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Abstract As the autonomy of personal service robotic sys-
tems increases so has their need to interact with their en-
vironment. The most basic interaction a robotic agent may
have with its environment is to sense and navigate through
it. For many applications it is not usually practical to pro-
vide robots in advance with valid geometric models of their
environment. The robot will need to create these models by
moving around and sensing the environment, while minimiz-
ing the complexity of the required sensing hardware. Here,
an information-based iterative algorithm is proposed to plan
the robot’s visual exploration strategy, enabling it to most
efficiently build a graph model of its environment. The al-
gorithm is based on determining the information present in
sub-regions of a 2-D panoramic image of the environment
from the robot’s current location using a single camera fixed
on the mobile robot. Using a metric based on Shannon’s
information theory, the algorithm determines potential loca-
tions of nodes from which to further image the environment.
Using a feature tracking process, the algorithm helps navi-
gate the robot to each new node, where the imaging process
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is repeated. A Mellin transform and tracking process is used
to guide the robot back to a previous node. This imaging,
evaluation, branching and retracing its steps continues un-
til the robot has mapped the environment to a pre-specified
level of detail. The set of nodes and the images taken at each
node are combined into a graph to model the environment.
By tracing its path from node to node, a service robot can
navigate around its environment. This method is particularly
well suited for flat-floored environments. Experimental re-
sults show the effectiveness of this algorithm.

Keywords Mobile robots . Localization . Map building .

SLAM . Information theory

1. Introduction

In recent years, mobile service robots have been
introduced into various non-industrial application
areas such as entertainment, building services, and
hospitals. They are relieving humans of tedious work with
the prospect of 24-hour availability, fast task execution,
and cost-effectiveness. The market for medical robots,
underwater robots, surveillance robots, demolition robots,
cleaning robots and many other types of robots for carrying
out a multitude of services has grown significantly (Thrun,
2003). The sales of mobile robots are projected to exceed the
sales of factory floor robots by a factor of four, exceeding
US$2 billion within this decade (Lavery, 1996). And unlike
the factory floor robot market, the sources for the vast
majority of these machines could be U.S. companies.

Service robots for personal and private use are mainly
found in the areas of domestic (household) robots, which
include vacuum cleaning and lawn-mowing robots, and en-
tertainment robots, including toy and hobby robots. If the

Springer



16 Auton Robot (2006) 21:15–28

technology for personal service robots provides what it has
promised, at a competitive price, and if there is a sufficient
degree of consumer acceptance, then this can be indeed a
very large market.

Due to increased computational performance, algorithm
complexity has grown thus providing increased system capa-
bility (Borenstein and Koren, 1990; Khatib, 1999; Lawitzky,
2000; Nister, 2003; Wong et al., 2000). This growth in al-
gorithm complexity has been in conjunction with growth
in hardware complexity. However, the high costs associated
with hardware complexity are a discouraging factor. This
economic drive has been seen in the last decade, where the
performance of industrial and personal robots has radically
increased while prices have fallen. A robot sold in 2000
would have cost less than a fifth of what a robot with the
same performance would have cost in 1990 (World Robotics,
2001). Although hardware costs have declined with respect
to their sophistication, this economic trend will still require
the replacement of complex hardware architectures by more
intelligent and cost-effective systems.

In this work, an algorithm is developed to allow a mobile
service robot to explore and build its environment model
for future navigation requirements, using a limited sensor
suite consisting of a single monocular camera system fixed
to the mobile base, wheel encoders and contact switches.
The main objective of this algorithm is to allow a low-cost
robot to localize itself and navigate through a flat-floored
static environment such as an office floor or apartment. The
algorithm is based on determining the information present
in sub-regions of a 2-D panoramic image of the environ-
ment from the robot’s current location. Using a metric based
on Shannon’s information theory (Reza, 1994), the algorithm
determines potential locations of nodes from which to further
image the environment, traversing the graph in a depth-first
manner. Using a feature tracking process, the algorithm helps
navigate the robot to each new node, where the imaging pro-
cess is repeated. When a node is sufficiently explored (i.e.
no new exploration nodes are identified), then the algorithm
uses a Mellin transform (Alata et al., 1998; Casasent and
Psaltis, 1978; Ruanaidh and Pun, 1997) and tracking process
to guide the robot back to a previous node. This imaging,
evaluation, branching and retracing its steps continues until
the robot has mapped the environment to a specified level of
detail. The level of detail is application-dependent and speci-
fied before the exploration/mapping process is initiated. The
set of nodes and the images taken at each node are combined
into a graph to model the environment. This graph model
is essentially the causal map described by Kuipers (2000),
where the panoramic images correspond to views, naviga-
tion methods correspond to actions, and nodes correspond
to distinctive states. Finally, by tracing its path from node to
node, a service robot can then continue to navigate as long
as there are no substantial changes to the environment (even

though the proposed approach is relatively robust to such
changes).

Environment mapping by mobile robots falls into the cat-
egory of Simultaneous Localization and Mapping (SLAM).
In SLAM a robot localizes itself as it maps the environment.
Researchers have addressed this problem for well-structured
(indoor) environments and have obtained important results
(Anousaki and Kyriakopoulos, 1999; Castellanos et al.,
1998; Kruse et al., 1996; Leonard and Durrant-Whyte,
1991; Thrun et al., 2000; Tomatis et al., 2001). These
algorithms have been implemented for several different
sensing methods, such as stereo camera vision systems
(Castellanos et al., 1998; Se et al., 2002), laser range sensors
(Tomatis et al., 2001), and ultrasonic sensors (Anousaki and
Kyriakopoulos, 1999; Leonard and Durrant-Whyte, 1991).
Sensor movement/placement is usually done sequentially
(raster scan type approach), by following topological graphs,
or using a variety of greedy algorithms that explore regions
only on the extreme edges of the known environment.
Geometric descriptions of the environment are modeled in
several ways, including generalized cones, graph models
and Voronoi diagrams, occupancy grid models, segment
models, vertex models, and convex polygon models. Sensing
uncertainties have been investigated for single or multi-robot
systems (Roumeliotis and Rekleitis, 2004). However, the
focus of most of these works is only accurate mapping.
They do not address mapping efficiency. Researchers have
addressed mapping efficiency to a limited amount (Kruse
et al., 1996), but in these cases sensing and motion uncer-
tainties are not accounted for. Prior work also assumes that
sensor data provides 3-D (depth) information and/or other
known environment clues from which this may be derived.

To achieve the localization function, landmarks and their
relative motions are monitored with respect to the vision sys-
tems. Several localization schemes have been implemented,
including topological methods such as generalized Voronoi
graphs and global topological maps (Tomatis et al., 2001), ex-
tended Kalman filters (Anousaki and Kyriakopoulos, 1999;
Leonard and Durrant-Whyte, 1991), and robust averages. Al-
though novel natural landmark selection methods have been
proposed (Simhon and Dudek, 1998), most SLAM archi-
tectures rely on identifying distinct, recognizable landmarks
such as corners or edges in the environment (Taylor and
Kriegman, 1998). This often limits the algorithms to well-
structured indoor environments, with poor performance in
textured environments.

On the other hand, the algorithm proposed in this work
is able to localize the robot even in textured environments,
without the need of 3-D information. In the following sec-
tions, an analytical development of the proposed algorithm
is provided. The three primary components of the algorithm
are developed and classified as: (i) potential child node iden-
tification, (ii) traverse to unexplored child node, and (iii)
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traverse to parent node. Experimental studies are conducted
to demonstrate the validity of each primary component and
the effectiveness of the entire algorithm.

2. Algorithm overview

The environment exploration and modeling algorithm pro-
posed here consists of 3 primary components. The overall
process is shown in Fig. 1. The mobile robotic agent models
the environment as a collection of nodes on a graph. The
first component of the algorithm is to identify potential child
nodes from a given location, see Fig. 2. At each node the
robot conducts a panoramic scan of the environment. This
scan is done as a series of 2-D image snapshots using in-place
rotations of the base by known angles. Next, an information
theoretic metric is used to divide the panoramic image into
regions of interest. If any region of interest contains suf-
ficient information then it is identified as a potential child
node, which would then need to be explored.

After the list of child nodes is collated, each child node
is explored sequentially. To explore a child node, the mobile
agent must traverse to that node. The second component of
the algorithm is to traverse to a child node from the current
node, see Fig. 2. This is achieved by tracking the target node
using a simple region growing tracker and a visual servo
controller. If the node cannot be reached by a straight line
due to an obstruction, then the point of obstruction is defined
as the new child node. At each child node the process of
developing a panoramic image, identifying the next level of
child nodes, and exploring them continues.

Fig. 1 Algorithm overview

Fig. 2 Key components of the environment exploration and modeling
algorithm

Once all the child nodes of the current node have been
completely explored, the robotic agent traverses back to the
parent node of the current one. The third component of the
algorithm is to traverse to a parent node from the current
node, see Fig. 2. This allows the other child nodes of the
parent node to be explored. To move to a parent node requires
a process quite different than the process of moving to a child
node. To return to a parent node, the robot must first identify
the direction of the parent node. This is done using a Mellin
transform (invariant to scale) to determine if the image that
the robot currently sees is what it would expect to see if it
were pointed in the correct direction toward the parent node.
The expected image is derived from the panoramic scan
taken at the parent node. Once this direction is established,
the robot moves toward the parent node. Visual servo control,
based on the correlation between the current image and the
image the robot would see if it were at the parent node pointed
in the same direction, governs if the robot has reached the
parent node.

Once all the nodes have been completely explored, the
process of developing an environment model is complete.
The relative locations of each node with respect to its parent
node and child nodes may then be used to navigate from one
node to another to guide the agent through its environment.

In the next sections, the details of the three key com-
ponents of the algorithm are developed. Experimental
results are presented along each section, obtained from
a mobile robot agent adapted from an ER-1 commercial
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Fig. 3 Mobile robot
experimental system

system (Evolution Robotics, 2005), see Fig. 3. The system
consists of a 2-wheel differential system driven by step
motors, equipped with wheel encoders (for odometry) and
a single color camera set at a 176 × 144 pixel resolution
mounted to its base. Three infrared sensors are used just
as on-off bump switches for measuring contact, without
providing any range data. The robot is controlled by a
1.5 GHz Pentium IV notebook mounted on its structure.
The algorithm component 1 is described next.

3. Algorithm component 1: Potential child node
identification

As described above, the first component of the algorithm is
to identify potential child nodes from a given location. This
process is initiated by developing a panoramic scan at the cur-
rent node by the mobile robot agent. This scan is done as a
series of 2-D image snapshots using in-place rotations of the
base by known angles. The process involves first capturing a
2-D image. The elevation of the image is trimmed to maintain
attention on lower regions that are accessible by the robot. A
new image is captured by rotating the robot about its center
by a fixed amount equal to the projection angle of the camera
(or camera field of view). The process of capturing and trim-
ming images continues until a full 360◦ panoramic scan is
achieved.

It is assumed that rotations for this process can be achieved
with sufficient accuracy so that the images may be directly
fused without any further operations. This constraint may be
readily relaxed with the addition of conventional image join-
ing operations. For example, two images may be joined by
identifying fiducials common to both to find a transformation
between them. Figure 4 shows the result of a 360◦ panoramic
scan generated by the ER-1 system using this approach.

To identify potential child nodes in the acquired
panoramic image of the environment, it is necessary to re-
duce the image using a quadtree decomposition method. In a
quadtree decomposition, an image is divided into four equal
quadrants. Each quadrant is evaluated to determine if further
division of that quadrant is required based on a metric. This
process continues until no further decomposition is required.
This quadtree decomposition of the image may be used in a
manner suitable to the application. Here the decomposition
metric is the quantity of information in the quadrant. If the
information in the quadrant exceeds a predefined value, then
further decomposition is warranted. The goal of determin-
ing the amount of information in the image is to identify
regions where there are significant changes occurring in en-
vironment. These changes would indicate the presence of a
corner, an edge, a doorway, an object, and other areas worth
exploring.

However, changes may also be identified due to highly
textured surfaces (such as furniture upholstery, carpets,

Fig. 4 Panoramic scan (360◦) taken and joined by the experimental system
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curtains, wallpaper, etc.) and noise. Clearly these are regions
that need not be explored and mapped as they represent
mostly uninteresting areas from the perspective of a service
robot. Thus, before the quadtree decomposition process
starts, the image is pre-processed to remove these high fre-
quency effects. Pre-processing includes a two-step process.
First, a low pass filter is applied to the image to remove the
higher frequency effects. Second, an adaptive decimation
process (Huntsberger et al., 2003; Sujan et al., 2003; Sujan
and Meggiolaro, 2005) smoothes out patterns that exceed
neighboring pattern variation. This is achieved by measuring
the rate of change of pattern variance across the image. The
algorithm limits the rate of change of pattern variance within
its neighborhood, by comparing pixel intensity variance
in windows with respect to similar windows located in the
immediate neighborhood (nearest neighbors). When the rate
of change of pixel intensity variance exceeds a prescribed
rate, then the window is gradually passed through a low pass
filter until the rate of change decreases to within bounds.
Calibration is required and it is task dependent to determine
the prescribed rate of change of pixel intensity variance
as well as maximum window size. Once the image has
been preprocessed, the information content may then be
evaluated.

3.1. Measures of 2-D image information content

The information gained by observing a specific event among
an ensemble of possible events may be described by the
function (Reza, 1994)

H (q1, q2, . . . , qn) = −
n∑

k=1

qk log2 qk (1)

where qk represents the probability of occurrence for the kth
event. This definition of information may also be interpreted
as the minimum number of states (bits) needed to fully de-
scribe a piece of data. In 2-D signals, the gray level histogram
of an ergodic image can be used to define a probability dis-
tribution:

qi = fi/N for i = 1 . . . Ngray (2)

where fi is the number of pixels in the image with gray level
i, N is the total number of pixels in the image, and Ngray

is the number of possible gray levels. With this definition,
the information of an image for which all the qi are the
same—corresponding to a uniform gray level distribution
or maximum contrast—is a maximum. The less uniform
the histogram, the lower the information. Although this is
generally true, it is critical to note that images with ordered
patterns may result in the same information content as one
with no order. For example, a uniform histogram may be

mapped to two very different images, such as a random
arrangement of intensity values and a (uniform) smooth color
gradient. Intuitively, the former would be expected to contain
more information but, using Eqs. (1) and (2), they result in
the same value.

However, this is readily rectified using conventional loss-
less image compression algorithms. Thus, before the in-
formation content of a data set can be evaluated, it must
be processed by a compression algorithm. Only compres-
sion is needed here, since just a measure of the information
present after compression is required, with no needs for de-
compression of the data. A few common methods of loss-
less compression are Simple Run-length compression, Loss-
less JPEG, Huffman coding, and Lempel-Ziv-Welch (LZW)
compression. An ideal compression algorithm would remove
all traces of any pattern in the data. Such an algorithm cur-
rently does not exist, however the LZW is well recognized
to approach this limit. A thorough review is beyond the
scope of this paper, but it can be found in (Smith, 1999).
Limited studies on several of the above methods have been
carried out and results presented in Sujan and Meggiolaro
(2005).

3.2. Using information content to identify potential
nodes

Potential nodes to map the environment may now be identi-
fied using the information theory developed above. The algo-
rithm breaks down the compressed image into a quadtree of
high information regions. The resulting image is divided into
four quadrants. The information content of each quadrant is
evaluated using Eqs. (1) and (2). This information content
reflects the amount of variation of the image in that quadrant
(where higher information content signifies higher variation
in the image section). Quadrants with high information con-
tent are further divided into sub-quadrants and the evaluation
process is continued. This is done by defining that a quadrant
is divided if and only if the information content of any of its
sub-quadrants is greater than its content.

Once the quadtree of the image is generated, a series
of binary image operations are carried out to identify the
nodes. First, starting with an image template of zero inten-
sity, the edges of every quad in the quadtree are identified and
marked on in the template image. Next, the dimensions of the
smallest quad are ascertained. All pixels falling within quads
possessing this minimum dimension are marked on (filled)
in the template image. Next, an image opening operation is
carried out on the template image to remove weak connec-
tivity lines. The resulting image consists of distinct blobs.
Region growing is used to define the centroids of each blob,
which are identified as the potential nodal points. Finally, the
image coordinates of these nodal points are transferred to the
original panoramic scan to obtain the final nodal point.
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Fig. 5 (a) Raw image taken by mobile robot onboard camera and (b) processed image with trimmed elevation, showing quadtree decomposition
and identified child nodes

Figure 5(a) shows an example of a raw image taken by
the mobile agent during its exploration process. This im-
age is trimmed and simplified using the information-based
quadtree decomposition process described above. The results
of the decomposition are shown in Fig. 5(b). It can be seen
that several key areas in the image have been determined to
have high quantities of information present. These areas are
further processed to determine the coordinates of the child
nodes. The identification process has selected nodes that are
both useful (such as the ones near the doorway), but has also
picked up nodes that may not be very useful (such as the one
on the carpet). These latter nodes are often eliminated with
greater low pass filtering in the image pre-processing steps.

The number of child nodes can be limited for each parent
using a few heuristic rules—such as planar proximity—to
speed up the mapping process. In addition, to avoid gener-
ating child nodes at points that have already been explored,
a uniqueness confirmation is carried out for every new child
node identified. Given the camera properties, the direction
of the identified child node from the current node may be
readily determined. Consequently, the direction to get back
to the current node from the identified child node may be
computed. The expected view from the child node in this
direction may then be approximated. If any previously ex-
plored nodes have a similar view in the same direction (i.e.,
if both node images correlate within some user-defined toler-
ance) then the identified child node is not considered unique
and thus may be eliminated. The algorithm component to
traverse to the unexplored child node is discussed next.

4. Algorithm component 2: Traverse to unexplored
child node

As described before, the second key component of the algo-
rithm is to navigate the mobile robot to the child node from

Fig. 6 Flow diagram to traverse to unexplored child node

the current node. This is achieved by tracking the target node
using a simple region growing tracker and a visual servo con-
troller. If the node cannot be reached by a straight line due
to an obstruction, then the point of obstruction is defined as
the new child node. The process is outlined in Fig. 6.

The visual servo controller, shown in Fig. 7, corrects for
errors in heading of the mobile robot as it tracks the desired
target. Target heading θ is determined based on the camera
focal length and the position of the target node on the imaging
plane.

The visual servo controller continues guiding the mobile
robot until either the target node image vanishes across the
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Fig. 7 Visual servo control on
mobile robot heading

image bottom (or top) edge, or its motions are obstructed. At
this point the child node is established. If an obstruction has
been identified, then the directionality of this obstruction is
saved. When the child node list from Section 3 is compiled
at this new node, then any nodes requiring motion in the
direction of the obstruction are eliminated from the list.

It would be expected that tracking a single target point
might not be as accurate as concurrently tracking multiple
fiducials to determine the primary target heading. This in-
creased redundancy results in improved heading accuracy,
a feature that can be turned on or off depending on how
accurately one needs to move. Let the measured/computed
heading θ̃ be related to the true heading θ̂ by a non-linear
function, h(θ̂). The measurement vector is corrupted by a
sensor noise v of known variance, R:

θ̃ = h(θ̂) + v (3)

Assume that the measurement of the state vector θ̂ is
done multiple times. In terms of the current measurement, a
Jacobian matrix of the measurement relationship evaluated
at the current state estimate is defined as:

Hk = ∂h(θ̂)

∂θ̂

∣∣∣∣∣
θ̂=θ̂k

(4)

The state (or computed heading) may then be estimated
as follows:

Kk = Pk H T
k

[
Hk Pk H T

k + Rk
]−1

θ̄k+1 = θ̄k + Kk
[
θ̃k − h(θ̂k)

]
(5)

Pk+1 = [1 − Kk Hk] Pk

where Pk is the uncertainty associated with the heading after
the kth fiducial is accounted for, and Kk is the gain associated
with the kth fiducial. This estimate is known as the Extended
Kalman Filter (Gelb, 1974 ). To maintain a measure of ab-
solute uncertainty in heading of the robot at the current node
with respect to the root node of the exploration tree, the
uncertainty associated with each step in getting to the cur-
rent node needs to be combined. This is achieved using a
recursive method to determine the mean and uncertainty of

θ̄ based on the previous i nodes as follows:

θ̄i+1 =
(
i θ̄i + θ̄i+1

)

i + 1

P θ̄
i+1 =

i P θ̄
i +

[
θ̄i+1 − ¯̄θ i+1

] [
θ̄i+1 − ¯̄θ i+1

]T

i + 1

(6)

Obtaining appropriate spatial points is now addressed.
Spatial points are a visible set of fiducials that are tracked
during sensor motion. As the sensor moves, the fiducials
move relative to the sensor, eventually moving out of the
sensor view. This requires methods to identify and track new
fiducials. While traversing to the child node, fiducials are
selected automatically from the image based on the visual
contrast of the sampled point with its surroundings, giving a
fiducial evaluation function (FEF) defined as:

FEF = g(C(u, v)) (7)

where g(C(u, v)) is proportional to the contrast (C) multiplied
by the window size (w), and contrast is defined as:

C(u, v) = I (x) − Īw
Īw

(8)

where I(x) is the 2-D image intensity value of the potential
fiducial at x, Īw is the average intensity of a window cen-
tered at the potential fiducial in the 2-D image, and w is
the maximum window size after which the contrast starts
to decrease. A penalty is added if a potential fiducial is too
close to other identified fiducials or too far from the tracked
target. Note however that closeness of the fiducials cannot
be guaranteed because the single camera cannot provide 3-D
data. Therefore, fiducials are automatically selected based
on their apparent closeness in a 2-D sense. This is not an
issue since fiducials are constantly being selected during the
approach to the target node. Using the identified fiducials,
sensor motion can be identified. Fiducials can be tracked with
simple methods such as region growing or image disparity
correspondence.

Figure 8 shows four steps in guiding the mobile robot to
the target child node. The node is tracked using a simple
region growing method. For the example shown in Fig. 8, in
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Fig. 8 Steps in tracking to an unexplored child node

addition to the primary target (+), two redundant fiducials are
selected and tracked (O). These fiducials were selected close
to the primary target. This permits fewer re-identifications
of fiducials. However, this may result in higher inaccuracy
in the visual tracking controller.

Using both the measure of target heading as well as an
odometric measure on distance traversed, the mobile robot
is able to generate a graph of the environment. Although the
distance and direction estimates between parent and child
nodes may be inaccurate, they serve as key parameters in
estimating future movements along the graph. The process
to return from a child node to its parent is described next.

5. Algorithm component 3: Traverse to parent node

Moving to a parent node requires a process quite different
from the process of moving to an unexplored child node.
The process is shown in Fig. 9. It is important to note that
the process described in this section is used to approach any
node that has been previously visited. Thus, once the map
has been built, this process is used by the robot to navigate
throughout the entire graph and around its environment. It
can be used to traverse either from child to parent or from
parent to child, as long as both locations (landmarks) include
previously taken panoramic images to be compared.

5.1. Identifying parent node direction

To return to a parent node, the robot must first identify the
direction of this node. As described above, using an Ex-
tended Kalman Filter, the mobile robot maintains a measure
of the heading as it moves from node to node. Addition-
ally, odometric measures of distance are also maintained.
The measure of heading from the graph is used to deter-
mine the correct direction to point at. However, odometric
errors would prevent the robot from performing accurate ro-
tation without feedback. To compensate for these errors, an

Fig. 9 Flow diagram to traverse to parent node

estimate of the expected image at the parent node facing
away from the child node position may be generated from
the panoramic scan previously obtained at that target node.
In other words, if the robot were heading in the correct di-
rection, then part of the image it “sees” should be a scaled
version of the image that it would see if it were located at
the target node, facing in the correct direction, see Fig. 10.

In general, these acquired images may be transformed
relatively to the templates (rotated, scaled and/or translated).
This can be resolved by either setting up a large set of tem-
plates that cover all possible transformations, or by finding an
appropriate mathematical image transform that is invariant
to image rotation, scale and/or translation. There are many
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different kinds of image invariants such as moment, alge-
braic and projective invariants (Casasent and Psaltis, 1978;
Poularikas, 1998; Ruanaidh and Pun, 1997).

In this work, a Mellin transform is used to determine
whether the image that the robot currently sees is what it
would expect to see if it were pointed in the correct direc-
tion toward the target node. Note however from Fig. 10 that,
without any range information, the overlap dimension of
the images cannot be uniquely determined. The farther the
destination node is from any wall or other feature in the envi-
ronment, the smaller will be the difference between the views
from the parent and child locations, leading to a larger over-
lap window. Because the robot does not have access to 3-D
data, it cannot estimate its distance to the walls and therefore
the scale of the overlap window. To overcome this limitation,
a window growing approach is used. Here, a minimum sized
overlap window is used for scale comparison. Progressively,
this window size is increased until the correlation between
the magnitude of the Mellin transforms of both images starts
decreasing. The correlation process uses the Euclidean dis-
tance dMIt between the magnitude of the Mellin transform of
a window of the observed image, M[I (x̄)], and the magni-
tude of the Mellin transform of the expected image, M[t(x̄)],
to correlate them:

d2
MIt =

∑

x̄

{M[I (x̄)] − M[t(x̄)]}2 (9)

For a vector x̄ of two dimensions, such as an image coor-
dinate (u, v), it is meant that

∑

x̄

≡
M∑

x=−M

N∑

y=−N

(10)

where M and N define the size of the expected image. If
the magnitudes of the Mellin transforms of the expected

Fig. 10 Overlap between child and parent node views

and observed images are exactly the same, then the defined
Euclidean distance is zero. Expanding the expression yields:

d2
MIt =

∑

x̄

{
M[I (x̄)]2 − 2 · M[I (x̄)] · M[t(x̄)]

+M[t(x̄)]2
}

(11)

The last term is constant and can be neglected. When∑
M[I (x̄)]2 is approximately constant, it too can be ne-

glected leaving the cross correlation between the magnitudes
of the Mellin transforms of I and t:

RMIt =
∑

x̄

M[I (x̄)] · M[t(x̄)] (12)

This term would be maximum (and hence the distance
measure is minimum) if the magnitudes of the Mellin trans-
forms of the observed and expected images were the same.

The overlap window (centered at the observed image)
that yields the maximum correlation RMIt is then obtained,
and the correspondent value of RMIt stored. The robot then
turns by a small predefined angle and repeats the overlap
window correlation process. The process goes on as the
robot searches in several directions within the tolerance of
the odometric heading errors. The direction that yields the
maximum correlation RMIt between the Mellin transforms is
determined to be the correction heading to the target node.
In summary, gross adjusting of the robot heading is done
using an Extended Kalman Filter and odometric measures
of distance/rotation, however the actual (fine) tuning of the
desired direction must be done using the Mellin transform.
The main reason to use dead reckoning is to speed up the
process by reducing the heading search space for the Mellin
transform.

As an example of correlation of Mellin transforms, con-
sider three simple images shown in Fig. 11: a white square,
a circle and a scaled (large) version of the square, on a black
background. Figure 12 shows the magnitude of the Mellin
transforms of the three images. Note that the magnitude of the
Mellin transforms of both squares are identical. It is found
that the normalized cross correlation between Figs. 12(a)
and (b) is 0.828, while the one between Figs. 12(a) and (c)
is exactly 1.0, the maximum possible value. Therefore, the
magnitudes of the Mellin transforms of the square and circle
have a much lower cross correlation than the ones for both
squares, as expected due to the invariance to scale property.

Figure 13 shows three images considered in determining
the correct direction to the parent node from a child node.
Figure 13(a) shows the view that the robot would see if it
were at the parent node directed away from the child node,
i.e., facing 180◦ from the direction of the child node. Fig-
ure 13(b) shows a view from the child node not pointing
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Fig. 11 Three basic images to
exemplify the performance of
Mellin transforms

Fig. 12 Mellin transforms of
the three basic images in Fig. 11

in the correct direction to the parent node (with the robot
slightly misaligned to the left). Figure 13(c) shows a view
from the child node while pointing in the correct direction to
the parent node.

It is found that the correlation RMIt between the mag-
nitudes of the Mellin transforms of Figs. 13(a) and (c) is
much higher than the one obtained from Figures 13(a) and
(b). This can be seen e.g. by the peak value of the product
M[I (x̄)] · M[t(x̄)]M , which is 2.26 × 1015 in the first case
and only 1.15 × 1014 in the second. It is clear from this

example that the correct direction to the parent node, shown
in Fig. 13(c), may be accurately determined.

An additional improvement can be implemented in the
component 3. It has been shown that the amplitude of the
Mellin transform is invariant to scale. In addition, it is
well known that the amplitude of the Fourier transform
is invariant to translation, while its scale is inversely pro-
portional to the scale of the original function or image.
Therefore, the amplitude of the Mellin transform of the
amplitude of the Fourier transform of an image is invari-
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Fig. 13 Determining appropriate view to parent node

ant to both scale and translation. This refinement has been
tested on the experimental system, significantly improving its
robustness.

The presented invariants work well when considering a
flat-floored environment. However, even these ideal environ-
ments are subject to small image rotations caused by floor
irregularities. An even more robust invariant can be obtained,
which is invariant to scale, translation and rotation. This can
be done by means of a log-polar mapping. Consider a point
(x, y) ∈ R2 and define

x = eµ cos θ, y = eµ sin θ (13)

where µ ∈ R and 0 ≤ θ < 2π . One can readily see that
for every point (x, y) there is a point (µ, θ ) that uniquely
corresponds to it. The new coordinate system is such that
both scaling and rotation are converted to translations.

At this stage one can implement a rotation and scale in-
variant by applying a translation invariant such as the Fourier
transform in the log-polar coordinate system. This transform
is called a Fourier-Mellin transform. The amplitude of the
Fourier-Mellin transform is therefore rotation and scale in-
variant.

Finally, to implement a translation, rotation and scale
invariant, one just needs to consider the amplitude of the
Fourier-Mellin transform of the amplitude of the Fourier
transform of the image. This would improve even more the
robustness of the algorithm component 3, however at the
cost of a larger computational effort. For the experiments per-
formed in this work on a flat-floored environment, the SLAM
algorithm was successfull in finding all parent nodes within
the graph without the need of such additional refinement.

5.2. Approach to parent node

Once the direction to the parent node is established, the robot
moves toward the node. Again, visual servo control based on

the correlation between the current image and the image the
robot would see (if it were at the parent node pointed in the
same direction) governs if the robot has reached the parent
node. Unlike the correlation between Mellin transforms used
in the previous section, this is a correlation between the entire
image observed and the one that would be expected. This
process uses the Euclidean distance dIt between the observed
image, I (x̄), and the expected image,t(x̄), to correlate them:

d2
It =

∑

x̄

[I (x̄) − t(x̄)]2 (14)

If the expected image and the observed image align ex-
actly, then the distance between them is zero. For any mis-
alignments, the distance is greater than zero. If the image
intensity “energy”

∑
I (x̄)2 is approximately constant across

the image, then minimizing Eq. (14) would be equivalent to
maximizing the cross correlation between I and t:

RIt =
∑

x̄

I (x̄) · t(x̄) (15)

The cross correlation value is then continuously evaluated
as the robot moves on a straight line towards the parent node.
When RIt starts to decrease, it is expected that the robot has
reached the target node. To improve the visual servo control
accuracy, fiducials taken from the desired view at the parent
node could also be used if correspondent ones were to be
found in the current view of the robot.

This component of the algorithm works very well if lateral
slip can be ignored due to high friction surfaces (such as
carpets or linoleum tiling in indoor environments). However,
if significant drift occurs, then it is possible that RIt starts to
decrease before the robot reaches the parent node, due to
translational mismatches between the images. This can be
dealt with by repeating the search for the correct heading
(using Mellin transforms to recheck its directionality) as
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Fig. 14 (a) Mapped
environment with node
locations, and (b) environment
model

Fig. 15 Mapped environment with node locations

soon as RIt reaches its local maximum. If the current heading
is in the same direction of maximum RMIt recalculated from
Eq. (12), within a user-defined tolerance, then the robot has
reached the target node. Otherwise, the robot rotates to the
direction of maximum RMIt and, assuming it is still on the line
segment connecting the child to parent nodes, the approach
process resumes. This directionality verification significantly
increases the robustness of the algorithm.

Finally, the robot finishes mapping the entire environment
when all new potential child nodes have been explored. After
that, the robot only needs to use the algorithm component
3 to travel from parent to child nodes and vice-versa within
the mapped environment.

6. Experimental results

The proposed algorithm is applied to the exploration of two
apartments by the mobile robot agent shown in Fig. 3. The re-
sults of the experimental exploration of the flat-floored envi-
ronments are shown in Figs. 14 and 15. Each node is marked
and linked to its parent/child nodes. These maps may then

be used for navigation by the robot within its environment.
Note in the figures that the node locations were estimated,
however the actual trajectories between nodes during the
exploration phase, which are irrelevant to the subsequent
navigation tasks, were not stored. Straight lines were used to
connect the nodes in the figures, which would be the ideal
trajectory between any node pair.

The environment shown in Fig. 14(a) is a small 10.2 m
by 8.0 m one-bedroom apartment. Each node on the graph
consists of a panoramic scan at that node, while each branch
on the graph consists of a heading and distance between the
two connected nodes. In this map, each node j is located at
a distance δi

j from its parent node i, at an angle θ i
j (with

respect to the original starting angle). However, in this al-
gorithm absolute distances and angles cannot be measured
accurately. Dead reckoning errors (e.g. due to wheel slip) do
not allow for very accurate measurements in distance by a
wheel odometer (even though these errors are significantly
reduced by the applied Extended Kalman Filter). Thus the
distance and angle of node j from its parent node i is repre-
sented by the estimates δ̃i

j and θ̃ i
j respectively, see Fig. 14(b).

Results for a larger apartment are shown in Fig. 15.
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Note that the walls and furniture were later added to the
figures, since the absence of range sensors or stereo vision
prevents the robot from identifying their exact location. Still,
the robot can visually recognize the existence of such walls
and localize itself within its surroundings using the gener-
ated nodal map. This is an important feature of the proposed
algorithm, which seeks an efficient map, and not a com-
plete one. At the end, the robot does not have a standard
floor plan of the environment, instead it has a very unique
representation consisting solely of a graph with panoramic
images taken at each node, which is enough to localize itself.
This significantly reduces the memory requirements and ul-
timately the computational cost of such mobile robots. In
addition, it is possible to include some human interaction
during the mapping process, giving names to each environ-
ment the robot explores (such as “kitchen”, “living room”,
etc.), which would improve the functionality of the system
to be used as, e.g., a home service robot.

From the performed experiments it is found that in all
cases the robot is able to localize itself, always arriving at
the desired nodes, due to the efficiency of the Mellin trans-
form. Note that the error in reaching a desired node is not a
function of how far down the graph the node is, because the
Mellin transform will be only considering the image that the
target node has in memory. However, the accuracy will be a
function of what the image is like, i.e., a more “busy” image
will likely result in less position error as the multitude of fea-
tures will help in the correlation. However, too busy an image
will result in some degradation. Additionally, if all objects in
the image are quite far away, then the image will not change
much as the robot moves. This will result in degradation with
distance. It has been found that the positioning error of the
robot is directly proportional to its average distance to the
walls and obstacles in its field of view, and inversely propor-
tional to the camera resolution. For several test runs on our
experimental system in indoor environments, with distance
from walls ranging in average between one and ten meters,
and with a (limited) camera resolution of 176 × 144 pixels,
an average positioning error of 60 mm (RMS) has been ob-
tained. This positioning accuracy can certainly be improved
with a better camera resolution.

An important limitation may be observed here. When
navigating in the environment, the robot would use the graph
to find a path from one node to another. Although simple
search methods may be applied to find the optimum path
through the graph, this path may in fact be spatially circuitous
due to the manner in which the graph was developed. For
example, to get from node (a) to (b) in Fig. 15 by traversing
the graph developed, the robot would take a long path through
the environment, whereas a short direct path is obtained by
inspection. Current work to develop an algorithm that bridges
nodes in a graph while avoiding obstacles between them
has been performed, based on genetic algorithms. The key

idea is to find a set of new link candidates (bridges) to be
added that would most efficiently reduce the average traveled
distance between any two nodes in the graph. This set would
form a cromossome in a classical genetic algorithm, where
the fitness function would be inversely proportional to the
average traveled distance, along the graph, between each
and every node pair. Then each new link candidate from the
optimal set is explored by the robot to check for the presence
of walls or furniture. If the path between such nodes is clear,
then a new link is added to the graph. Experimental results
have validated this approach. Remolina and Kuipers (2004)
have also described other techniques to bridge nodes in a
graph, which is the equivalent of building a topological map.

Another issue is that there is no guarantee that the robot
will explore the entire workspace. The robot will only ex-
plore a certain region if there is enough information content
in that area. This issue can be significant if the considered
area lacks texture, since texture is the key to information
content. However, this can be dealt with by calibrating the
cutoff threshold of the information content in the algorithm
that identifies potential child nodes. This can be done auto-
matically by repeating the first component of the algorithm
until a minimum pre-defined number of child nodes is iden-
tified, in average, at each panoramic image.

Finally, the algorithm can also be improved to handle is-
sues such as “kidnapping” of the robot followed by a random
placement within the environment, at a point that in general
is not a landmark with an associated panoramic view. If the
robot is randomly placed in an environment that it has prop-
erly mapped, it needs to first make a panoramic map of its
location. Then it needs to work through the list of mapped
nodes and compare what it sees to what the other nodes have
seen. It actually needs to do what it would do in the algorithm
component 3, except that it needs to check all nodes to find a
best match as to which direction to move. This improvement
will be addressed in future work in algorithm optimization.

7. Conclusions

In this work, an information-based iterative algorithm has
been presented to plan the visual exploration strategy of an
autonomous mobile robot to enable it to most efficiently
build a graph model of its environment using a single base-
mounted camera. The algorithm is based on determining
the information content present in sub-regions of a 2-D
panoramic image of the environment as seen from the cur-
rent location of the robot. Using a metric based on Shannon’s
information theory, the algorithm determines potential loca-
tions of nodes from which to further image the environment.
Using a feature tracking process, the algorithm helps navi-
gate the robot to each new node, where the imaging process
is repeated. A Mellin transform and tracking process is used
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to guide the robot back to a previous node, using previously
taken panoramic images as a reference. This imaging, eval-
uation, branching and retracing its steps continues until the
robot has mapped the environment to a pre-specified level
of detail. The set of nodes and the images taken at each
node are combined into a graph to model the environment.
By tracing its path from node to node, a service robot can
navigate around its environment. Experimental studies were
conducted to demonstrate the effectiveness of the entire algo-
rithm. It was found that this algorithm allows a mobile robot
to efficiently localize itself using a limited sensor suite (con-
sisting of a single monocular camera, contact sensors, and
an odometer), reduced memory requirements (only enough
to store one 2-D panoramic image at each node of a graph),
as well as modest processing capabilities (due to the com-
putational efficiency of Mellin transforms and the proposed
information-based algorithm). Therefore, the presented ap-
proach has a potential benefit to significantly reduce the cost
of autonomous mobile systems such as indoor service robots.
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