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a b s t r a c t

The objective of this work is to develop a simple multiaxial version of a rainflow algorithm that allows the
proper calculation of multiaxial fatigue damage induced by non-proportional load histories. One of the
issues in such algorithm involves a complementary problem, how to properly quantify equivalent stress
or strain ranges and mean components associated with each rainflow-counted cycle. A traditional way to
estimate such ranges is to use enclosing surface methods, which search for convex enclosures like balls or
prisms, of the entire history path in stress or strain diagrams. To treat these two intrinsically related prob-
lems, this work is divided into two parts. Part I deals with how to compute equivalent stress or strain
ranges in multiaxial NP histories using enclosing surface methods. The available methods are first
reviewed, and new enclosing surface models are proposed, based on Deperrois’ idea of longest chords.
Then, these methods are compared using results from more than 3 � 106 Monte Carlo simulations of ran-
dom and especially chosen path topologies in two to five-dimensional stress or strain diagrams. More-
over, a new simpler but powerful approach to evaluate equivalent stress and strain ranges in NP
histories is presented, called the Moment Of Inertia (MOI) method. The MOI method is not based on
enclosing surfaces, it assumes instead that the path contour in the stress or strain diagram is analogous
to a homogeneous wire with a unit mass. The center of mass of such wire gives then the mean component
of the path, while the moments of inertia of the wire can be used to obtain the equivalent stress or strain
ranges. Experimental results for 15 different multiaxial histories prove the effectiveness of the MOI
method to predict the associated fatigue lives, when compared to the existing enclosing surface methods.
Part II of this paper presents a multiaxial rainflow counting algorithm that allows the MOI and enclosing
surface methods to be generalized to non-periodic NP histories and to periodic NP histories formed by
complex blocks with multiple cycles each.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Non-proportional (NP) multiaxial fatigue damage occurs when
the principal stress directions vary during the loading induced by
several independent sources, such as out-of-phase bending and
torsion moments [1]. Uniaxial rainflow counting techniques cannot
be applied to identify complex loading cycles or events in these
cases, which require specific multiaxial counting routines. Besides,
equivalent stress or strain ranges and mean components must be
associated with each multiaxial rainflow-counted load event.
These components are traditionally estimated by convex circular,
ellipsoidal or prismatic enclosures of the entire history path in
stress or strain diagrams. Besided the existing enclosing surface
models, others can be proposed based on Deperrois’ longest chords
idea [2]. However, enclosing surface methods have a few limita-
ll rights reserved.
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tions that will be discussed in this work. To compensate for them,
a new method is also proposed here, called the Moment Of Inertia
(MOI) method, which is not based on path enclosures, which might
be a better option to deal with such problems. Indeed, experimen-
tal results for 13 different multiaxial histories collected from com-
prehensive studies [3–4] prove the effectiveness of the MOI
method to predict the associated fatigue lives, when compared to
the existing enclosing surface methods, as discussed later on. But
before doing so, it is important to review some multiaxial fatigue
fundamentals.

Most multiaxial fatigue damage models are based on some
stress or strain range, such as the octahedral shear stress range
DsMises used in Sines [5] and Crossland [6] models; the shear stress
range Ds(h), projected onto a candidate plane defined by a given
direction h, used by Findley [7]; the maximum shear ranges Dsmax

from McDiarmid [8], and Dcmax used in Brown–Miller [9] and
Fatemi–Socie [10] models; and the normal strain range De\ per-
pendicular to the crack plane, used in the Smith–Watson–Topper
or SWT model [11]. It is not difficult to define these ranges for
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proportional constant amplitude loadings, where only two stress
or strain states need to be considered, one associated with the load
peaks and the other with its valleys.

However, for multiaxial variable amplitude (VA) loadings, in
special when their histories are non-proportional (NP), it is not evi-
dent how these ranges should be defined and identified. Such com-
plex loading paths, when represented e.g. in the Mises strain
diagram e� c=

ffiffiffi
3
p

, can have a generic curved shape spanning infi-
nitely many strain states, without any clear peak or valley. Indeed,
peaks (or valleys) of one strain component may not (and generally
do not) coincide with peaks (or valleys) of the other strain compo-
nents [12]. One way to avoid such issues would be to use appropri-
ate continuum damage models that include a variational
formulation of the damage rate [13], since these models do not re-
quire the definition of load ranges. But no such model has been
unquestionably accepted by the technical community yet – maybe
because fatigue damage is a too localized and even directional phe-
nomenon to be well described by continuum damage models. Any-
way, the most popular fatigue damage models require the
definition of a strain or stress range, as discussed above.

This first part of the paper deals with how to quantify the stress
or strain ranges used by the various multiaxial fatigue damage
models, associated with VA-NP histories that are periodic in time.
Its Part II will then generalize these concepts for non-periodic VA-
NP load histories, addressing multiaxial cycle counting issues and
proposing new procedures to solve some problems faced by the
available counting routines.

Consider a periodic load history formed by repeatedly following
a given loading path domain D, where D contains all points from
the stress or strain variations along one of its periods. The effective
stress or strain ranges associated with D are usually more difficult
to obtain than the mean values. For Findley’s model [7], or for Case
A cracks (Fig. 1) in McDiarmid’s model [8], after projecting D onto a
candidate plane perpendicular to the surface (i.e. with u = 90o

from Fig. 1), the maximum shear stress variation Dsmax is basically
the difference between the maximum and minimum values along
D of the shear stress sA that acts parallel both to the surface and
to the critical plane. The approach is similar for strain-based meth-
ods: the shear strain range Dcmax or the normal strain range De\
are easy to obtain in Case A cracks, since the projected history only
needs to deal with a single shear c or normal e\ strain component
Fig. 1. Case A and Case B cracks.
(except for the Brown–Miller method [9], which uses both c and e\
components, however they are treated independently in the multi-
channel rainflow count of [12]). On the other hand, the mean or
maximum value of the normal stresses along each cycle can be di-
rectly obtained from the rainflow algorithm presented in [12].

For Case B cracks (Fig. 1), Brown–Miller’s and SWT’s De\ should
be easy to obtain from the normal strain history perpendicular to
each candidate plane. But the effective Dsmax or Dcmax are not easy
to define for Case B cracks, since a generic NP loading path D re-
sults in NP variations of both shear stresses sB and sB2 that act par-
allel to the critical plane. As both sB and sB2 influence the growth of
Case B shear cracks along the critical plane, sB2 should not be ne-
glected. To calculate the maximum strain range Dsmax at the criti-
cal plane considering sB2, it is necessary to draw the path D of the
stress history along a sB � sB2 diagram, as shown in Fig. 2.

For complex-shaped load histories, such as the relatively simple
one shown in the figure, it is not easy to decide how to obtain the
effective Dsmax. The search for an effective range using the devia-
toric stress path started with the pioneering work of Dang Van
[14], who studied various methods to define and calculate it. Since
then, several ‘‘enclosing surface methods’’ have been proposed
[15–19], which try to find circles, ellipses or rectangles that contain
the entire load path (in the 2D case). In a nutshell, in the 2D case,
the Minimum Ball (MB) method [15] searches for the circle with
minimum radius that contains D; the minimum ellipse methods
[16–18] search for an ellipse with semi-axes a and b that contains
D with minimum area pab or minimum norm (a2 + b2)1/2; and the
maximum prismatic hull methods [17,19] search among the small-
est rectangles that contain D the one with maximum area or max-
imum diagonal (it’s a max–min search problem). The value of
Dsmax in Fig. 2 would either be assumed as the value of the circle
diameter, or twice the ellipse norm, or the length of the enclosing
rectangle diagonal. If the history path was represented in a cB � cB2

diagram, these exact same methods would result in estimates for
Dcmax.

The enclosing surface methods can also be applied to traction-
torsion histories, if a rx � sxy

ffiffiffi
3
p

diagram is considered. The effec-
tive range in this case is the Mises stress range DrMises. Similarly,
for traction-torsion histories where plastic strains dominate, a
strain diagram ex � cxy=

ffiffiffi
3
p

can be used to predict an effective
Mises strain range DeMises.

Such enclosing surface methods can be extended to histories
involving more than two stress or strain components. E.g., if the
history path is plotted in a 3D diagram representing 3 stress or
strain components, the enclosing surface methods will search for
spheres, ellipsoids or rectangular prisms. For higher dimension
Fig. 2. Periodic (or single) stress history path D in the sB � sB2 diagram, enclosed in
surfaces such as circles (balls), ellipses and rectangular prisms.
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diagrams, the search is for hyperspheres, hyperellipsoids, and
rectangular hyperprisms. However, this practice can lead to signif-
icant errors, since each enclosing surface will reflect an effective
range calculated on different planes at different points in time
[1]. The recommended approach for general 6D histories involving
all stress (or strain) components is the one proposed by Bannantine
and Socie [1]: to project them onto Cases A and B candidate planes,
resulting for the Case B planes in searches for effective ranges in 2D
diagrams sB � sB2 or cB � cB2.

The existing enclosing surface methods are described in the fol-
lowing section. Their framework is based on deviatoric stress (or
strain) diagrams and Mises stress (or strain) parameters, which
are discussed next.

2. Mises stress and strain parameters

The methods to obtain effective (or equivalent) stress and strain
ranges usually make use of stress and strain parameters based on
the Mises yield function. For linear elastic histories, both Mises
effective stress rMises and Mises shear stress sMises can be used as
auxiliary parameters, where

rMises ¼
3ffiffiffi
2
p sMises

¼ 1ffiffiffi
2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrx � ryÞ2 þ ðry � rzÞ2 þ ðrx � rzÞ2 þ 6ðs2

xy þ s2
yz þ s2

xzÞ
q

ð1Þ

Since the rMises equation is always positive, a Mises stress range
DrMises (also known as relative Mises stress rRMises) should be used
to correctly evaluate the variation of rMises due to a change
(Drx,Dry,Drz,Dsxy,Dsxz,Dsyz) in the stress components along
some loading path:

DrMises ¼ rRMises

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDrx � DryÞ2 þ ðDrx � DrzÞ2 þ ðDry � DrzÞ2 þ 6ðDs2

xy þ Ds2
xz þ Ds2

yzÞ
q

ffiffiffi
2
p

ð2Þ

Note that the Mises stress range correlates with the shear range
parameter DsMises, used in both Sines and Crossland multiaxial fati-
gue damage models, through DrMises ¼ DsMises � 3=

ffiffiffi
2
p

The Mises effective strain eMises is another useful quantity in
VA-NP histories, in special to deal with plastic strains. It uses
the mean or effective Poisson coefficient �m ¼ ð0:5epl þ meleelÞ=
ðepl þ eelÞ to consider plastic effects, where eel and epl are the
elastic and plastic components of the strains, and mel and mpl are
the elastic and plastic Poisson coefficients (where mpl ffi 0.5). The
Mises strain correlates with the Mises shear strain cMises, which
is the combination of both shear strains that act in each of the
octahedral planes, through

eMises ¼
3

2
ffiffiffi
2
p
� ð1þ �mÞ

cMises

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðex � eyÞ2 þ ðex � ezÞ2 þ ðey � ezÞ2 þ 1:5ðc2

xy þ c2
xz þ c2

yzÞ
q

ffiffiffi
2
p
� ð1þ �mÞ

ð3Þ

Since the eMises equation is always positive, a Mises strain
range DeMises (also known as the relative Mises strain eRMises)
should be used to evaluate its variation due to any change in
the strain components (Dex,Dey,Dez,Dcxy,Dcxz,Dcyz) along some
loading path:
DeMises ¼ eRMises

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDex � DeyÞ2 þ ðDex � DezÞ2 þ ðDey � DezÞ2 þ 1:5ðDc2

xy þ Dc2
xz þ Dc2

yzÞ
q

ffiffiffi
2
p
� ð1þ �mÞ

ð4Þ

A range parameter DcMises can also be defined, related to the Mises
strain range by

DeMises ¼
3 � DcMises

2
ffiffiffi
2
p
ð1þ �mÞ

ð5Þ

Note that since the shear stress or strain ranges DsMises or
DcMises are measured on the octahedral planes, they are not equal
to twice the shear amplitudes sa or ca acting on the considered
plane. But those shear amplitudes could be easily obtained by

sa ¼
ffiffiffi
6
p

4
DsMises ¼

ffiffiffi
3
p

6
DrMises and ca ¼

ffiffiffi
3
p

6
DcMises

¼ 1þ �mffiffiffi
3
p DeMises ð6Þ

Finally, for the linear elastic case (where �m ¼ mel), all these rela-
tive Mises stresses and strains correlate with the Mises shear range
parameters by

DrMises ¼ E � DeMises ¼
3ffiffiffi
2
p � DsMises ¼

3E

2
ffiffiffi
2
p
� ð1þ melÞ

� DcMises ð7Þ

When dealing with incremental plasticity problems, it is conve-
nient to represent the stresses or strains in a 9-dimensional (9D)
space instead of a 6D space [20]. But, to find effective ranges in
VA-NP histories, it is a good idea to work in a space with reduced
6D dimensions. Moreover, since the deviatoric stresses Sx, Sy and Sz

are linear-dependent, because Sx + Sy + Sz = 0, it is possible to re-
duce the deviatoric stress dimension from the 6D representation
to 5D [21]. In this paper, the transformation proposed by Papado-
poulos et al. [22] is used to obtain a reduced-order deviatoric stress
tensor �S’ represented in a 5D transformed Euclidean stress-space
E5r, where

S0 � ½ S1 S2 S3 S4 S5 �T

S1 � rx � ry

2 �
rz
2 ¼ 3

2 Sx; S2 � ry�rz

2

ffiffiffi
3
p
¼ Sy�Sz

2

ffiffiffi
3
p

S3 � sxy

ffiffiffi
3
p

; S4 � sxz

ffiffiffi
3
p

; S5 � syz

ffiffiffi
3
p

8>><
>>:

ð8Þ

For strain histories, a similar transformation to a 5D trans-
formed Euclidean strain-space E5e is used for the deviatoric strains,
resulting in a reduced-order deviatoric strain �e’ represented by

�e0 � ½ e1 e2 e3 e4 e5 �T

e1 � 3
2 �

ex
1þ�m ¼

2ex�ey�ez

2�ð1þ�mÞ ; e2 � ey�ez

2�ð1þ�mÞ

ffiffiffi
3
p
¼ ey�ez

2�ð1þ�mÞ

ffiffiffi
3
p

;

e3 �
cxy

ffiffi
3
p

2�ð1þ�mÞ ; e4 � cxz

ffiffi
3
p

2�ð1þ�mÞ ; e5 �
cyz

ffiffi
3
p

2�ð1þ�mÞ

8>>><
>>>:

ð9Þ

where �m is the effective Poisson coefficient. Note that the norms of S0

and �e0 are equal to the Mises equivalent stress rMises and strain
eMises.

After defining all involved stress and strain parameters, the
enclosing surface methods are discussed. These methods are based
on surfaces that enclose the history path in the above defined
stress or strain sub-spaces. There are three main types of enclosing
surfaces: balls, ellipsoids and rectangular prisms, reviewed next.

3. Enclosing Surface Methods

In his pioneer work, Dang Van [14,15] realized that the search
for an effective stress range must take place on the deviatoric
stress space. For periodic elastic histories, the mesoscopic stresses
and strains in the critically oriented grain should stabilize by the
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process of elastic shakedown, generating a local residual stress at
such critical grain, called a backstress. The location of such back-
stress in the deviatoric space can be estimated as the center of
the Minimum Ball (MB) that encloses the history, i.e. the smallest
circle, sphere or hypersphere that circumscribes the loading path.
In Dang Van’s method, each mesoscopic stress state along the his-
tory path is then compared to a limiting stress level to predict infi-
nite life. However, this approach is not useful to calculate finite
fatigue lives, since it does not deal with stress (or strain) ranges,
only with individual stress states.

But the same MB circumscribed to the macroscopic history can
be used to estimate an effective Mises stress range DrMises (or
strain range DeMises) to predict finite lives. The diameter d of such
MB in the transformed deviatoric stress-space E5r or strain-space
E5e (or in a 2D, 3D or 4D sub-space of such spaces) is the magnitude
of the variation DS0 (or D�e0), which is equal to DrMises (or DeMises).
Therefore, the effective shear ranges Dsmax (used in the Findley
and McDiarmid models) and Dcmax (used in the Brown-Miller
and Fatemi–Socie models), Mises ranges DrMises and DeMises, and
shear ranges DsMises (used in the Sines and Crossland models)
and DcMises, can all be estimated from d using the MB method by

DrMises ¼ 3 � DsMises=
ffiffiffi
2
p
¼ Dsmax

ffiffiffi
3
p
¼ ð2saÞ �

ffiffiffi
3
p
¼ jD�S’j ¼ d � L � kMB or

DeMises ¼ 3 � DcMises

2
ffiffiffi
2
p
ð1þ �mÞ

¼ Dcmax

ffiffiffi
3
p

2ð1þ �mÞ ¼
ð2caÞ �

ffiffiffi
3
p

2ð1þ �mÞ ¼ jD
�e’j ¼ d � L � kMB

ð10Þ

where L is the longest chord in the history (the maximum Euclidean
distance in the transformed space between any two points along
the history path, measured in either stress or strain units) and kMB

is a dimensionless parameter defined as the ratio between the
Mises stress or strain range and L.

In the 2D case, if any two points from the history define the
diameter of a circle that contains the entire path, then their dis-
tance L is equal to the diameter d, therefore kMB = 1.0. A
noTable 2D case is for a path forming an equilateral triangle, where
kMB ¼ 2=

ffiffiffi
3
p
ffi 1:155. For any other 2D path, it is found that

1.0 6 kMB 6 1.155.
But the Minimum Ball (MB) method is not efficient to represent

the behavior of NP histories. For instance, it would predict the
same Mises ranges for a NP 90o out-of-phase circular path and a
proportional path defined by a diameter of this circle, both result-
ing in kMB = 1.0. But a higher value of k would certainly be expected
for the NP history.

To solve this problem, Freitas et al. [16] proposed the Minimum
Circumscribed Ellipsoid (MCE) method. It searches for an ellipse (or
ellipsoid or hyperellipsoid, for higher dimensions) that circum-
scribes the entire history, with its longest semi-axis a1 equal to
the radius of the minimum ball, and with the smallest possible val-
ues for the remaining semi-axes ai (i > 1). The Mises ranges are
then

DrMises or DeMises ¼ 2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiXdim

i¼1

a2
i

vuut � 2 � F ð11Þ

where dim is the dimension of the history path, 2 6 dim 6 5, and F is
defined as the Frobenius norm of the ellipsoid, which is equal to the
square root of the sum of the squares of the ellipsoid semi-axes.
Here, the Frobenius norm is essentially an Euclidean distance (or
Euclidean norm) between the origin and a point with coordinates
(a1, a2, . . ., adim), since the axes of the reduced stress (or strain) space
are orthonormal. In the case of tensors, the Euclidean norm is com-
monly called the Frobenius norm, usually abbreviated as F-norm
[18].

The ratio kMCE between the Mises ranges calculated by the MCE
method and the longest chord L reproduces experimental data bet-
ter than kMB (generated by the MB method). In the 2D case, a NP
circular path would result in kMCE ¼

ffiffiffi
2
p

instead of the proportional
value 1.0, which is much more reasonable than the MB prediction.
It is also found that any 2D path results in 1:0 � kMCE �

ffiffiffi
2
p

, with
the maximum value occurring e.g. for circular and square paths.
In general, for any dimension dim, it is found that
1:0 � kMCE �

ffiffiffiffiffiffiffiffiffi
dim
p

, with the maximum value
ffiffiffiffiffiffiffiffiffi
dim
p

occurring e.g.
for paths that follow the edges of hypercubes or large portions of
the surface of hyperspheres.

The downside of the MCE method is the requirement that the
longest semi-axis must be equal to the radius of the Minimum Ball.
E.g., a very elongated (almost proportional) rectangular path would
give a circle as the MCE. The MCE would thus predict kMCE ¼

ffiffiffi
2
p

for
an almost proportional rectangular path, instead of the expected
value of 1.0.

A possible alternative to the MCE method is to search for the
Minimum Volume Ellipsoid (MVE), also known as the Löwner–John
Ellipsoid. In the 2D case, it is basically the search for an enclosing
ellipse with minimum area. Such MVE method solves the issue
with rectangular paths discussed above, however it tends to find
ellipses with lower aspect ratios than expected.

Another alternative to the MCE method is the search for the
Minimum F-norm Ellipsoid (MFE) [17]. Instead of searching for
the minimum volume (or area), the MFE looks for the ellipse, ellip-
soid, or hyperellipsoid with minimum value of its F-norm F, de-
fined in Eq. (11). Zouain et al. [18] present an efficient (although
computationally intensive) method to numerically find such MFE.
Other efficient algorithms can be found in [23].

The ratios between the Mises stress or strain ranges 2F calcu-
lated from the MCE, MVE and MFE methods and the longest chord
L are defined, respectively, as kMCE, kMVE and kMFE. All these ratios
must be greater than or equal to 1.0. In the 2D case, a notable path
is the one with the shape of an equilateral triangle with sides L
(which are also its longest chords), where the enclosing surface
is a circle with diameter d ¼ 2L=

ffiffiffi
3
p

and F-norm F ¼ d
ffiffiffi
2
p

, resulting
in kMCE ¼ kMVE ¼ kMFE ¼ 2 � F=L ¼ 2

ffiffiffi
2
p

=
ffiffiffi
3
p
ffi 1:633. For any other 2D

path, it is found that 1.0 6 kMCE 6 1.633 and 1.0 6 kMFE 6 1.633. On
the other hand, kMVE can reach values beyond 2.0 when a very elon-
gated enclosing ellipse is the solution with minimum area, an indi-
cation that the MVE method can be very conservative.

Another class of enclosing surface methods tries to find a rect-
angular prism with sides 2a1, ..., 2adim that encloses a load history
path, where dim is the dimension of the considered space. There
are essentially four methods to fit rectangular prisms to the history
path.

The first is the Maximum Prismatic Hull (MPH). This method
searches for the smallest rectangular prism that encloses the his-
tory (the minimum prism), for each possible orientation (of the
prism). Among them, the one with highest F-norm is chosen.
The F-norm and resulting Mises ranges are the same defined
in Eq. (11), except that here ai are the semi-lengths (half the
length) of the rectangular prism sides. The MPH was originally
proposed by Gonçalves et al. in [17] for sinusoidal time histories,
and later extended by Mamiya et al. in [19] for a general NP
loading.

Another prismatic hull method is the Maximum Volume Pris-
matic Hull (MVPH), which searches among the minimum prisms
the one with maximum volume. Although the search is for a max-
imum volume, the F-norm is also used to compute the Mises range.
In the 2D case, the MVPH method is essentially the search, among
the minimum rectangles that enclose the entire path, of the one
with maximum area (it’s a max–min problem).

A third method is proposed here, called the Maximum Prismatic
Hull with Longest Chords (MPHLC). It is basically an improvement
of Deperrois’ longest chord method [2], which provides satisfactory
results [24]. However, Papadopoulos [22] criticizes it because, if



Fig. 3. Load history path, assumed as a homogeneous wire with unit mass in the
deviatoric 2D space.
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any longest chord is non-unique, then different rectangular prisms
and resulting shear amplitudes could be obtained for the same his-
tory. But this non-uniqueness could be easily solved by stating
that, when the longest chords are non-unique, then the chosen
prismatic hull would be the one with maximum F-norm among
all possible results. The use of rectangular prisms with maximum
F-norm has shown good results in the MPH method, therefore this
could be the solution to Papadopoulos’ criticisms. The combination
of the MPH and Deperrois’ methods thus leads to the MPHLC meth-
od, performed in 4 steps:

(1) define the longest side 2a1 of the rectangular prism in the
direction of the longest chord L of the history;

(2) project the history into the sub-space orthogonal to the
directions of all sides of the prisms that have already been
defined (for a history with dimension dim, if m sides have
already been chosen, then such sub-space will have dim�m
dimensions);

(3) define the next side 2ai of the rectangular prism in the direc-
tion of the longest chord measured in the projected sub-
space, and repeat step 2 until all sides are found;

(4) if multiple solutions for the rectangular prism are found, the
one with maximum F-norm is chosen – this step addresses
Papadopoulos’ criticisms [22].

The advantage of the MPHLC method over the MPH or MVPH is
that it does not require a numerical search for the prismatic hull
orientation. Its orientation is deterministically defined by the lon-
gest chords.

A variation of the MPHLC is also proposed, called the Maximum
Prismatic Hull with Container Chords (MPHCC). It is similar to the
MPHLC, but all chords that contain the orthogonal projection of the
entire history onto them (called here ‘‘container chords’’) are con-
sidered as candidate directions for the sides of the rectangular
prism. Note that every longest chord LC is a ‘‘container chord’’
CC, but not every CC is a LC. From the probable multiple solutions
for the resulting rectangular prisms, the one with maximum F-
norm is chosen.

The ratios between the Mises stress or strain ranges 2F calcu-
lated from the MPH, MVPH, MPHLC and MPHCC methods and the
longest chord L are defined, respectively, as kMPH, kMVPH, kMPHLC

and kMPHCC.
In summary, enclosing surface methods can be useful to esti-

mate the equivalent stress (or strain) amplitude associated with
NP loading paths. However, such methods have three issues. First
of all, among all enclosing surface methods, only the MB has a
physical foundation. The search of the minimum ball enclosing a
history path in the deviatoric space corresponds to the search of
the elastic-shakedown state that the material grains in the neigh-
bour of the point of interest could attain under periodic loading,
considering an isotropic and/or kinematic hardening behavior [1].
In other words, fracture by fatigue is avoided if an elastic shake-
down state can be reached. On the other hand, the enclosing ellip-
soids and prisms are not derived from physical considerations,
they are empirical methods that try to interpolate the limit cases
between a proportional loading and a highly non-proportional
one. Even so, these methods still have their practical value as engi-
neering tools for relatively simple loading paths, as long as their
effectiveness is experimentally verified.

The second issue is that each portion of the considered path
should not involve more than 1 cycle. Otherwise, if it is considered
as a single cycle, the actual damage might be underestimated. In-
stead, a multiaxial rainflow algorithm should be applied to the en-
tire stress or strain history, and then an enclosing surface method
should be applied for the path of each rainflow-counted reversal.
This second issue will be addressed in Part II of this paper.
Finally, the third issue involves information loss. Enclosing sur-
face algorithms do not take into account the actual loading path,
but only the convex hulls associated with them. For instance, con-
sider a square path ABCD in a 2D deviatoric space. The convex hull
of such path, defined as the convex enclosure with minimum area
that contains the entire path, is the square itself. An hourglass-
shaped path ABDC or ADBC would have the same convex hull:
the square ABCD. It is not difficult to prove that the enclosing cir-
cle, ellipse or prismatic hull from any presented method would re-
sult in the same enclosure for these three considered paths,
treating them as identical. In general, all paths that share the same
convex hull share as well the same enclosing surface for a given
method, even though they might lead to different equivalent
amplitudes and fatigue lives. This third issue is addressed by a no-
vel method to calculate equivalent and mean components that
takes into account the actual loading path, not only its convex hull.
This new method is presented next.

4. The Moment Of Inertia (MOI) method

The Moment Of Inertia (MOI) method is proposed here to calcu-
late alternate and mean components of complex NP load histories.
To accomplish that, the history must first be represented in a 2D
subspace of the transformed 5D Euclidean stress-space E5r (for
stress histories) or E5e (for strain histories). The MOI method as-
sumes that the 2D path/domain D, represented by a series of points
(X,Y) from the stress or strain variations along it, is analogous to a
homogeneous wire with unit mass. Note that X and Y can have
stress or strain units, but they are completely unrelated to the
directions x and y usually associated with the material surface.
The mean component of D is assumed, in the MOI method, to be
located at the center of gravity of this imaginary homogeneous
wire shaped as the history path. Such center of gravity is located
at the perimeter centroid (Xc,Yc) of D, calculated from contour inte-
grals along the entire path

Xc ¼
1
p
�
I

X � dp; Yc ¼
1
p
�
I

Y � dp; p ¼
I

dp ð12Þ

where dp is the length of an infinitesimal arc of the path and p is the
path perimeter, see Fig. 3.

The MOI method is so called because it makes use of the mass
moments of inertia (MOI) of such homogeneous wire. These mo-
ments are first calculated with respect to the origin O of the dia-
gram, assuming the wire has unit mass, resulting in

IO
XX ¼

1
p
�
I

Y2 � dp; IO
YY ¼

1
p
�
I

X2 � dp; IO
XY

¼ �1
p
�
I

X � Y � dp ð13Þ

Then, the mass moments of inertia of such unit mass wire, with
respect to its center of gravity (Xc,Yc), are obtained. They are com-
puted from the moments of inertia of the path D with respect to its
perimeter centroid (Xc,Yc), which are easily obtained from the par-
allel axis theorem, assuming a unit mass:



Fig. 4. Application of the MOI method to polygonal history paths.
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IXX ¼ IO
XX � Y2

c ; IYY ¼ IO
YY � X2

c ; IXY ¼ IO
XY þ Xc � Yc ð14Þ

The MOI method assumes that the deviatoric stress or strain
ranges, DS � DrMises or De � DeMises, depend on the mass moment
of inertia IZZ with respect to the perimeter centroid, perpendicular
to the X–Y plane. This is physically sound, since history paths fur-
ther away from their perimeter centroid PC will contribute more to
the effective range and amplitude, which is coherent with the fact
that wire segments further away from the center of gravity of an
imaginary homogeneous wire contribute more to its MOI. Note
that the use of integral parameters to evaluate NP paths is not
new, it was already used e.g. in [3] to estimate the non-proportion-
ality factor. But the use of a moment of inertia analogy to obtain
effective ranges is a novel idea, a true alternative for the enclosing
surface methods discussed above.

From the perpendicular axis theorem, which states that IZZ = IXX

+ IYY, and from a dimensional analysis, it is found that
DrMises

2
or

DeMises

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3 � IZZ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � ðIXX þ IYYÞ

p
ð15Þ

The factor
ffiffiffi
3
p

is introduced to guarantee that a proportional
loading path, represented by a straight segment with length L,
perimeter 2L and unit mass m = 1, will result in the expected range
DrMises or DeMises equal to L (since the MOI of a straight wire with
respect to its centroid is mL2/12).

Note that the above definitions are coherent, since they are
independent of the X–Y system orientation because IXX + IYY is an
invariant, equal to the sum of the principal MOI I1 + I2 of the homo-
geneous wire which represents the loading path.

The MOI method is simple to calculate, in special for polygonal
histories. The mass moments of inertia of curved histories are also
easy to calculate from fine polygonal discretizations. In addition,
the MOI method can make use of classical mass moment of inertia
tables, or even CAD programs applied to arbitrarily-shaped homo-
geneous wires, to calculate IXX, IYY, IXY and IZZ.

To use the MOI approach in polygonal load history paths, it is
enough to combine the expression for the moment of inertia of
an inclined straight wire and the parallel axis theorem. If each side
i of the polygon has length Dpi, centered at (Xci,Yci), and making an
angle wi with respect to the horizontal (see Fig. 4), then the load
path perimeter centroid PC and the MOI expressions with respect
to the origin are obtained from
p ¼
X

i

Dpi;Xc ¼
1
p
�
X

i

Xci � Dpi; Yc ¼
1
p
�
X

i

Yci � Dpi

IO
XX ¼

1
p
�
X

i

Dp2
i

12
sin2 wi þ Y2

ci

� �
� Dpi; IO

YY ¼
1
p
�
X

i

Dp2
i

12
cos2 wi þ X2

ci

� �
� Dpi;

IO
XY ¼ �

1
p
�
X

i

Dp2
i

12
sin wi cos wi þ XciYci

� �
� Dpi

ð16Þ
Fig. 5. Values of the Mises stress or strain range ratio k for the MB, MCE, MVE, MFE,
MPH, MPHLC, MPHCC, MVPH, MinPH, MinVPH and MOI methods for a rectangular
2D history path.
The MOI with respect to the load path PC is then calculated from Eq.
(14).

Note that, similarly to the enclosing surface methods, the MOI
method should only be applied to 2D histories. It would lead to sig-
nificant errors if directly applied to 3D, 4D or 5D load histories, be-
cause the MOI method would be calculated on different planes at
different points in time [1]. Instead, any 3D, 4D or 5D load history
in the deviatoric space should first be projected onto a suitable
candidate plane for the fatigue damage analysis. Then, for Case B
cracks (Fig. 1), the history of the two shear stresses (or strains) act-
ing parallel to the crack plane should be represented in a 2D dia-
gram, where the MOI method would be applied.

In the next section, all presented methods are compared.
5. Comparison among the enclosing surface methods

Fig. 5 shows the enclosing surfaces obtained from all presented
methods for a rectangular history path in a reduced 2D sub-space,
along with their ratios k between the Mises ranges and longest
chord L. Note that, in this example, L is the diagonal of the rectan-
gular path.

Experimental results suggest that the expected Mises to longest
chord ratio k in this example is about 1.3. However, the Minimum
Ball MB method predicts kMB = 1.0, a very non-conservative value.
The MB assumes that such rectangular path would have the same
Mises range L as a straight path along one of its diagonals, which is
not reasonable. The Minimum Circumscribed Ellipsoid MCE meth-
od, on the other hand, overestimates k, obtaining
kMCE ¼

ffiffiffi
2
p
ffi 1:414. The MCE method finds the same circle from

the MB method to enclose such history, even though the aspect ra-
tio of this rectangular path is very different from 1.0, which would
suggest instead the use of an elongated elliptic hull.

The Minimum Volume Ellipsoid MVE method also tends to
overestimate k, obtaining in this example kMVE = 1.413. In the
search for the minimum area (or volume, for higher dimension dia-
grams), the MVE method ends up finding overly elongated ellipses
(with semi-axes b	 a), which have a small area pab due to the
very low value of b, but an unrealistically high F-norm (a2 + b2)1/2

due to the high value obtained for a. Thus, kMVE overestimates
the ratio k, since it is calculated from this unrealistic value of the
F-norm, and not from the minimized area (or volume).

Among the ellipsoid surface methods, the Minimum F-norm
Ellipsoid MFE gives the best predictions, resulting in kMFE = 1.295,



Fig. 6. Comparison between the k ratios predicted by the MPH and MFE methods
for 3 � 106 Monte–Carlo simulations with random 2D history paths.
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with an enclosing ellipse with a much more reasonable aspect ratio
than the ones from the MCE and MVE methods, see Fig. 5.

Both Maximum Prismatic Hull MPH and Maximum Volume
Prismatic Hull MVPH methods obtain in this example
kMPH = kMVPH = 1.295, which exactly agrees with the MFE predic-
tion. Note, however, that the MPH and MFE methods are not equiv-
alent, since they result in slightly different k values between them
for other history paths, as shown in [25].

The Maximum Prismatic Hull with Longest Chords MPHLC and
Maximum Prismatic Hull with Container Chords MPHCC methods
result in kMPHLC = kMPHCC = 1.207, a value about 7% lower than the
MPH prediction. The fact that kMPHLC 6 kMPH and kMPHCC 6 kMPH is
not a surprise, since the MPH searches for the maximum F-norm
checking rectangles (in the 2D case) in all directions, while the
MPHLC and MPHCC only search for rectangles in the directions of
the longest and/or container chords. If these directions of longest
or container chords coincide with the ones associated with a max-
imum F-norm rectangle (which is quite often true), then the
MPHLC or MPHCC predictions will coincide with kMPH, otherwise
they will result in k ratios slightly lower than the upper bound
kMPH.

Fig. 5 also shows the prismatic hulls MinPH and MinVPH with
minimum (instead of maximum) F-norm and volume (or area, in
2D), respectively. In this example, these rectangular hulls would
coincide with the original rectangular path, wrongfully predicting
k = 1. This counter-example shows why no prismatic hull method
with minimum F-norm or volume has been proposed.

In summary, the MB method tends to underestimate the Mises
stress or strain range ratio k, while the MCE and MVE overestimate
it. The MPHLC and MPHCC slightly underestimate k, while the MFE,
MPH and MVPH give very similar (although, in general, different)
predictions, which agree with experimental results and with the
MOI method prediction kMOI = 1.295, where kMOI is defined as the
ratio between the MOI-calculated Mises stress or strain range
and the longest chord L.

But the above considerations are based on a single simple
example. To really compare all enclosing surface methods, it is
necessary to study all possible history path topologies in 2D,
3D, 4D and 5D deviatoric stress or strain spaces. In this work,
Monte Carlo simulations are performed for 3 � 106 2D history
paths, 105 paths in 3D, 104 in 4D and 103 in 5D, including both
random and especially selected paths to try to cover all possible
path topologies. All enclosing surface methods are applied to each
of these simulated paths, to evaluate and compare their k
predictions.

The random paths in 2D are selected as follows. Since the con-
vex hull of a non-convex path has exactly the same enclosing sur-
face of the path itself (for each and every considered method), it is
enough to use only convex paths in the simulations, without gen-
erating biased statistics due to important path types that might
have been disregarded. Note that the MOI method is not simulated
here, otherwise non-convex paths would need to be considered as
well, because this method is path-dependent. But to evaluate only
convex enclosing surface methods, simulated non-convex paths
are not necessary, since they’re well described by the (convex) path
along their convex hull perimeter.

Without loss of generality, a unit length segment is created in
the horizontal direction and considered as the longest edge of
the path. Then, 2 � 106 random convex quadrilaterals are uniquely
defined from drawing random lengths between 0 and 1 for the next
two edges, and random angles between 0 and 180 degrees for the
next two internal angles. The remaining 106 random paths are
drawn in a similar way, but for convex polygons with increasing
number of sides. Since any convex path can be approximated by
a convex polygon with a sufficient number of sides, the simulation
could be considered as representative of any convex 2D path.
Interestingly, it was found that the quadrilateral paths were
able to capture all relevant issues of the studied methods. Notable
2D paths in all method comparisons were the ones shaped as a
square, an equilateral triangle, and a straight line (proportional
path), all of which are a special or degenerate case of a quadrilat-
eral. The polygonal paths with higher number of sides contributed
to points that were almost invariably inside the point cloud from
the quadrilateral simulations, see e.g. Fig. 6. Even the notable circu-
lar path, which required polygons with several sides to be well
approximated, did not contribute much to the analysis, since its
enclosing surface from each considered method is the same as
the one for the already simulated square path.

A similar approach was performed for the 3D, 4D and 5D simu-
lations, drawing random polygonal paths with increasing number
of sides in such dimensions. Instead of using internal angles, the
polygonal edges were defined from random 3D, 4D and 5D vectors
with norms between 0 and 1.

One of the main challenges of these simulations was the need to
implement the search algorithms for all existing enclosing surface
methods. The details on the implemented search algorithms are
beyond the scope of this work, but a few methods can be found
in [25]. Note that fewer simulations are performed as the dimen-
sion increases, because of computing time restrictions, since most
enclosing surface methods are very computationally intensive in
higher dimensions. E.g., the search for the direction of a 5D hyperp-
rism in the MPH method involves a search in a 10-dimensional
space for the 10 angles that define its 5D orientation, which can
be computationally intensive even for rough discretizations of each
angle at 15o steps. On the other hand, the MPHLC and MPHCC
methods are straightforward, deterministic (no numerical search
method based on discretizations is required) and several orders
of magnitude faster for higher dimension histories.

Table 1 shows the median values of the ratio between the k ra-
tios from each pair of enclosing surface methods, estimated from
the Monte Carlo simulations for 2D paths, along with the associated
coefficient of variation (COV). It is found that the MPH, MVPH,
MPHLC and MPHCC method predictions are, in average, very close
to each other, within 2% or less (median ratio between 0.98 and
1.02 for all method pairs). Therefore any of the four variations of
those prismatic hull methods could be used interchangeably. For
3D, 4D and 5D histories (not shown in Table 1), the agreement is
also very good among all prismatic hull methods, since their gener-
ated predictions are within 3% or less. For a history path with
dimension dim, it is also verified that 1 � kMPHLC � kMPHCC � kMPH �ffiffiffiffiffiffiffiffiffi

dim
p

. Therefore, the MPHCC results in Mises ratios slightly closer



Table 1
Median values of the ratios krow/kcolumn between the k ratios calculated using the enclosing surface models shown in each row and column from the table, estimated from 3 � 106

Monte Carlo simulations for 2D history paths. The values in parentheses are the coefficient of variation (COV) of such ratios/correlations.

Row/col MPHLC MPHCC MPH MVPH MFE MVE MB MCE

MPHLC – 1.00 (0.9%) 0.98 (2.3%) 1.00 (3.4%) 0.91 (5.9%) 0.84 (7.7%) 1.06 (6.2%) 0.87 (8.8%)
MPHCC 1.00 (0.9%) – 0.98 (2.1%) 1.00(3.2%) 0.91 (5.7%) 0.84 (7.7%) 1.06 (6.3%) 0.87 (8.6%)
MPH 1.02 (2.3%) 1.02 (2.2%) – 1.01 (1.9%) 0.93 (4.3%) 0.86 (6.6%) 1.09 (6.9%) 0.88 (7.0%)
MVPH 1.00(3.5%) 1.00(3.3%) 0.99 (1.8%) – 0.91 (4.3%) 0.85 (6.7%) 1.07(7.8%) 0.86 (6.8%)
MFE 1.10 (5.9%) 1.10 (5.7%) 1.08 (4.3%) 1.10 (4.3%) – 0.95 (6.5%) 1.18 (10.4%) 0.97 (4.1%)
MVE 1.19 (7.7%) 1.19 (7.7%) 1.16 (6.8%) 1.17 (6.9%) 1.05 (7.7%) – 1.28 (8.8%) 1.00 (9.2%)
MB 0.94 (5.7%) 0.94 (5.8%) 0.92 (6.6%) 0.93 (7.4%) 0.85 (10.2%) 0.78 (9.6%) – 0.80 (12.9%)
MCE 1.15 (8.7%) 1.15 (8.6%) 1.13 (6.9%) 1.16 (6.4%) 1.03 (4.5%) 1.00 (7.6%) 1.25 (12.2%) –

Table 2
Fatigue life N (in cycles) experimentally measured and predicted using the Smith–
Watson–Topper damage model and the Moment Of Inertia (MOI), Minimum Ball (MB)
and Maximum Prismatic Hull (MPH) methods. Note that Cases 1–4 consider 2 cycles
per block (e.g. the measured life for Case 1 was 1400 loading blocks, and thus shown
as 2800 cycles).

Path/N experim. MOI MB MPH

CaseO 7100 7085 7085 7085
Case 1 2800 3379 3379 1150a

Case 2 4200 4462 4462 1504a

Case 3 820 640 640 229a

Case 4 900 858 858 304a

Case 5 3200 3557 3557 3557
Case 6 2600 2332 2393 2177
Case 7 1700 1590 1751 1453
Case 8 470 604 856b 572
Case 9 660 604 856b 572
Case 10 320 329 949b 329
Case 11 1200 1073 2241b 1073
Case 12 710 689 2023b 689

a As if 90� out of phase.
b As if proportional.
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to the MPH predictions than the MPHLC. In addition, it is also con-
firmed that 1 � kMVPH � kMPH �

ffiffiffiffiffiffiffiffiffi
dim
p

. Note that the lower bound 1
is obtained for proportional paths, while the upper bound

ffiffiffiffiffiffiffiffiffi
dim
p

is
associated with square or circular-shaped 2D paths (dim = 2) or
higher-dimensional paths covering most of the surface of cubes,
spheres, hypercubes or hyperspheres (for 3 6 dim 6 5). Despite
the relatively good agreement between the MVPH and other pris-
matic hull methods, with a maximum COV of 3.5%, it can underes-
timate the k ratio by as much as 10% for nearly proportional
histories.

Fig. 6 compares the MPH and MFE methods in 2D. Even though
these methods seem coherent in the graph, they can lead to very dif-
ferent k predictions. It is found that kMFE P kMPH and, in average, kMPH

is about 92.9% of kMFE (with a median ratio 0.93) with a COV of 4.3%.
Similar conclusions are found for 3D, 4D and 5D histories. Note that
the point ðkMPH; kMFEÞ ¼ ð0:5þ

ffiffiffi
3
p

=2 ffi 1:366;2
ffiffiffi
2
p

=
ffiffiffi
3
p
ffi 1:633Þ in

the graph denotes the notable case of a path with the shape of an
equilateral triangle. This significant difference between k predic-
tions suggests that a loading path shaped like an equilateral triangle
in deviatoric space would provide a very good discriminant experi-
ment to compare the adequacy of the MPH and MFE methods for a
certain material.

From the Monte Carlo simulations with 2D paths it is also found
that the MVE and MCE methods can severely overestimate k, in
special for almost proportional paths. As discussed before, almost
proportional paths can lead to overly elongated ellipses in the
MVE method, which can have a small area but an unrealistically
large F-norm, leading to kMVE values larger than 2.0 in a few ex-
treme cases, instead of the expected k = 1.0. In addition, an almost
proportional history defined by, e.g., a rectangular path with very
low aspect ratio, would have an expected k close to 1.0 (since it
is an almost proportional history), however the MCE method
would circumscribe a circle (instead of an elongated ellipse) to
such elongated rectangular path, wrongfully predicting
kMCE ¼

ffiffiffi
2
p

. An almost proportional triangular path would also re-
sult in kMCE ¼

ffiffiffi
2
p

, revealing the inadequacy of the MCE method
for such paths. Compared to the four prismatic hull methods, both
MVE and MCE overestimate k in average by 13–19% (median ratios
1.13–1.19), with a COV of up to 8.7%. Similar conclusions are found
for 3D, 4D and 5D histories.

Finally, it is found that the MB method can severely underesti-
mate k in 2D paths, except for almost proportional load histories
(where k ffi 1.0). Good discriminant experiments to confirm the dif-
ferences between the MB method and, e.g., the MFE method could
make use of a square or circular path, where ðkMFE; kMBÞ ¼ ð

ffiffiffi
2
p

;1Þ,
or else of a path shaped as an equilateral triangle, where
ðkMFE; kMBÞ ¼ ð2

ffiffiffi
2
p

=
ffiffiffi
3
p
ffi 1:633;2=

ffiffiffi
3
p
ffi 1:155Þ. Both cases would

result in kMFE=kMB ¼
ffiffiffi
2
p

, a 41% difference that could be easily ver-
ified experimentally. Similar conclusions are found for 3D, 4D and
5D histories.
6. Experimental evaluation of the MOI and enclosing surface
predictions

The MOI and enclosing surface estimates of effective ranges are
now used to predict (in fact, to reproduce) the multiaxial fatigue
lives of 304 stainless steel specimens tested by Itoh et al. [3]. Thir-
teen periodic histories are studied, represented by the block load-
ings shown in Fig. 7 for Cases 0 through 12. The multiaxial fatigue
lives are calculated using the Smith-Watson-Topper (SWT) model
in Bannantine-Socie’s critical plane approach [1], searching for
the plane where the damage parameter rmaxDe/2 is maximized.
The material properties used in these calculations are:

e ¼ r
E
þ ð r

1754
Þ1=0:276

ðrmax
De
2
Þmax ¼

7572

E
ð2NÞ2b þ 30:5 � ð2NÞbþc

E ¼ 197;000 MPa; b ¼ �0:0886; c ¼ �0:303

ð17Þ

Table 2 shows the experimental fatigue lives and the associated
MOI, MB and MPH method predictions for each of the 13 loading
histories. Note that the MOI method considers two cycles per block
for Cases 1–4; this number of cycles can be deterministically ob-
tained using the Modified Wang-Brown rainflow algorithm de-
scribed in Part II of this paper.

The MOI method predicts that Cases 0–5 are proportional, since
their kMOI = 1.0. This is reasonable, because the star and cross-
shaped histories from Cases 1–4 are indeed the combination of
two perpendicular proportional paths. These two perpendicular
paths should not be considered as a single NP path, since they will
most likely induce fatigue damage independently from each other
in two perpendicular material planes. The MPH generates overly
conservative predictions in these cases, since such enclosing



Fig. 7. History paths used in the experimental validation of the equivalent range
predictions.
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surface method would not be able to distinguish e.g. between a
cross-shaped and a circular history, wrongfully estimating
kMPH ¼

ffiffiffi
2
p

for both cases.
For Cases 5–12, the MOI method also predicts k very well,

agreeing with the MPH predictions. However, the MB method
implicitly assumes that all 13 cases are proportional, since their
kMB = 1, leading to poor predictions for Cases 8–12.

As expected from the quality of the k ratio predictions, the MOI
method results in quite reasonable life predictions in all studied
histories, within only 20% from the experimental results. Note that
these are not curve fittings, they really are true predictions made
using the MOI method (together with the SWT model for critical
planes) without any adjustable parameter. The MPH method, on
the other hand, gives poor life predictions for Cases 1–4, since it
wrongfully assumes (through kMPH ¼

ffiffiffi
2
p

) that these cross or star-
shaped histories are 90o out-of-phase, instead of being propor-
tional. And the MB method results in non-conservative predictions
in Cases 8–12, since it wrongfully assumes (through kMB = 1) that
these paths are proportional.

7. Conclusions

In this work, all enclosing surface methods from the literature
were reviewed and compared, and new methods were proposed.
The conclusions from the simulations and experiments are:

1. the prismatic hull methods MPHLC and MPHCC are very similar
to the MPH and MVPH methods, but with a much simpler
search algorithm for 3D to 5D histories;
2. the only recommended ellipsoid hull is the Minimum F-norm
Ellipsoid (MFE), which results in similar (but not identical) k
predictions when compared to the prismatic hull methods;

3. the Minimum Circumscribed Ellipsoid (MCE) and Minimum
Volume Ellipsoid (MVE) methods may overestimate the equiv-
alent stress (or strain) ranges, in special for triangular or rectan-
gular-shaped nearly-proportional paths, leading to conservative
life predictions;

4. the Minimum Ball (MB) method usually underestimates the
equivalent stress (or strain) ranges in NP histories, resulting in
non-conservative predictions;

5. experimental results demonstrated the effectiveness of the pro-
posed MOI method for all studied cases, accounting for the con-
tribution of every single segment of the loading path and thus
dealing with an arbitrarily shaped history without losing infor-
mation about such shape, as an enclosing surface method
would.

In summary, the Minimum F-norm Ellipsoid and all four Maxi-
mum Prismatic Hull (MPH) models are efficient to predict equiva-
lent amplitudes in NP histories, even though they overestimate it
for cross or star-shaped paths. However, from a philosophical point
of view, it is difficult to justify that an enclosing surface that does
not represent well the mean component of a path could be used to
calculate an equivalent stress or strain range. This is even more dif-
ficult to justify when the path has a very odd shape. The MOI meth-
od, on the other hand, can effectively calculate all these quantities
even for complex-shaped paths, without the need for adjustable
parameters.

Finally, note that, for non-periodic histories, or for periodic his-
tories consisting of blocks with more than 1 cycle, it is necessary to
perform a multiaxial rainflow count of the history before applying
the MOI method to obtain the effective ranges. This rainflow count
is described in Part II of this paper. The resulting half cycles are
combined, if possible, into full cycles, and then the MOI method
(or any enclosing surface method) is applied to each counted cycle
(or half-cycle) to obtain the effective stress or strain range and
associated damage. The damage calculated for each cycle is then
combined using Miner’s linear damage accumulation rule.
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