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Abstract

The notch sensitivity factor q can be associated with the presence of non-propagating fatigue cracks at the notch root. Such cracks
are present when the nominal stress range Drn is between Dr0/Kt and Dr0/Kf, where Dr0 is the fatigue limit, Kt is the geometric and Kf

is the fatigue stress concentration factors of the notch. Therefore, in principle it is possible to obtain expressions for q if the prop-
agation behavior of small cracks emanating from notches is known. Several expressions have been proposed to model the dependency
between the threshold value DKth of the stress intensity range and the crack size a for very small cracks. Most of these expressions are
based on length parameters, estimated from DKth and Dr0, resulting in a modified stress intensity range able to reproduce most of the
behavior shown in the Kitagawa–Takahashi plot. Peterson or Topper-like expressions are then calibrated to q based on these crack
propagation estimates. However, such q calibration is found to be extremely sensitive to the choice of DKth(a) estimate. In this work, a
generalization version of El Haddad–Topper–Smith’s equation is used to evaluate the behavior of cracks emanating from circular
holes and semi-elliptical notches. For several combinations of notch dimensions, the smallest stress range necessary to both initiate
and propagate a crack is calculated, resulting in expressions for Kf and therefore for q. It is found that the q estimates obtained from
this generalization, besides providing a sound physical basis for the notch sensitivity concept, better correlate with experimental data
from the literature.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Notch sensitivity; Short cracks; Fatigue crack growth threshold; Non-propagating cracks
1. Introduction

The purpose of this paper is to verify if and when the
classical Peterson-like notch sensitivity factors, still widely
used all over the world for designing mechanical compo-
nents by the classical SN methodology [1–3], can be repro-
duced from notch stress analysis and Topper-like short
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crack concepts, assuming the material can be modeled as
linear, elastic, isotropic and homogeneous.

The empirical notch sensitivity factor q was introduced
to quantify the difference between Kt, the geometric (or lin-
ear elastic) stress concentration factor of the notch, and its
actual effect in the fatigue limit, Kf = 1 + q(Kt � 1) = Dr0/
Drf, where Kf is the so-called fatigue (stress) concentration
factor, and Dr0 and Drf are the fatigue limits of smooth
and notched SN specimens, respectively. Small non-propa-
gating fatigue cracks that are found at the notch roots
when Dr0/Kt < Drn < Dr0/Kf, where Drn is the nominal
stress range applied in the notched piece [4] can, at least
in some cases, explain why Kf 6 Kt. Therefore, in such
cases it should in principle be possible to analytically
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predict q values based on the propagation behavior of
small cracks emanating from notches.

Several expressions have been proposed to model the
influence of the size a of very small fatigue cracks on their
stress intensity range propagation threshold value, DKth(a)
[5]. Most of these expressions are based on length parame-
ters such as El Haddad–Topper–Smith’s a0 [6], estimated
from Dr0 and DK0, the crack propagation threshold of long
cracks, DKth(a!1), resulting in a modified stress inten-
sity range for the Irwin plate

DKI ¼ Dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaþ a0Þ

p
; where a0 ¼

1

p
DK0

Dr0

� �2

ð1Þ

These equations reproduce the Kitagawa–Takahashi plot
trend [7], one of the most used tools to qualitatively under-
stand the behavior of short cracks, as well as to design for
infinite life. Lawson et al. presented a very good review of
near-threshold fatigue in [8]. Yu et al. [9] and Atzori et al.
[10] used a geometry factor a to generalize the above equa-
tion to other geometries, resulting in

DKI ¼ a � Dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaþ a0Þ

p
; where a0 ¼

1

p
DK0

a � Dr0

� �2

ð2Þ

However, for a very small crack with a < < a0 this expres-
sion would imply that Dr tends to the fatigue limit Dr0. In
the presence of notches, this would be true only if Dr is the
notch root stress range, not the nominal one. But in most
cases the geometry factor a used in the literature already in-
cludes the effects of the notch root stress concentration fac-
tor, defining Dr as the nominal stress. To avoid this
problem, perhaps a clearer way to define the length param-
eter a0 in the presence of notches is by considering Dr as
the nominal stress range (away from the notch) and two
factors f(a) and a, where the former tends to the notch root
stress concentration factor as the crack length a tends to
zero, and the latter only encompasses the remaining terms,
such as the free surface correction:

DKI ¼ a � f ðaÞ � Dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaþ a0Þ

p
; where a0 ¼

1

p
DK0

a � Dr0

� �2

ð3Þ

Note that f(a) does not appear in the expression of a0,
because for very small cracks (a! 0) the notch root stress
range f(0) Æ Dr should be equal to and replaced by Dr0. Ciav-
arella and Monno [11] have recently used length parameters
such as these to design not only for infinite life, but also for
finite lives using an interpolation between the Basquin/
Wöhler equations and the Paris law, with or without correc-
tions for the near-threshold DK-controlled propagation re-
gime. Their resulting expressions can be seen as SN curves
which are a function of the initial (small) crack size.

Alternatively, the stress intensity range DKI can retain
its original equation [12–17], while the threshold expression
is modified by a function of the crack length a, namely
DKth(a), resulting in
DK thðaÞ
DK0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

a
aþ a0

r
ð4Þ

Peterson-like [18] expressions can then be calibrated to q

based on these crack propagation estimates. Topper’s [6]
classical approach can easily generate approximate expres-
sions by studying the limit cases where the crack is much
smaller or much larger than the notch dimensions. For in-
stance, the stress intensity range of a semi-elliptical notch
with stress concentration factor Kt and semi-axis b parallel
to a crack with length a, in an infinite plate under tension,
has limit values

DKI ¼ 1:1215 � Kt � Dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaþ a0Þ

p
; for a << b ð5Þ

DKI ¼ 1:1215 � Dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaþ bÞ

p
; for a >> b ð6Þ

where a = 1.1215 is the free surface correction factor.
Therefore, after some algebric manipulation,

Drth ¼
DK0

1:1215 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaþ a0Þ

p
6

1:1215 � Kt � Dr0
ffiffiffiffiffiffiffi
pa0
p

1:1215 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bÞ=a

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaþ a0Þ

p ð7Þ

The above expression is upper-bounded by

Drth 6 Kt � Dr0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
aþ b

� a0

aþ a0

r
ð8Þ

which is maximum for a critical size a ¼
ffiffiffiffiffiffiffiffiffiffiffi
b � a0

p
.

Therefore, this critical size proposed by Topper is often
associated with the maximum Drth for sharp notches, as
well as the size of the largest non-propagating crack. How-
ever, such approximations are found to be extremely sensi-
tive to the choice of DKth(a) estimate.

In the following section, a generalization of El Haddad–
Topper–Smith’s equation is used to better fit the data on
the crack size dependence of DKth(a). This expression is
then applied to cracks emanating from circular holes and
semi-elliptical notches, resulting in improved estimates of
the notch sensitivity q and the largest non-propagating
crack size.
2. Propagation of short cracks

The El Haddad–Topper–Smith’s equation can be seen
as one possible asymptotic match between the short and
long crack behaviors. Following Bazant’s reasoning [19],
a more general equation can be proposed, involving a fit-
ting parameter n, which can be written as

DK thðaÞ
DK0

¼ 1þ a0

a

� �n=2
� ��1=n

ð9Þ

Clearly, Eqs. (1)–(4) are obtained from Eq. (9) when
n = 2.0. Also, the bi-linear estimate is obtained as n tends
to infinity. The adjustable parameter n allows the DKth esti-
mates to better correlate with experimental crack propaga-
tion data collected from Tanaka et al. [20] and Livieri and
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Tovo [21], and presented in Fig. 1. Most of the data in this
figure can be bounded by two curves obtained using
n = 1.5 and n = 8.0 in Eq. (9).

2.1. Short cracks from circular holes

Eq. (9) is now used to evaluate the behavior of short
cracks emanating from circular holes in large plates loaded
by a nominal normal stress range Dr. The stress intensity
range of a single crack with length a emanating from a cir-
cular hole with radius q is expressed, within 1%, by [22]

DKI ¼ 1:1215 � f ða=qÞ � Dr
ffiffiffiffiffiffi
pa
p

ð10Þ
where the factor f(a/q), related to the hole stress concentra-
tion, is

f
a
q

� �
� f ðxÞ ¼ 1þ 0:2

ð1þ xÞ þ
0:3

ð1þ xÞ6

 !

� 2� 2:354
x

1þ x
þ 1:2056

x
1þ x

� �2

� 0:2211
x

1þ x

� �3
 !

;

x� a
q

ð11Þ

Note that when the crack size a tends to zero, Eq. (10) be-
comes

lim
a!0

DKI ¼ 1:1215 � 3 � Dr
ffiffiffiffiffiffi
pa
p

ð12Þ

as expected, since the above equation combines the solu-
tion for an edge crack in a semi-infinite plate with the stress
concentration factor of a circular hole, Kt equal to 3 (i.e.,
f(0) = 3). Note also that the other limit, when a tends to
infinity, results in

lim
a!1

DKI ¼ Dr
ffiffiffiffiffiffiffiffiffiffi
pa=2

p
ð13Þ

which is the solution for a crack with length a in an infinite
plate, where one of its edges is far enough from the circular
hole not to suffer its influence in the stress field (in fact, the
equivalent crack length would be a + 2q, however as a
Fig. 1. Ratio between short and long crack propagation thresholds as a
function of a/a0.
tends to infinity the q value disappears from the equation).
Therefore, for a circular hole f(x = 0) = 3 and f(x!1) =
1/1.1215

p
2 @ 0.63, and from Eqs. (9)–(11), it follows that

the crack will propagate when

DKI ¼ a � f ða=qÞ �Dr
ffiffiffiffiffiffi
pa
p

> DK th ¼ DK0 � ½1þ ða0=aÞn=2��1=n

ð14Þ
where a = 1.1215 is the free surface correction. Knowing
that DKth ” DK0 for a long crack, the crack length param-
eter a0 from the above equation is

a0 ¼
1

p
DK0

1:1215 � Dr0

� �2

ð15Þ

Note in the above equation that, as discussed before, the
factor f(a/q) does not appear in the definition of a0. There-
fore, the crack propagation criterion based on the dimen-
sionless functions f(a/q) and g(a/q, Dr0/Dr, DK0/
Dr0

p
q,n) is:

f
a
q

� �
>

DK0

Dr0
ffiffi
q
p

� �
� Dr0

Dr

	 

a
ffiffiffiffi
pa
q

q� �n

þ DK0

Dr0
ffiffi
q
p

� �n
� �1=n

� g
a
q
;
Dr0

Dr
;

DK0

Dr0
ffiffiffi
q
p ;n

� �

ð16Þ
If x ” a/q and k � DK0=Dr0

ffiffiffi
q
p

, then the crack grows
whenever f(x) > g(x, Dr0/Dr, k, n).

Fig. 2 plots f and g, assuming a material/notch combina-
tion with k = 1.5 and n = 6, as a function of the normalized
crack length x. For a high applied Dr, the ratio Dr0/Dr
becomes small, and the function g is always below f, mean-
ing that a crack of any length will propagate. The lower
curve in Fig. 2 shows the function g obtained from a ratio
Dr0/Dr = 1.4, never crossing f. On the other hand, for a Dr
small enough such that Dr0/Dr P Kt = 3, g is always
Fig. 2. Calculation of the fatigue stress concentration factor Kf from the
plots of the functions f(x) and g(x, Dr0/Dr, k, n), where x ” a/q and
k � DK0=Dr0

ffiffiffi
q
p

.



Fig. 3. Finite element calculations and proposed fit for the geometry
factor of semi-elliptical notches with c 6 b.

M.A. Meggiolaro et al. / International Journal of Fatigue 29 (2007) 2022–2031 2025
above f and no crack will initiate nor propagate, as shown
by the top curve in the figure.

But three other cases must be noted. The first one, illus-
trated by the g curve with Dr0/Dr = 2 in Fig. 2, has only
one intersection point with f. This means that such stress
levels cause a crack to initiate at the notch, however it will
only propagate until a size a = x Æ q obtained from the x

value at the intersection point. Therefore, non-propagating
cracks will appear at the notch root.

The second case, illustrated by the g curve with Dr0/
Dr = 1.75 in Fig. 2, has two intersection points with f.
Therefore, non-propagating cracks will also appear, with
maximum sizes obtained from the first intersection point
(on the left). Interestingly, cracks longer than the value
defined by the second intersection will re-start propagating
until fracture. However, crack growth between the two
intersections should be caused by a different mechanism,
e.g., corrosion or creep.

Finally, in the third case, both f and g functions are tan-
gent, thus meet at a single point (such as the curve with Dr0/
Dr = 1.64 in Fig. 2). This Dr0/Dr value is therefore associ-
ated with the smallest stress range Dr that can cause crack
initiation and propagation without arrest. So, by definition,
this specific Dr0/Dr is equal to the fatigue stress concentra-
tion factor Kf. To obtain Kf, it is then sufficient to guarantee
that both functions f and g are tangent at a single point with
x = xmax. This xmax value is associated with the largest non-
propagating flaw that can arise from fatigue alone. So, given
n and k from the material and notch, xmax and Kf can be
solved from the system of equations:

f ðxmaxÞ ¼ gðxmax;K f ; k; nÞ
o
ox f ðxmaxÞ ¼ o

ox gðxmax;K f ; k; nÞ

(
ð17Þ

This system can be solved numerically for each combina-
tion of k and n values, and the notch sensitivity factor q

is then obtained from

qðk; nÞ � K fðk; nÞ � 1

Kt � 1
ð18Þ

The above approach has two main advantages. First, it con-
siders the material-dependent data fit parameter n, which has
a significant influence on the calculations. And second, it is
an exact procedure, not an approximation such as the ones
based on the limit case inequalities. In the next section, the
same approach will be applied to semi-elliptical notches.
Fig. 4. Finite element calculations and proposed fit for the geometry
factor of semi-elliptical notches with c P b.
2.2. Short cracks from semi-elliptical notches

The behavior of short cracks emanating from semi-ellip-
tical notches can be evaluated in the same way. The stress
intensity range of a single crack with length a emanating
from a semi-elliptical notch with semi-axes b and c (where
b is in the same direction as a) can be written as

DKI ¼ a � f a
b
;
c
b

� �
� Dr

ffiffiffiffiffiffi
pa
p

ð19Þ
where a = 1.1215 is the free surface correction, and f(a/b,
c/b) is a geometry factor associated with the notch stress
concentration. The geometry factor can be expressed as a
function of the dimensionless parameter s = a/(b + a) and
the notch root stress concentration factor Kt

Kt ¼ 1þ 2
b
c

� �
� 1þ 0:1215

ð1þ c=bÞ2:5

" #
ð20Þ

Values for f have been calculated by Nishitani and Tada
[19], with results available only in graph form, however
equations are necessary to perform the analyses. To obtain
expressions for f, finite element (FE) calculations were per-
formed using the Quebra2D program [23] considering sev-
eral cracked semi-elliptical notch configurations. The
numerical results, which agreed well with [22], were fitted
within 3% using empirical equations, resulting in

f
a
b
;
c
b

� �
� f ðKt; sÞ ¼ Kt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð�K2

t � sÞ
K2

t � s

s
for c6 b

ð21Þ

f
a
b
;
c
b

� �
� f ðKt; sÞ ¼ Kt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð�K2

t � sÞ
K2

t � s

s
� ½1� expð�K2

t Þ�
�s=2 for c P b

ð22Þ
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Figs. 3 and 4 compare the proposed equations (solid lines)
with the FE calculations.

Using Eqs. (17)–(22), the same procedure to evaluate the
notch sensitivity in circular holes is then applied to the
semi-elliptical notch geometry. The results are presented
next.
3. Results

For several combinations of k and n, the smallest stress
range necessary to both initiate and propagate a crack is
calculated from Eq. (17), resulting in expressions for Kf

and therefore q. The following sections present the results
for circular holes and semi-elliptical notches.
Fig. 5. Notch sensitivity factors q as a function of the dimensionless
parameters k and n.

Fig. 7. Notch sensitivity q as a function of the semi-elliptical notch roo
3.1. Results for circular holes

Fig. 5 shows the calculated notch sensitivity factors for
circular holes as a function of the dimensionless parameter
1=k � Dr0

ffiffiffi
q
p

=DK0. Note from the figure that q is approx-
imately linear with 1/k for q > 0. This results in the pro-
posed estimate:

qðk; nÞ ffi q1ðnÞ
k
� q0ðnÞ ¼ q1ðnÞ

Dr0
ffiffiffi
q
p

DK0

� q0ðnÞ ð23Þ

where q0(n) and q1(n) are functions of n, and q1(n) is typi-
cally between 0.85 and 1.15. Note that if the estimate above
results in q larger than 1, then q = 1. This will happen at
holes with a very large radius qupper such that
Fig. 6. Notch sensitivity factors for circular holes as a function of their
radii.

t radius q for aluminium alloys with a0 = 0.26 mm (Su @ 225 MPa).
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Dr0
ffiffiffiffiffiffiffiffiffiffiffiqupper
p

DK0

>
1þ q0ðnÞ

q1ðnÞ
) qupper >

1þ q0ðnÞ
q1ðnÞ

� DK0

Dr0

� �2

ð24Þ

Therefore, it is impossible to generate a non-propagating
crack under constant amplitude loading in notches with
a very large radius, regardless of the stress level. The stress
gradient is so small in this case that any crack that initiates
will cut through a long region still influenced by the stress
concentration, preventing any possibility of crack arrest.
Fig. 8. Notch sensitivity q as a function of q fo

Fig. 9. Notch sensitivity q as a function of q for
Eq. (17) will not have a solution for xmax > 0, because
og/ox in this case will be more negative than of/ox at
x = 0.

On the other hand, it is possible to obtain a value of q

smaller than zero, down to q = � 0.2 for a circular hole,
see Fig. 5. This can indeed happen for holes with a very
small radius qlower such that

Dr0
ffiffiffiffiffiffiffiffiffiffiffi
qlower

p

DK0

<
q0ðnÞ
q1ðnÞ

) qlower <
q0ðnÞ
q1ðnÞ

� DK0

Dr0

� �2

ð25Þ
r steels with a0 = 0.10 mm (Su @ 800 MPa).

steels with a0 = 0.040 mm (Su @ 1200 MPa).
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The physical meaning of a negative q is that it is easier to
initiate and propagate a fatigue crack at a notchless border
of the plate than at a very small hole inside the plate. The
DKI of a crack at the small hole will soon tend to Eq. (13)
due to the large stress gradient, without the 1.1215 free sur-
face factor, while the stress intensity solution for an edge
crack will be larger since it includes the 1.1215 factor. In
addition, for most materials, the size of this critical radius
qlower is just a few micrometers. This leads to the conclu-
sion that internal defects with equivalent radius smaller
than such qlower of a few micrometers are harmless, since
Fig. 10. Notch sensitivity q as a function of q fo

Fig. 11. Notch sensitivity q as a function of the semi-axis c f
its Kf will be smaller than 1, and the main propagating
crack will initiate at the surface. Murakami’s results sup-
port this claim [24].

Note that Peterson’s [18] and similar estimates assume
that the notch sensitivity q is only a function of notch
radius q and the ultimate strength of the material Su. Eq.
(23), however, suggests that q depends not only on q, Dr0

and DK0, as observed by Topper [6], but also on the short
crack threshold data-fitting parameter n. Even though
there are reasonable estimates relating Dr0 and Su, there
is no clear relationship between DK0 and Su. This means,
r steels with a0 = 0.016 mm (Su @ 2000 MPa).

or aluminium alloys with a0 = 0.26 mm (Su @ 225 MPa).
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e.g., that two steels with same Su but very different DK0

would have different behaviors that a Peterson’s-like equa-
tion would not be able to reproduce. Thus, notch sensitiv-
ity experiments should always include a measure of the DK0

of the material.
Finally, the ViDa software database [23] is used to

collected data on 450 steels and aluminum alloys with
fully measured Su, material fatigue limit SL for
R = � 1, and DK0 (for R = 0). Their average values of
SL and DK0 are evaluated for steels with Su near the
ranges 400, 800, 1200, 1600 and 2000 MPa, and for alu-
minum alloys near 225 MPa. In order to estimate Dr0,
the stress range associated with the fatigue limit at
R = 0, the Goodman equation is used considering alter-
Fig. 12. Notch sensitivity q as a function of the square root of the product betw

Fig. 13. Notch sensitivity q as a function of the square root of the produc
nate and mean stress components ra = rm = Dr0/2. The
resulting Eq. (18) is then plotted as a function of the
notch radius q, using the above averages and assuming
n = 6, see Fig. 6. Note that Peterson’s equations, which
were originally fitted to notch sensitivity experiments,
can be reasonably predicted and reproduced using the
proposed analytical approach.

3.2. Results for semi-elliptical notches

Notch sensitivity factors are also evaluated for semi-
elliptical notches. As expected, the results depend on q,
Dr0 and DK0, in addition to n. Moreover, a significant
dependency is observed with respect to the aspect ratio
een the semi-axes for aluminium alloys with a0 = 0.26 mm (Su @ 225 MPa).

t between the semi-axes for steels with a0 = 0.10 mm (Su @ 800 MPa).
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c/b. Therefore, the entire notch geometry, not only its
radius, is an important factor when evaluating its
sensitivity.

Figs. 7–10 show the calculated notch sensitivity q as a
function of the semi-elliptical notch root radius q for sev-
eral aspect ratios c/b. These figures show representative
values for aluminum alloys with Su near 225 MPa, selected
from ViDa [23], as well as for steels with Su near 800, 1200
and 2000 MPa. The associated crack length parameters
according to Eq. (15) are, respectively, a0 = 0.26 mm,
0.10 mm, 0.040 mm and 0.016 mm, averaged from the
selected sample. It can be seen that q has a strong depen-
dence on the notch geometry through the c/b ratio.
Fig. 14. Notch sensitivity q as a function of the square root of the product

Fig. 15. Notch sensitivity q as a function of the square root of the product
Fig. 11 shows that q is also dependent on c/b when plot-
ted against c. However, for c/b ratios between 1 and 3, the
notch sensitivity is found to be dependent mainly on the
semi-axis c.

For semi-elliptical notches with larger aspect ratios (c/b
between 2 and 10), another interesting dependence is
found, with the square root of the product between the
semi-axes, see Figs. 12–15. This dependence is in agreement
with Murakami’s factor [24], which states that the notch
sensitivity associated with internal defects depends on the
square root of the area. For c/b ratios outside this range,
however, there’s a significant influence of c/b in the result-
ing q values.
between the semi-axes for steels with a0 = 0.040 mm (Su @ 1200 MPa).

between the semi-axes for steels with a0 = 0.016 mm (Su @ 2000 MPa).
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4. Conclusions

A generalization of El Haddad–Topper–Smith’s param-
eter was presented to model the crack size dependence of
the threshold stress intensity range for short cracks. The
proposed expressions were used to calculate the behavior
of non-propagating cracks. New estimates for the notch
sensitivity factor q were obtained for cracked holes and
semi-elliptical notches, and compared with results from
the literature. It was found that the notch sensitivity has
a strong dependence on the notch aspect ratio. For semi-
elliptical notches with aspect ratio between 2 and 10, a
good agreement was found between q and the square root
of the product between the semi-axes.
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