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DEAD LOAD EVALUATION IN REINFORCED CONCRETE
COLUMNS USING RELEASED STRAIN MEASUREMENTS

large and busy subway station was undergoing

important structural modifications to be the main

commuting point between an existing line and

a new one under construction. Its reinforced
concrete structure was built several years ago assuming
the new line would have parallel tunnels to hold its two
railways, but it had to be adapted as the new line was being
dug by a bigger machine to settle its two railways inside a
single tunnel. Consequently, several of its columns should be
removed and properly replaced to allow the passage of the
digging machine and the new line adjacent railways without
interrupting the station services. To assure the safety of
this unusual task, load measurements were required in
the columns affected by the station upgrade, but as the
station structure should continuously support the existing
line traffic during the new line construction, alleviated
strain measurements induced by localized stress releases
were proposed for indirectly measuring the required loads.
However, the loads calculated from the released strains in
a standard linear elastic way appeared to be larger than
the column’s ultimate design load, causing concern about
their removal process. But such approximated calculations
do not include the very significant concrete creep influence
on the measured strains, which is only implicitly considered
by the “allowable stresses” specified in design codes. As this
procedure is inappropriate for experimental stress analysis
purposes, a relatively simple viscoelastic model is proposed
to describe the concrete long-term stress—strain behavior.
This model is extended to describe the reinforced column’s
behavior, and then qualified by fitting it to concrete creep
data from the literature, proving that, despite their high
value, the measured strains were indeed compatible with the
columns’ expected loads.

MEASUREMENT DETAILS

The various concrete columns were approximately 1.2 m in
diameter. They were reinforced by 30 or more vertical steel
rods, distributed more or less uniformly along the column
perimeter. But there was no warranty about the depth of
the rods, nor about the thickness of the concrete layer which
covered them. Thus, to avoid the uncertainty associated with
released strain measurements made on concrete layers of
varying thickness (which, as it was later on verified, indeed
varied significantly from column to column, and even around
a same column), small holes were opened on the surface
of a column’s section to expose a small portion of some of
their steel reinforcing bars. These had a minimum yield
strain ey min > 2500 pm/m and diameters 16, 20, or 24 mm.
These bars were properly strain gaged and then sectioned
to release their strains. It is worth mentioning that the rod
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sectioning method could be substituted by the tick-tack-toe
method proposed elsewhere,! if the concrete layers were
thick enough or if the columns were made of nonreinforced
concrete.

The minimum number of distinct measuring points required
to separate the strains caused by the axial load from
those induced by the bending moments in any given
cross section of an isotropic cylindrical column is three.
But, whenever possible, gages were bonded in four of the
reinforced bars more or less 90° apart to provide some
measurement redundancy. This conservative practice is
strongly recommended, not only to avoid losing important
information in case of an eventual gage problem but also to
provide some insight on the measurement dispersion. Thus,
four small holes or windows were opened on the surface of
most of the 28 columns examined, spaced at approximately
90° in a same transversal plane, to expose a short portion of
some of their steel reinforcing bars. In a few columns, only
three windows could be opened, due to access limitations,
losing in this way the measurement redundancy, but still
allowing the separation of the normal from the bending
loads. The windows were typically around 200 mm high, and
their depth and horizontal size were kept as small as possible
(around 150 mm wide and 50—100 mm deep in most cases,
see Fig. 1) to allow the preparation of the rod’s surface for
bonding the strain gage, and the subsequent cut of the lower
part of the exposed rod by a 125-mm abrasive wheel.

A carefully grounded small plane recess about 8—12 mm
wide and 40—60 mm long was opened in the surface of each
exposed rod inside the windows, as depicted in Fig. 2. The
grounded surface was finished by hand using a 220-grid
sand paper. A uniaxial strain gage was then bonded on this
surface using a cyanoacrilate adhesive after proper cleaning,
connected to a three-wire shielded cable, and protected
by a neutral silicone rubber barrier. After connecting and
balancing the four (or three) gages of a column in a precision
four-channel portable strain indicator, the lower part of the
rods were slowly cut by the abrasive wheel, always in several
steps to allow adequate water cooling during the progressive
cutting, in order to avoid overheating the gage (which was
easily verified by holding the rods with a bare hand). The
cuts were always performed at least 100 mm (or more than
4-5 rod diameters) from the gage, and the strain readings
were only made after the complete stabilization of their
(small) thermal transients. Before starting any analysis, it
is important to point out that the released strain measured
in any steel rod can in general be due to the superposition of
several mechanisms, namely:

1. The rod service stress caused by the column load, the
reason for this measurement.

2. Concrete creep under the service load (the steel rods do
not creep significantly at room temperature, but their
strains also increase to maintain their geometrical
compatibility with the slowly creeping concrete).
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Fig. 2: The small recess for bonding the gages introduces some bending strains in the rod

3. Concrete shrinkage during its cure (with consequences
similar to creep).

4. Residual stresses introduced by the rods’ manufactur-
ing process (e.g. by nonuniform plastic deformations
and/or by heat treatments).

5. Residual stresses introduced during the mounting of
the reinforcement.

6. Concrete removal to expose the rod for the measuring
process (the load carried by that small concrete volume
is partially transferred to the exposed rod) and

7. Rod cross section decrease during the preparation of
its surface for bonding the gage.

The severance of a rod interrupts its force path and
completely releases all these strain components under
the gage, no matter which mechanisms caused them, and
the rod strain alleviation can be correlated with the stress,
thus with the forces that were imposed on it, if: (1) it can
be supposed that the stress caused by the load in the rod is
uniaxial, a reasonable assumption in such a slender member
built into a concrete column of a much larger diameter; and
(2) if all the other strain parcels can be neglected or properly
evaluated. As the sectioning cuts were made several rod
diameters from the gages, the self-equilibrating residual
stresses introduced during the rod’s manufacture should not
significantly affect the gage measurements according to Saint
Venant’s principle, thus component 4 of the above list could be
safely neglected. As all four (or three) gages of a given column
were continuously monitored during the cutting process, it
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could be observed that cutting a rod did not influence the
others, which remained balanced within the strain indicator
noise level (less than =45 pm/m). Therefore, the column
stiffness loss introduced by alleviating the instrumented
rods was negligible, and so was the sixth listed component
of the total rod strain. All the exposed rods were checked
for lateral displacements and/or rotations after the cuts, but
they maintained the alignment in almost all cases, evidence
that the mounting stresses which could cause the fifth listed
strain component were also negligible. Finally, the effect of
the rod cross-section reduction shown in Fig. 2 could easily
be accounted for.

The grinding of a small plane recess is required to bond
the gages because reinforcing rods have rough surfaces
with a helical thread to improve their adherence to the
concrete, but they reduce the rod cross section and introduce
eccentricity on their (assumed) pure compression load, thus
local bending. The exposed rods are actually loaded by the
strain imposed by the column, but the recess is small and
can be modeled as if it was working under a pure axial
load. Thus, if o is the nominal compression stress in
the original reinforcing rod section of diameter d and area
Ay = nd?/4, and if A = d*(« — sin- cos «)/4 is the area of
the recess section of width x; I = (d*/64)l« — sino cos o +
2sin® & cos o — (16 sin® )/« — sin o cos «)] is the recessed
section inertia moment about a central axis parallel to
the recess plane, where « = 7w — arcsin(x/d) is the central
angle of the recess; y; = (d/2)[(2 sin® a)/3(a — sina cos ) —
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Fig. 3:

Ratio ¢ /o as a function of the recess width x for the three rod diameters: this effect is not negligible in

most cases, and it must be accounted for in the load analysis

sina cosa] and ys = (d/2)[1 — (2sin® a)/3(« — sin« cos )]
are the distances of the recessed section centroid to the
recess plane and to the opposite frontier point, then the
stress ratio o /o under the gage (due to the normal and to
the bending component), which is plotted in Fig. 3, is given
by:

o _ [@ N Ay(d/2 —yz)yq )

(o) A 1

The mean value of the released strains measured after
sectioning more than 100 rods of 28 reinforced concrete
columns was &y = 1325 pm/m, and the maximum was
&max = 2600 wm/m. These strains are still within the linear
elastic range of the steel rods (except for eyax that is slightly
above £y min), but they seem to be too large for the concrete,
whose ultimate design compressive strain is usually taken
as ey = 2000 pm/m. Even after considering the recess
correction, which decreased the measured strain values in
average by 20%, in a first look they still would imply that
the columns were or could be unsafe. But there was no
other evidence of such a problem, since no cracking, spalling,
or any other warning was ever emitted by the columns.
Moreover, the columns supported the opening of the holes
and the sectioning of the instrumented rods without any
problem (as stated before, the instrumented rods did not
feel the sectioning of the other rods). On the other hand,
there was no evidence of any problem with the measured
strains. The careful measurements followed reliable and
very well-established procedures, including electrical tests
of the reading equipment with high-precision resistors and
operational tests of the installed gages, always generating
consistent checks. Therefore, something had to be done to
make sense out of these two apparently incompatible, but
very strong evidences, as explained below.

THE VISCOELASTIC BEHAVIOR
OF CONCRETE

Concrete can creep a lot despite being made by mixing
ceramic materials (gravel, sand, and a calcium silicate
cement powder) with water, which hydrates and hardens
the cement to form a rock-like composite. For example, Fig. 4
shows some concrete creep data presented by Leet.? Accord-
ing to Buyukozturk,* concrete creep is influenced by factors
that can be internal, dependent on the concrete composition
(such as concentration, stiffness, grading, distribution and
permeability of the aggregate, water/cement ratio, cement
type, etc.), or external, dependent on structural parameters
(size, shape, environment, loading, etc.). Moreover, creep
strains are linearly proportional to the stress if o < /2,
where f is the concrete compressive strength, usually mea-
sured after a 28-day curing time. The three curves shown
in Fig.4 show only the creep compressive strains mea-
sured under 2.1, 4.2, and 6.3 MPa, which after 600 days are
& = 446,872, and 1325 pm/m, but the total strain has also
an initial elastic part ¢ = o /E = 100, 200, and 300 pm/m,
respectively. Thus, the creep strains are not negligible in
these tests. Moreover, the creep strains are indeed linearly
proportional to the stresses, as shown in Fig. 5, where the
curves obtained under 2.1 and 4.2 MPa practically coin-
cide with the 6.3-MPa curve when multiplied by 3 and 1.5,
respectively.

The next step is to find a proper rheological model to
reproduce all these curves, which should not include the
elastic strains as they show only the creep strains. A first
option could be to try to fit the data by a Kelvin—Voigt
equation, but as the experimental creep data do not show
a horizontal asymptote, at least another damper is needed
in the model. Any nonlinear curve can be fitted to a set
of data by minimizing its mean square deviation from
that set using the Levenberg—Marquardt (LM) algorithm:>®
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given a set of m points (x;,y;), i =1,...,m, LM searches
for the parameters’ vector p=[p1,pz,. . .,pal” (where T

means transpose) containing the n constants of the specified
f(x;,p) function, which minimizes the sum of the square
deviations:

S@) =Y lyi—fi,p)l? )

i=1
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Fitting of Fig. 4 concrete creep data using two linear viscoelastic models

LM can be applied to nonlinear vectorial functions, whereas
x; can be a scalar for one-variable functions, or a vector
for functions of more than one variable. But in the
following formulation, f(x;,p) and y; are supposed scalars.
It is didactic to present a few examples, for example, in
fatigue: in Paris’ rule da/dN = f(x;,p)=A,-AK™, x; = AK,
and p = [A,, mp]T; in Walker’s rule da/dN = f(x;,p) =A,-
AK™ /(1 —RP*, x; = [AK, RIT, and p = [Ay, muw, pul”;
and in Coffin-Manson’s rule Ae = f(x;, p) = 20 /E)2N)’+
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(2e.)2N), x;=N, and p = [o.,E,b,s., c]T. LM is an
iterative procedure, which depends on an initial estimate
for the vector p, which for highly nonlinear functions
needs to be close to the final solution to guarantee
convergence. But this normally is not necessary for fitting
data obtained in mechanical tests. In each iteration, p is
replaced by a new estimate p + ¢. To find the vector ¢ =
[g1,q2, . . ., )T, the functions f(x;, p + q) are approximated
by their linearizations, given by:

where o/ is the Jacobian of f with respect to p:

T, p) = [Bf(xi,p) of (x;, p) ' Bf(xi,p)] @

ap1 ~ dpa T Opy

In the case discussed here, as f is scalar, the Jacobian results
in the gradient of f with respect to p. When the sum of the
deviations S(p) is minimum, the gradient of S with respect
to q is equal to zero. Therefore, applying Eq. 2 at S(p + ¢),
and making 3S/9q = 0, results in:

m

> G, p) Ti,p)lg = Y (6, p) - by = e, pll} 5)

i=1 i=1

In this manner, the correction vector g can be obtained in
each iteration by:

m

m -1
q= [Z J;,p)" - J(xi,p)} Y W) -y — el
=1 =1
(6)

The m experimental data points can be stacked in an m x n
matrix J; and in an m x 1 error vector e;, defined as:

J(x1,p) y1 —flx1,p)
J(x2,p) y2 — f(x2,p)
Jip) = : and e(p) = .
J(x,;L,p) m _f:(xm’p)
Then, Eq. 6 can be rewritten as:
q = JTT) T e, = pinv(Jy) - e 8)

where pinv(J;) is known as the pseudo-inverse of J;, with
pinv(Jy) = (JT Jt)flJtT . After finding ¢ in each iteration and
summing it to the current p estimate, the algorithm continues
updating p until the correction ¢ has absolute value smaller
than a given tolerance. If f/ varies linearly with p, then J
does not depend on p, and the algorithm converges in only
one iteration. Even when o depends on p, the use of a log-log
scale usually guarantees convergence in a few iterations.
It is advisable to monitor the value of the deviation sum

S(p), which should always decrease at each iteration. If S(p)
increases in some iteration, a possibility when working with
highly nonlinear functions, it is necessary to introduce a
positive damping term X in the pseudo-inverse:

q=U/di+ 2D e 9)

where I is the identity matrix n x n. The damping factor A
is updated at each iteration. If the S(p) reduction is too high,
smaller values are chosen for A to avoid having the algorithm
become unstable. On the other hand, if S(p) decreases too
slowly, A is increased to accelerate the convergence of the
iterative calculations.

Marquardt® recommends that damping be introduced in the
numerical calculation algorithm for calculating the correction
vector ¢ by guessing an initial value A =ip >0 and a
correction factor v > 1, for example, . = 1 and v = 2. In this
case, the vector ¢ is calculated using a damping factor A /v at
each iteration. If S(p + q) < S(p), then this ¢ is summed to
p,A = A/v is chosen as the new factor, and a new iteration
is made. In the opposite case, ¢ is recalculated using A. If
S(p + q) < S(p), then this g is summed to p, A is maintained,
and a new iteration begins. If in both cases S(p + ¢) > S(p),
then g is recalculated with damping factors A-v%, k=1,2,. . .,
at each new iteration until obtaining S(p + ¢q) < S(p). When
this occurs, then this g is summed to p, A=A-v* is chosen as
the new damping factor, and the iterations continue. With
this procedure, the algorithm stability is guaranteed.

Two viscoelastic models are used to fit the average of
the properly multiplied curves shown in Fig. 5, using the
above procedures. The first model is Kelvin—Voigt’s, with
its two parameters £ and c¢ obtained by minimizing the
mean square error, generating curve 1. The second is a
Kelvin—Voigt model in series with a damper, generating
curves 2 and 3, either by applying the same method
or by visually refitting the parameters ci, co, and ko,
respectively. The introduction of a damper in series with
the Kelvin—Voigt element improves the data fitting, but the
“optimum” mathematical adjustment is not as good as the
old-fashioned eye-ball data fitting used to obtain curve 3.
This visual tuning of the parameters generated by LM is a
much recommended procedure, since there is no substitute
for a well trained human judgment: the eye-ball fitting does
not minimize the least square error, however, it ended
up fitting better the long-term creep behavior, especially
after 500 days. But such a refinement by man-machine
interaction is only possible after knowing the mathematically
optimized parameters. The parameters generated by the LM
algorithm are £ =5 GPa and ¢ = 21.6 GPa-s for curve 1;
and ¢; = 1.196 TPa:-s, ks = 5.8 GPa, and ¢ = 18.92 GPa-s
for curve 2, whereas the visual refinement used to fit
of curve 3 generates ¢; = 1.814 TPa-s, ky = 5.8 GPa, and
co = 21.6 GPa-s. But to model the total concrete strain,
another spring k1 = 21 GPa in series with the damper c;
must be used to simulate the elastic modulus E.,, see
Fig. 6. This four-element Burgers model is indeed capable
of reproducing well the long-term mechanical behavior of the
concrete whose creep data are given in Fig. 4. The secant
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Fig. 6: Strain histories ¢(t) estimated by Eq. || for a pure concrete and for two steel reinforced concrete columns
with steel area fractions fa, = 1% and fa, = 2%, when they are loaded by a fixed force that causes an initial strain
£9=500 um/m. The concrete is modeled as a linear viscoelastic Burgers material with constant parameters:
ky =21 GPa,c;=1.814 TPa-s, k, = 5.8 GPa e,c=21.6 GPa-s, whereas the steel reinforcement is modeled as a

Hookean material with ks = 200 GPa

modulus Eg(¢) of the Burgers model is given by:

k101k2
Eg(t) = 10
B0 c1ky + c1k1[1 — exp(—kat/ca)] + kikot (10)

However, to model a reinforced concrete column under pure
compression, it is necessary to use still another spring
in parallel with the Burgers model to describe the effect
of the steel rods. Only one spring is needed because the
steel creep can be neglected at room temperature. Also, this
spring is in parallel with the concrete model because both
see the same strains to maintain geometric compatibility.
Therefore, if As is the total area of the reinforcing steel
rods and A. is the concrete area in a column whose cross-
section area A = Ag + A, then fa, = Aj/A and (1-fas) are
the area fractions of the steel and the concrete in the
column. If F is the force (supposed constant) which loads
the column; E is the steel elastic modulus (which does
not creep) and E.(¢) is the (variable) creep modulus of the
concrete; o4(f) and o (¢) are the stresses on the rods and
on the concrete (both vary in time, since the concrete creep
transfers loads to the steel reinforcing rods); and &(¢) is the
column strain (which also varies as time passes by), then it
is trivial to show that the compressive force in the column is
F =o04t)As + 0(t)-Ac = et)[Es-Ag + Ec(t)-Acl, therefore:

F F/A

EA, + E. (DA, o)

S(t) = =
fasks + e TR T
(1
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It is also easy to show that the equivalent stress in the
column is given by:

o = F/A = e(0)lfasks + (1 — fas)k]
= golfasks + (1 — faykil (12)

The steel area in a reinforced concrete column is typically 1 to
2% of its total area. Knowing that the (elastic) ultimate strain
in reinforced concrete structural design is usually assumed
as ey = 2000 um/m,? a column designed for an initial strain
&9 = 500 wm/m can thus be considered representative of the
problems found in practice. Using this value, Fig. 6 shows
the strain time variations expected from a pure concrete
column (with f/ = 18 MPa and the viscoelastic properties
obtained above), and from two reinforced concrete columns,
one with a steel area fraction fa, = 0.01 and the other with
fay = 0.02. This figure demonstrates that strains in the order
of &max = 1500-2000 pm/m are certainly not incompatible
with typical working loads applied on reinforced columns
made out of the concrete whose creep strains are described
by Fig. 4. But this figure does not include several important
details about the concrete properties, which had to be
estimated in order to generate the information that supports
this claim, a fact that decreases its power. However, a quite
comprehensive report by Ziehl et al.” presents several such
details, removing any doubts about the adequacy of this
approach.

Ziehl and his colleagues studied if reinforced concrete
columns with steel area fractions fas < 1%, the minimum
steel fraction required by the American standard,®® could be
used for structural purposes. They said that those existing
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minimum fag requirements for columns were developed to
prevent yielding of the reinforcement resulting from creep
deformations in the concrete; that the tests used to sup-
port this limit were conducted decades ago, when steel
yield strengths for reinforcing bars were approximately half
of what is common today; and that a substantial reduc-
tion in the column steel area fraction might be possible
with present-day materials, resulting in economic savings.
Ziehl et al. cast several 203 mm (8') diameter by 1219 mm
(4’) long cylindrical columns made out of two concretes
with nominal compressive strengths (at 28 days) of 28
and 56 MPa (4 and 8 ksi), with three steel fractions fa,
(0.36, 0.54, and 0.72%). They subjected them to a constant
axial load F = 0.4f/A (the maximum load allowed by ACI
and AASHTO standards®?) in reduced-humidity enclosures,
and measured their long-term axial deformations using elec-
tric resistive and mechanical strain gages. The load was
applied through coil springs to provide the necessary compli-
ance. Unloaded specimens were used to monitor temperature
and shrinkage-related deformations. They presented plots
of measured strain versus time, and compared the exper-
imental results with an analytical model reported by ACI
Committee 209.1°

The columns were cast in cardboard molds, which were
stripped 5 days after having poured the concrete. These
columns were loaded between 14 and 28 days after casting.
To determine the material properties, 4 x 8 and 6 x
12 inch test cylinders were also cast for every group
of columns. These cylinders were tested for modulus of
elasticity and compressive strength at 7, 14, 28, and 56 days
after casting. The steel rods were tested for yield and
ultimate strengths. Relative humidity and temperature
were maintained between 30 and 60% and 10 and 43°C.
The period required to load the columns for a length of
time sufficient for the rate of creep to approach nearly

zero was initially estimated to be close to 2 years, but in
practice it was 15—18 months, depending on the specimens.
Ziehl’s report is particularly meticulous, and should be
consulted for further details on concrete specifications
and experimental procedures.” Figure7 shows how the
technique discussed above can quite reasonably fit some
of their data. Other similar results can be found in
Ref. 11.

DEALING WITH THE REINFORCED
CONCRETE TIME-DEPENDENT oe
BEHAVIOR ON DEAD LOAD
MEASUREMENTS

The simple viscoelastic model presented above did fit quite
well data from Leet?® and Ziehl et al.” Hence, it is reasonable
to use it to speculate about the measured strains, and
their use for calculating the dead service loads that were
actually present on the instrumented columns. Linear stress
analysis has long been safely used for design purposes, and
nothing is apparently more reasonable than to also use it
to describe the o ¢ concrete behavior. Thus, multiplying the
measured strains by the concrete Young’s modulus to obtain
the stress and then the load that induced them is a natural
temptation, particularly in uniaxially loaded columns. A
Hookean model is certainly adequate for design purposes,
and may be perfectly acceptable to correlate low or admissible
stress/strain data measured in standard compression tests,
which last a few minutes, but it cannot describe the long-term
strain behavior under dead load, where the creep strains are
not negligible. When cutting off the steel rods which have
been embedded in the concrete for so long, all the strains
they supported are released including, of course, the creep
strains, which can be much higher than the initial elastic
strain induced by the (safe) dead load, as demonstrated

2800{E(pmy/m)
column 0.72% steel, S6MPa (8ksi)
24001
.......... M
—Eqg. 10
1600
1200 ky ,
800/ Yok !
2 2
400, reinforced
concrete concrete
0 t{days)
) 100 200 300 400 500

Fig. 7: Total (elastic plus creep) strain history &(t) estimated by Eq. | | for a reinforced concrete column with
f.=56 MPa and steel area fraction fa, = 0.72%, loaded by a fixed force that induces an initial strain
g0 =800 um/m : k; = 37.54 GPa, c| = 40 TPa-day, k, = 19 GPa, and c; = 1.2 TPa-day
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above. Therefore, it must be strongly recommended that all
released strain-based dead load measurements on concrete
structures consider the creep influence.

However, in most practical cases, there simply is no
information about the creep properties of the actual concrete
cast in the instrumented structures. Therefore, designers
should collect some concrete creep data if dead load
measurements can be expected during the structure’s service.
As a simple four-element Burgers model may provide
a reasonable description for the concrete creep data, as
illustrated above, a practical way of accessing such data
would be embedding strain transducers in some suitable
structural members during their casting.

Or else, the only remaining option is to use some guidelines
provided, for example, by ACI 209R “Prediction of creep,
shrinkage, and temperature effects”'? recommended practice
to guess the creep properties, a much more imprecise
procedure. Ziehl et al.” provides an interesting revision of
such practices, which are quite involved, and there is no need
to reproduce them here. Nevertheless, it is worth to mention
that using the most reasonable assumptions for the cast
concrete details in the ACI calculation routine, a mean initial
strain of 585 wm/m was estimated for the instrumented
reinforced columns, confirming that the measured values
were indeed reasonable.

CONCLUSIONS

A relatively simple viscoelastic model was proposed to
describe concrete creep, and extended to model the behavior
of reinforced columns under axial loading. The model treats
the concrete as a Burger’s solid, composed by a Maxwell’s
element with a spring k; (which represents its elastic
modulus) and a damper c1, in series with a Kelvin—Voigt
element whose spring is k2 and the damper is co. The
reinforcing steel is modeled by a spring ks in parallel
with the concrete. This model satisfactorily fitted column
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creep data from the literature, and can be used to explain
why the measured residual strains were so high when
compared with the nominal design strains. Based on these
results, it is recommended that concrete creep properties
should be measured when it is anticipated that dead load
measurements can be necessary in the future.
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