III), observed after carefully slicing and

reexamining the specimens. Therefore, despite the inherent

3D nature of the bifurcation problem, in these tests the

presented 2D FE approach has been validated.
Fig. 17. Fatigue crack growth retardation after a 100% overload, RZ0.05

(test IV).
4. Conclusions

In this work, a specialized FE program was used to

calculate the propagation path and associated stress

intensity factors (SIF) of bifurcated cracks, which can



Fig. 18. Opening load measurements, before and after the overload (test IV)
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cause crack retardation or even arrest. A total of 262 crack

propagation simulations were obtained from a total of 6250

FE calculation steps to fit empirical equations to the process

zone size and crack retardation factor along the curved crack

branches. In particular, the bifurcation simulations included

several combinations of bifurcation angles 2qZ{40, 80, 90,

130, 1688}, branch asymmetry ratios c0/b0Z{0.5,0.7,0.8,

0.9,0.95,1.0}, crack growth exponents mZ{2,3,4}, and

even considered interaction between crack branching and

other retardation mechanisms through the threshold ratios

KPR/KIZ{0.0,0.067,0.08,0.10,0.13,0.20,0.25,0.40,0.57}. It

was shown that very small differences between the lengths

of the bifurcated branches are sufficient to cause the shorter

one to eventually arrest as the longer branch returns to the

pre-overload conditions. The process zone size was found to

be smaller for lower bifurcation angles and for branches

with greater asymmetry, in both cases due to the increased

shielding effects on the shorter branch. The retardation zone

was reduced as well for materials with higher crack growth

exponents, due to the increased difference between the crack

growth rates of the longer and shorter branches. Higher KPR

levels also resulted in smaller process zones, because the

shorter branch was more easily arrested due to the reduction

in its stress intensity range. However, a competition

between smaller process zone sizes and lower growth

rates of the longer branch did take place to determine the

real effect of combined bifurcation and other retardation

mechanisms. The proposed equations, besides capturing all

above described phenomena, can be readily used to predict

the propagation behavior of branched and kinked cracks in

an arbitrary structure, as long as the process zone ahead of

the crack tip is small compared to the other characteristic

dimensions, exactly as in other similar fatigue propagation

problems such as curved crack path and life predictions.

However, these predictions probably should also be limited

to the cases where it can be assumed that the entire crack-

front bifurcates uniformly (as observed byscanning electron

.

microscopy in the tests reported in this work), where the

specimen thickness itself may provide the size scale

requirements for the validity of the presented 2D LEFM-

based equations, as the calculated SIF may be averaged

considering the (several) grains present along the thickness.

Otherwise, if the crack deflections vary significantly along

the thickness, then 3D modeling including Mode III effects

should be considered. From these results, it can be seen that

crack bifurcation may provide an alternate mechanistic

explanation for overload-induced crack retardation on

structural components, especially to explain load interaction

effects under closure-free conditions.
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