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Models are proposed to predict the fatigue crack growth (FCG) process using crack initiation properties
and critical damage concepts. The crack is modeled as a sharp notch with a very small but finite tip radius
to remove its singularity, using a strain concentration rule. In this way, the damage caused by each load
cycle and the effects of residual stresses can be calculated at each element ahead of the crack tip using the
hysteresis loops caused by the loading, without the need for adjustable parameters. A computational
algorithm is introduced to calculate cycle-by-cycle crack growth using the proposed methodology. A
quite good agreement between the eN-based crack growth predictions and experiments is obtained both
for constant and for variable amplitude load histories.
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1. Introduction

Since the pioneer work of Majumdar and Morrow in 1974 [1],
several models have been proposed to correlate the oligocyclic fa-
tigue crack initiation process (controlled by the strain range De)
with fatigue crack propagation rates (controlled by the stress
intensity range DK). Some of this so-called critical damage models
consider the width of the volume element (VE) in the crack prop-
agation direction as being the distance that the fatigue crack prop-
agates on each cycle da. Others consider the fatigue crack
propagation rate as being the VE width divided by the number of
cycles that the crack would need to cross it.

However, most models do not properly deal with the supposed
stress field singularity at the crack tip. This singularity implies that
all the damage would be caused by the last loading event. Recently,
an improved model that deals with the actual elastic–plastic stres-
ses at the crack tip has been proposed [2]. It uses eN parameters
and expressions of the HRR type to represent the elastic–plastic
strain range inside the plastic zone ahead of the crack tip. The crack
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tip is modeled as a sharp notch with a very small but finite tip ra-
dius to remove the singularity issues. The origin of the HRR field is
shifted from the crack tip to a point inside the crack, located by
matching the HRR strain at the blunt crack tip with the strain pre-
dicted at that point by a strain concentration rule.

This non-singular model considers that the damage zone ahead
of the crack tip is composed by a sequence of very small VE, each
one loaded by a different strain range, which are broken sequen-
tially as the crack propagates. Each of these VE will be submitted
to elastic–plastic hysteresis loops of increasing amplitude as the
crack tip approaches it (Fig. 1), even in the case of constant ampli-
tude loading. Thus any given VE suffers damage during each load
cycle, caused by the amplitude of the hysteresis loop acting in that
cycle, which in turn depends on the distance ri between the ith VE
and the fatigue crack tip. Fracturing of the VE at the crack tip
(which causes the fatigue crack growth) occurs when its accumu-
lated damage reaches a critical value, due to the summation of
the damage suffered during each cycle, quantified by a damage
accumulation model.

In order to generalize the above idea to the variable amplitude
(VA) loading case, it is necessary to perform cycle-by-cycle sequen-
tial calculations to be able to account for load sequence effects [3–
6]. These effects, caused by several mechanisms that can retard or
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Fig. 1. Schematics of the FCG assumed to be caused by the sequential fracture of
volume elements (or tiny eN specimens) at every load cycle, loaded by an increasing
strain history as the crack tip approaches them.
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accelerate the growth of a fatigue crack after significant load
amplitude variations, are very significant and must be considered.
These load interaction mechanisms can act behind, at or ahead of
the crack tip. Among them, it is important to mention: (i) crack clo-
sure, acting behind the crack tip, which can be caused by plasticity,
oxidation or roughness of the crack faces, or even by strain induced
phase transformation; (ii) crack tip blunting, kinking or bifurcation,
acting at or close to the crack tip; and (iii) residual stress and strain
fields, which act ahead of the crack tip.

Most load sequence effects models in fatigue crack growth
(FCG) are still based on Elber’s plasticity-induced crack closure.
However, there are several important problems that cannot be ex-
plained by Elber’s effective stress intensity range DKeff concept. For
example, a strong objection against crack closure is based on con-
vincing experimental evidence such as fatigue crack growth
threshold values DKth that are higher in vacuum than in air [7]. An-
other very important problem that cannot be explained by the El-
ber mechanism is crack delay or arrest after overloads under high
R = Kmin/Kmax ratios, when the minimum value Kmin of the applied
stress intensity range DK = Kmax � Kmin always remains above Kop,
the (measured) load that opens the fatigue crack [8]. In this case,
there is no closure either before or after the overloads.

In this work, the idea that FCG is caused by the sequential fail-
ure of VE ahead of the crack tip is extended to deal with the VA
loading case, using a non-singular damage model. A cycle-by-cycle
computational algorithm is proposed, to be able to calculate the
variable crack increments at each cycle and to account for load se-
quence effects. The methodology not only explicitly considers the
mechanisms acting ahead of the crack tip, but it is also able to in-
clude effects of the mechanisms acting behind it such as crack clo-
sure. The methodology is described next.
2. The non-singular damage model

The damage ahead of a fatigue crack tip can be estimated using
simple but sound hypotheses and standard fatigue calculations,
supposing that fatigue cracks grow by sequentially breaking small
volume elements (VE) ahead of their tips, which fracture when the
crack tip reaches them because they accumulated all the damage
the material can support. In this way, eN procedures can be com-
bined with fracture mechanics concepts to predict FCG, using the
cyclic properties of the material and the strain distribution ahead
of the crack tip. These models can consider the VE width in the
FCG direction as being the distance that the crack grows during
each cycle, or the FCG rate as being the VE width divided by the
number of cycles that the crack would need to cross it.

Critical damage models are not new [1,9–12], but they still need
improvements. Most models assume singular stress and strain
fields ahead of the crack tip (concentrating in this way all the dam-
age very next to the tip), and thus need some adjustable constant
to fit the FCG da/dN data, irreversibly compromising their predic-
tion potential in this way. However, the supposed singularity at
the crack tip is a characteristic of the mathematical models that
postulate a zero radius tip, not of the real cracks, which have a
blunt tip when loaded. In other words, real cracks must have finite
strains at their tip under load, or else they would be unstable. To
avoid this problem, the actual finite strain range at the crack tip
Detip can be estimated using the stress concentration factor Kt for
the blunt crack [13] and a strain concentration rule. The strain
range field ahead of the crack tip can then be upper-bounded by
Detip, e.g. by assuming Detip constant where the singular solution
would predict strains greater than Detip, or by translating the sin-
gular strain field, as discussed later.

A few models assume that the entire fatigue damage occurs in-
side a small region next to the crack tip. They use the number of
cycles N* associated with Detip (which can be obtained from Cof-
fin–Manson’s equation, e.g.) to calculate the FCG rate as the length
of this region divided by N*. But such models have two shortcom-
ings. First, neglecting the fatigue damage beyond this region con-
centrates it in the very last N* cycles, a non-conservative
hypothesis. Second, assuming intermittent and not a cycle-by-cy-
cle fatigue-induced increments in the crack length, although valid
in some cases of crazing in polymers, is certainly not true for most
metallic structures, as evidenced by their striated crack surfaces.

Kujawski and Ellyin [11] proposed a model to relate fatigue
crack initiation and propagation with the plastic work per cycle,
which can be used to treat cumulative damage problems. In an-
other work [12], the same authors joined low-cycle fatigue proper-
ties and stress/strain field equations to model R-ratio effects on
fatigue crack growth curves, assuming that the fatigue failure cri-
terion within the process zone was the plastic strain energy den-
sity. They used a solution for the stress and strain distribution
ahead of the crack tip based on Rice’s analytical solution for mode
III under small scale yielding, adapted to mode I based on McClin-
tock’s analogy between modes III and I. However, the resulting dis-
tribution is singular. To solve this issue, they have used a process
zone size d*, immediately ahead of the crack tip. The resulting
model correlated well with experiments, however the limitations
of assuming the existence of the process zone size d*, beyond
which the damage could be neglected, are the same as the ones
from the models that use N*, described above.

To avoid these limitations, the model proposed in this work
uses Schwalbe’s modification [9] of the HRR field to represent
the strain range distribution ahead of the crack tip. Then, it re-
moves the crack tip singularity by shifting the origin of the strain
field from the crack tip to a point inside the crack, located by
matching the crack tip strain with Detip predicted by a strain con-
centration rule, such as Neuber [14], Molsky–Glinka [15], or the
linear rule [16]. This approach recognizes that the strain range
De(ri, DK) in all unbroken VE increases and causes damage during
each load cycle as the crack tip approaches them, see Fig. 1. There-
fore, the VE closest to the tip breaks due to the summation of the
damage induced by all previous load cycles (which under constant
amplitude load increases as ri decreases while the crack grows),
and not only by the damage induced in the very last load cycle.
In this way, the fatigue crack growth rate under constant DK can
be modeled by the sequential failure of identical VE ahead of the
crack tip.
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This model is then extended to deal with the variable amplitude
loading case, which has idiosyncrasies that must be treated appro-
priately. First, the VE that breaks in any given cycle must have var-
iable width, which should be calculated by locating the point
ahead of the crack tip where the accumulated damage reaches a
specified value. Note that there are limitations with the use of
the Palmgreen–Miner linear damage law, as pointed out in [11].
This is because cycling sequences from a low to a high stress level
can result in crack initiation with an accumulated linear damage
larger than one, while sequences from high to low can initiate a
crack with values lower than one. However, since there is no a pri-
ori information on the loading order, in this paper the Palmgreen–
Miner model is used, defining as 1.0 the critical damage value.

Load sequence effects, such as overload-induced crack growth
retardation, are associated with mean load effects caused by elas-
tic–plastic hysteresis loop shifts, and can be calculated using the
powerful numerical tools available in the ViDa software [17].
Moreover, this model can recognize an opening load, and thus
can separate the cyclic damage from the closure contributions to
the crack growth process. The necessary equations for constant
and variable amplitude loadings are discussed next.

3. Constant amplitude loading

In every load cycle, each VE ahead of the crack tip suffers strain
loops of increasing range as the tip approaches it, and a damage
increment that depends on the strain range in that cycle, thus on
ri (the distance from the ith VE to the tip) and on the load DKj at
that event. The fracture of the VE at the crack tip occurs because
it accumulated its critical damage, e.g. by Miner’s rule whenP

nj/Nj = 1, where nj is the number of cycles of the jth load event
and Nj is the number of cycles that the piece would last if loaded
solely by that event’s loading levels. If under constant DK (or DKeff)
the fatigue crack advances a fixed distance da in every load cycle,
and if, for simplicity, the damage outside the cyclic plastic zone
zpc is neglected, there are thus zpc/da VE ahead of the crack tip at
any instant that need to be considered. Since the plastic zone ad-
vances with the crack, each new load cycle breaks the VE adjacent
to the crack tip, induces an increased strain range in all other
unbroken VE, and adds a new element to the damage zone, thus
nj = 1. Moreover, since the VE are considered as small eN speci-
mens, they break when:

Xzpc=da

i¼0

1
Nðzpc � i � daÞ ¼

Xzpc

ri¼0

1
NðriÞ

¼ 1 ð1Þ

where N(ri) = N(zpc � i � da) is the fatigue life corresponding to the
plastic strain range Dep(ri) acting at a distance ri from the crack
tip. This fatigue life can be calculated using the plastic part of Cof-
fin–Manson’s rule

NðriÞ ¼
1
2

DepðriÞ
2ec

� �1=c

ð2Þ

where ec and c are the plastic coefficient and exponent, and Dep(ri)
in its turn can be described by Schwalbe’s [9] modification of the
HRR field

DepðriÞ ¼
2SYc

E
� zpc

ri

� � 1
1þhc

ð3Þ

where SYc is the cyclic yield strength, hc is the Ramberg–Osgood cyc-
lic hardening exponent, and zpc is the cyclic plastic zone size in
plane strain, which, if m is Poisson’s coefficient, can be estimated by

zpc ¼
ð1� 2mÞ2

4p � ð1þ hcÞ
� DK

SYc

� �2

) NðriÞ ¼
1
2

SYc

Eec
� zpc

ri

� � 1
1þhc

" #1=c

ð4Þ
The HRR field describes the plastic strains ahead of an idealized
crack tip, thus it is singular at ri = 0. But an infinite strain is phys-
ically impossible. This does not mean that singular models are use-
less, but only that the damage close to the crack tip is not
predictable by them. To eliminate this unrealistic strain singular-
ity, the origin of the HRR coordinate system is shifted into the crack
by a small distance X, copying Creager and Paris’ idea [13]. Approx-
imating Miner’s summation by an integral, setting the VE width da
equal to an infinitesimal da at a distance dr ahead of the crack tip,
which is easier to deal with [2], then

Depðr þ XÞ ¼ 2SYc

E
� zpc

r þ X

� � 1
1þhc

ð5Þ

da
dN
¼
Z zpc

0

dr
Nðr þ XÞ ð6Þ

To determine X and N(r + X), two different paths can be fol-
lowed. The first uses Creager and Paris’ offset X = q/2, where q is
the actual crack tip radius estimated by q = CTOD/2, thus

X ¼ q
2
¼ CTOD

4
¼ K2

max � ð1� 2mÞ
p � E � SYc

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ð1þ hcÞ

s
ð7Þ

Note that the effect of Kmax is taken into account using the above
equation, where the CTOD does not depend on the load history and
associated residual stresses. This is a limitation from such first path
to solve the singularity issue.

The second path is more reasonable. Instead of arbitrating the
offset of the strain field origin, X is determined by first calculating
the crack linear elastic stress concentration factor Kt [13]

Kt ¼ 2DK=ðDrn �
ffiffiffiffiffiffiffi
pq
p Þ ð8Þ

For any given DK and R, it is possible to calculate q and Kt from
Eqs. (7) and (8), and then the stress and strain ranges Drtip and De-
tip at the crack tip using a strain concentration rule. Assuming that
the material stress–strain behavior is parabolic, with cyclic strain
hardening coefficient Hc and exponent hc, and neglecting the elastic
range, the Linear, Neuber and Molsky–Glinka concentration rules
give, respectively

Detip ¼
Kt � Drn

E
¼ 2DK

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p � CTOD=2

p ð9Þ

Drtip � Detip ¼ ðKtDrnÞ2
E ¼ 8DK2

E�p�CTOD

Detip ¼ 2ðDrtip

2Hc
Þ1=hc

8<
: ð10Þ

2DK2

E�p�CTOD ¼
Dr2

tip

4E þ
Drtip

1þhc
� ðDrtip

2Hc
Þ1=hc

Detip ¼ 2 Drtip

2Hc

� �1=hc

8><
>: ð11Þ

After calculating Detip at the crack tip using one of these rules,
the shift X of the HRR origin is obtained by

Detip ¼
2SYc

E
� zpc

X

� � 1
1þhc ) X ¼ zpc �

2SYc

EDetip

� �1þhc

ð12Þ

The strain distribution at a distance r ahead of the crack tip, Dep

(r + X), without the singularity problem at the crack tip, can now be
readily obtained by

da
dN
¼
Z zpc

0
2 � 2ec

Depðr þ XÞ

� �1=c

dr ð13Þ

This prediction is experimentally verified in SAE 1020 and API 5L
X-60 steels and in a 7075 T6 aluminum alloy, using Eq. (13) to ob-
tain the constant of a McEvily-type da/dN equation, which describes
the da/dN � DK curves using only one adjustable parameter A,



Fig. 3. Proposed strain range distribution, divided in four regions to consider both
the elastic and the plastic contributions to the damage ahead of the crack tip.
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da
dN
¼ A½DK � DKthðRÞ�2

Kc

Kc � ½DK=ð1� RÞ�

� �
ð14Þ

where Kc and DKth(R) are the material fracture toughness and crack
propagation threshold at the load ratio R. For the experimental ver-
ification, the values of Kc, DKth(R) and the eN and da/dN data are all
obtained by testing proper specimens manufactured from the same
stock of the three materials, following ASTM standards. The API 5L
X-60 da/dN � DK experimental curves are compared with this sim-
ple model predictions in Fig. 2. Both the shape and the magnitude of
the data are quite reasonably reproduced by this critical damage
model. The Linear rule generates better predictions probably be-
cause the tests are performed under predominantly plane strain
conditions. Moreover, since this model does not use any adjustable
constant, this performance is certainly no coincidence. The Linear
rule also results in good predictions for the SAE 1020 steel and
7075 T6 aluminum [2].

Despite this encouraging performance, a few remarks are still
required. First, the damage beyond zpc has been neglected to sim-
plify the numerical calculations. This hypothesis is non-conserva-
tive, because there is significant damage beyond zpc, as it will be
shown later. Instead, the monotonic plastic zone border zp will
be considered in this simplification. Second, FE calculations [18]
indicate that there is a region adjacent to the blunt crack tip with
a strain gradient much lower than predicted by the HRR field.
These problems can be avoided by shifting the origin away from
the tip by a distance x2 and assuming the crack tip strain range De-
tip constant over the region I of length x1 + x2, shown in Fig. 3. The
value of x1 can be obtained equating Detip and the HRR-calculated
strain range, and from the crack tip stress range Drtip

Drtip ¼ Drðr ¼ x1Þ ¼ 2SYc �
zpc

x1

� � hc
1þhc

¼ 2SYc �
E � Detip

2SYc

� �hc

ð15Þ
Fig. 2. da/dN � DK behavior measured and predicted by the various strain concentration
R = 0.7 [2].
Then, following Irwin’s classical idea, the value of the shift x2 is
obtained by integrating the stress field r(r), enforcing equilibrium
of the applied forceZ 1

0
DrðrÞdr ¼

Z x1þx2

0
Drtipdr þ

Z 1

x1

DrðrÞdr )
Z x1

0
DrðrÞdr

¼
Z x1þx2

0
Drtipdr ð16Þ

Since x1 < zpc, Dr(r) in the above integral can still be described
by the HRR solution, resulting inZ x1

0
2SYc �

zpc

r

� � hc
1þhc

dr ¼ Drtip � x1 � ð1þ hcÞ ¼ Drtip � ðx1 þ x2Þ

) x2 ¼ x1 � hc ð17Þ
rules used in the critical damage model, for API-5L-X60 pipeline steel at R = 0.1 and
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These simple tricks generate a more reasonable strain distribu-
tion model, see Fig. 3:
DeðrÞ ¼ Detip; 0 6 r 6 x1 þ x2 ðregion IÞ ð18Þ

DeðrÞ ¼ 2SYc

E
� zpc

r � x2

� � 1
1þhc

; x1 þ x2 < r 6 zpc þ x2 ðregion II; shifted HRRÞ ð19Þ

DeðrÞ ffi 2SYc

E
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zpc þ x2

r

r
� 1þ m

r � zpc

zp� zpc

� �
; zpc þ x2 < r < zp ðregion IIIÞ ð20Þ

DeðrÞ ¼ DK � ð1þ mÞ
jE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � zp=2Þ

p ; r P zp ðregion IV; shifted IrwinÞ ð21Þ

Fig. 4. Schematics of the critical damage calculations, which under variable
amplitude loading recognize variable crack increments by forcing the crack to
grow over the region where the accumulated damage D = 1.
where j = 1 for plane stress and j = 1/(1 � 2m) for plane strain, and

zp ¼ 1
pj2 �

Kmax

SYc

� �2

and zpc ¼
1

4pj2 � ð1þ hcÞ
� DK

SYc

� �2

ð22Þ

Both constant (CA) and variable amplitude (VA) FCG can then be
calculated using Eqs. (18)–(22), which consider all the damage
ahead of the crack tip and provide a more realistic model of the
FCG process. But Eqs. (2), (5) and (13) must be modified to include
elastic parameters rc and b, and to account for the mean load rm

effects on the VE life using Morrow elastic, Morrow elastic–plastic
or Smith–Watson–Topper equations. But the life N in these equa-
tions cannot be explicitly written as a function of the VE strain
range and mean load and thus must be calculated numerically, a
programming task that, despite introducing no major conceptual
difficulty, is far from trivial, as discussed in the next sections.

4. Variable amplitude loading

The da/dN � DK curve predicted for CA loads could be used with
a FCG load interaction model to treat VA problems [19]. But the
idea here is to directly quantify the fatigue damage induced by
the VA load considering the crack growth as caused by the sequen-
tial fracture of variable size VE ahead of the crack tip. Since the Lin-
ear strain concentration rule generated better predictions above, it
is the only one used here. Because load interaction effects can have
a significant importance in FCG, they are modeled by using Morrow
elastic equation to describe the VE fatigue life N

Nðr þ XÞ ¼ 1
2

Depðr þ XÞ
2ec

1� rm

rc

� ��c=b
 !1=c

ð23Þ

To account for mean load effects, a modified stress intensity
range can be easily implemented for R > 0 to filter the loading cy-
cles that cause no damage by using

DKeff ¼ Kmax � KPR ¼
DK

1� R
� KPR ð24Þ

where KPR is a propagation threshold that depends on the consid-
ered retardation mechanism, such as Kop from Elber’s equation
[20] or K�max from the Unified Approach [7]. The damage function
for each cycle is then

diðr þ XiÞ ¼
ni

Niðr þ XiÞ
ð25Þ

If the material ahead of the crack is supposed virgin, then its
increment da1 caused by the first load event is the value r = r1 that
makes Eq. (25) equal to one, therefore
d1ðr1 þ X1Þ ¼ 1) da1 ¼ r1 ð26Þ
In all subsequent events, the crack increments must also ac-
count for the damage accumulated by the previous loadings, in
the same way as it was done for the constant loading case. But
as the coordinate system moves with the crack, a coordinate trans-
formation of the damage functions is necessary:

Di ¼
Xi

j¼1

dj r þ
Xi�1

p¼j

dap

 !
ð27Þ

Since the distance r = ri where the accumulated damage equals
one in the ith event is a variable that depends on DKi (or DKeffi) and
on the previous loading history, VE of different widths may be bro-



Fig. 6. Volume elements before and ahead of the crack tip, showing the main length
parameters and the locations for the calculation of the accumulated damages D1

through Dn.
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ken at the crack tip by this model. This idea is illustrated in Fig. 4.
In the next section, an algorithm is proposed to computationally
implement the above methodology.

5. Simulation algorithm

The proposed algorithm to numerically calculate fatigue crack
growth under VA loading from the presented critical damage mod-
el is described here. Note that, naturally, CA loadings can also be
calculated using this algorithm.

Instead of using variable width volume elements, which would
be difficult to handle computationally since such widths are not
known a priori, the algorithm assumes that all VE have constant
width da. However, it allows the existence of a partially cracked
VE at the crack tip, with residual ligament rl. The idea behind the
calculations is to find at each cycle the number of fractured VE
and the new value of rl, obtaining then the crack increment. The
algorithm equations are described next.

First, upper bounds to the obtainable monotonic and cyclic yield
zones are calculated. If the maximum values of Kmax and DK
throughout the entire history are known, respectively max(Kmax)
and max(DK), then the upper bounds result in

zpmax ¼
1

pj2 �
maxðKmaxÞ

SYc

� �2

and zpc;max

¼ 1
4pj2 � ð1þ hcÞ

� maxðDKÞ
SYc

� �2

ð28Þ

If these maximum values are not known a priori, then they can
be conservatively replaced by the fracture strength Kc in the above
equations.

The simulation resolution is set by the constant width da of the
VE, which is chosen in this work as 10�7 m. To reduce the memory
requirements and speed up the algorithm, only a domain of length
Da ahead of the crack tip is considered, i.e. the damage at the vol-
ume elements beyond this distance is neglected. Traditional criti-
cal damage models consider this domain Da equal to the size of
the current cyclic yield zone. However, this may lead to non-con-
servative errors because the plastic deformation between the
monotonic and cyclic yield zones also contributes to significant
accumulated damage. As seen in the hysteresis loops of a VE under
constant DK loading (Fig. 5), the accumulated damage is already
0.47 in this example when the VE is reached by the cyclic plastic
Fig. 5. Schematics of the hysteresis loops at a fixed VE at different crack growth stages,
present in this VE when it is reached by the cyclic plastic zone zpc.
zone border. Neglecting this damage caused exclusively by the
monotonic plastic zone would lead to non-conservative errors of
almost 100% in the crack growth rate estimates. But in general it
is not necessary to evaluate the damage at VE beyond the mono-
tonic zone zp, as seen in Fig. 5, where the accumulated damage
would still be very close to zero.

In this work, two domain sizes Da are considered, either zpmax

or zpc,max. Note that these domains are already overestimated, since
they use the upper bounds of zp or zpc, and not their values at each
loading. This guarantees that the size of the calculation domain
will be always larger than the monotonic or cyclic plastic zones
independently of the loading history.

For a resolution da and domain length Da, the accumulated
damage needs to be calculated at the borders of an integer number
n = Da/da of VE. This is accomplished by the n variables D1, D2, . . .,
Dn, see Fig. 6. Note in the figure that the integer variable k denotes
the index of the variable Dk associated with the damage at the next
border of the VE where the crack tip is currently located. These n
damage variables form a cyclic set, meaning that the variable Dn

will be followed by D1, see Fig. 6.
In this algorithm, the current crack size a is represented as a

function of the initial crack length a0, an integer number na of al-
ready broken VE, and the residual ligament width rl in the partially
cracked VE where the crack tip is currently located (0 < rl 6 da, see
Fig. 6), by

a ¼ a0 þ na � daþ ðda� rlÞ ð29Þ

In the beginning of the calculations, rl = da and na = 0, resulting
in a = a0 as expected. In addition, all damage variables are initially
set to zero, and k = 1.
under constant DK loading, showing that an accumulated damage of 0.47 is already



Fig. 7. Strain-life data for the API-5L-X52 steel, and Morrow elastic model that best
fitted this data.
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The applied loading is then counted using a sequential rain-flow
algorithm [19] to preserve loading order. For each event, the alter-
nate and mean nominal stresses are calculated, obtaining DK,
R = Kmin/Kmax, and the current plastic zone sizes zp and zpc. If DK
is above the propagation threshold DKth, which can indirectly in-
clude crack closure effects, then the damage at each VE is
calculated.

The current CTOD and q are calculated from Eq. (7). The Eqs.
(9)–(11) can then be used to obtain the crack tip stress and strain
ranges, calculating the shift X of the HRR origin from Eq. (12).

Assuming that the damage caused by the current event can be
neglected beyond the monotonic plastic zone, then at most the first
imax VE ahead of the crack tip need to be considered. Here, imax is
equal to [int(zp/da) + 2], where int(x) is the function that returns
the largest integer smaller than or equal to x. The distance ri be-
tween the crack tip and the ith VE border beyond it, associated
with the accumulated damage Dk+i�1, is

ri ¼ rlþ ði� 1Þ � da ð30Þ

The strain ranges De(ri) and associated damage are then calcu-
lated from Eqs. (18)–(25) for i = 1, 2, . . ., imax. Such damage values
at the VE borders are then added to the accumulated Dk+i�1.

Then, the largest index i = ib is found such that Dkþib�1 P 1 (or
greater than any other parameter defined using Miner’s rule). If
ib exists, then ib VE are broken at the current event, and ib is added
to the total number na of broken elements.
Fig. 8. Sequential rain-flow of the variable amplitu
The new residual ligament rl in the first unbroken VE, to where
the crack tip has advanced, is obtained from a linear interpolation
between the accumulated damages at its borders:

rl ¼ da �
1� Dkþib

Dkþib�1 � Dkþib

ð31Þ

The ib broken VE do not need anymore the variables Dk through
Dkþib�1, which are all reset to zero. Then, ib new VE are created be-
yond the current domain border to keep the number of VE in the
domain constant. The accumulated damage from these new VE will
be stored in the just freed up variables Dk through Dkþib�1. Note that
na can eventually become larger than n, because of the new VE gen-
erated each time the crack advances. Finally, the index k is in-
creased by ib, and the algorithm continues to evaluate the next
event. It is easy to show that k = (na modn) + 1, where (xmody) is
equal to the remainder of the integer division between x and y.
Note that if any index in the described algorithm results in a value
i larger than n, then it is replaced by (imodn).

After all loadings have been sequentially considered in the cal-
culations, the final crack size is evaluated using Eq. (29) and the fi-
nal values of na and rl.

6. Experimental results

FCG tests under VA loading are performed on API-5L-X52 steel
[21] 50 � 10 mm compact tension C(T) specimens, pre-cracked un-
der CA at DK = 20 MPa

p
m until reaching crack sizes a ffi 12.6 mm.

These cracks are measured with a 20 lm accuracy by optical meth-
ods and by a strain gage bonded at the back face of the specimens.
The basic monotonic and cyclic properties, measured in computer-
controlled servo-hydraulic machines using standard testing proce-
dures, are E = 200 � 103, SU = 527, SY = 430, SYc = 370, Hc = 840 and
rc = 720 (all in MPa), hc = 0.132, ec = 0.31, b = �0.076 and
c = �0.53, where rc and b are Coffin–Manson’s elastic coefficient
and exponent.

About 50 eN specimens are tested under deformation ratios
varying from R = �1 to 0.8 (at least two specimens are tested at
each strain range) to measure the mean load effect on the eN fati-
gue crack initiation curve, see Fig. 7. Morrow’s strain-life equation,
which includes the mean stress effect only in Coffin–Manson’s
elastic term, best fits the experimental data. The basic da/dN curve,
measured using the same equipment, is well fitted by a modified
Elber-type equation da/dN(R = 0.1) = 2 � 10�10 (DK � 8)2.4 (da/dN
in m/cycle and DK in MPa

p
m), using the crack propagation thresh-

old DKth(R = 0.1) = 8 MPa
p

m to replace Kop.
de load block applied to the API-5L-X52 steel.



Fig. 11. Comparison between crack growth measurements and eN-based predic-
tions for the variable amplitude load presented in Fig. 10 (SAE 1020 steel).
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FCG tests are then conducted under a VA history with 50,000
blocks containing 100 reversals each. The load history is counted
by the sequential rain-flow method, using the ViDa software [17].
The sequential rain-flow count of each applied block is shown in
Fig. 8. Note the high mean stress levels, which have been chosen
to avoid crack closure effects (the crack is always opened during
such loading).

The damage calculation is made using a specially developed
software code following the algorithm discussed above. The con-
stant width da of the VE is chosen as 10�7 m. Calculations with
da smaller than 10�7 m result in the same crack growth values
within 0.1%. This means that in this case this resolution is enough
to guarantee convergence.

Assuming that the maximum values of Kmax and DK throughout
the entire history are smaller than 20 MPa

p
m (which could only

be verified later, after the calculations), then Eq. (28) results in
the upper bounds zpmax = 0.127 mm and zpc,max = 0.0281 mm. The
domain length Da = 0.127 mm is used in this calculation, resulting
in only n = Da/da = 1274 volume elements. Note that if the memory
optimization method used in the proposed algorithm was not used,
then a domain Da of the size of the CTS residual ligament
50 � 12.6 = 37.4 mm would require n = 374,000 volume elements
instead.

The crack growth predictions based solely on eN parameters are
quite reasonable, see Fig. 9. The prediction assuming no damage
outside the cyclic plastic zone zpc underestimated the crack
growth. However, when the small (but significant) damage in the
material between the cyclic and monotonic plastic zone borders
is also included in the calculations, as described in the proposed
Fig. 9. Comparison between crack growth measurements and eN-based predictions
for the variable amplitude load presented in Fig. 8 (API-5L-X52 steel).
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Fig. 10. VA load block applied to the SAE 1020 steel compact tension specimen.
algorithm, an even better agreement is obtained. Note also that
crack growth is slightly underestimated after 1.8 � 106 cycles,
probably because these calculations neglected the (small) elastic
damage and its mean stress effects.

A similar VA fatigue crack propagation test is conducted on
compact tension C(T) specimens of SAE 1020 steel [22], with mea-
sured properties E = 205 GPa, SU = 491, SY = 285, SYc = 270, Hc = 941
and rc = 815 MPa, hc = 0.18, ec = 0.25, b = �0.114 and c = �0.54. The
best FCG curve fitted to this material is slightly more complex [19],
da/dN = 5 � 10�10 � (DK � DKth)2 � {Kc/[Kc � DK/(1 � R)]}, where
DKth = 11.6 and Kc = 277 (DK, DKth and Kc in MPa

p
m and da/dN

in m/cycle).
The VA load history in this case is a series of blocks contain-

ing 101 peaks and valleys each, as shown in Fig. 10. Once again a
high mean R-ratio is used in this test, to avoid the interference of
possible significant closure effects which could mask the
model performance. The predictions using the proposed algo-
rithm are compared with the measured crack propagation data
in Fig. 11. These predictions are again quite reasonable, in special
when DKth is considered in the algorithm. Therefore, one can
claim that these tests indicate that the ideas behind the proposed
critical damage model make sense and deserve to be better
explored.
7. Conclusions

A damage accumulation model ahead of the crack tip, based on
eN cyclic properties, was presented to predict fatigue crack propa-
gation under variable amplitude loading. The model treats the
crack as a sharp notch with a small but finite radius to avoid singu-
larity problems, and calculates damage accumulation explicitly at
each load cycle. An algorithm was proposed to efficiently evaluate
crack growth under variable amplitude loading from strain-life
data. Experimental results show a good agreement between mea-
sured crack growth, both under constant and variable amplitude
loading, and the predictions based purely on eN data.
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