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The objective of this work is to develop a simple multiaxial rainflow algorithm that allows the proper
calculation of multiaxial damage in NP histories. Enclosing surface methods are usually employed to
obtain the equivalent ranges necessary for damage calculation, as discussed in Part I of this 2-part paper.
Part I also presented a new approach to evaluate equivalent ranges in NP histories, called the Moment Of
Inertia (MOI) method. This second and last part presents a multiaxial rainflow counting algorithm that
allows the MOI and enclosing surface methods to be generalized to non-periodic NP histories and to peri-
odic NP histories formed by complex blocks with multiple cycles each. It is shown that Wang–Brown’s
(WB) multiaxial rainflow algorithm has a few idiosyncrasies that can lead to non-conservative predic-
tions, incorrectly filtering out significant events within a multiaxial loading cycle. An improved multiaxial
rainflow algorithm is proposed, called Modified Wang–Brown (MWB). It has two main improvements
over the WB algorithm. First, the criterion to choose the point where the count is started is modified.
Examples are shown to prove that the original criterion can overlook the most damaging event from
the history, as opposed to the modified version. And second, the algorithm implementation is signifi-
cantly simplified when formulated in a reduced five-dimensional Euclidean space. Under plane stress
conditions, the algorithm is further simplified using a three-dimensional Euclidean space based on the
deviatoric stresses or strains. A simple pseudo-code is presented in a flowchart to efficiently implement
the multiaxial count, allowing a fast and efficient calculation of fatigue damage even for very long non-
periodic NP histories.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Non-proportional (NP) multiaxial fatigue life predictions
require the use of a multiaxial rainflow algorithm together with
a method to calculate the effective stress or strain ranges associ-
ated with each counted cycle [1]. Part I of this paper presented sev-
eral methods to compute the equivalent stress or strain ranges in
non-proportional (NP) multiaxial histories. It compared all existing
enclosing surface methods based on more than 3 � 106 Monte Car-
lo simulations of different path topologies in two to five-dimen-
sional stress or strain diagrams. New enclosing surface models
were also proposed, based on Deperrois’ idea of longest chords [2].

A new method to calculate equivalent ranges in NP histories was
also presented in Part I, called the Moment Of Inertia (MOI) method.
The MOI method is not based on enclosing surfaces. It is useful to
obtain the equivalent stress or strain ranges and mean component
of the NP path. Experimental results for 13 different multiaxial his-
tories from [3] proved the effectiveness of the MOI method to pre-
ll rights reserved.
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dict the associated fatigue lives. The MOI method can be used even
in complex-shaped paths such as the ones studied in [4], as long as it
is coupled with a multiaxial rainflow count such as the one from
Wang–Brown [5] applied to a sub-space of a reduced five-dimen-
sional Euclidean space [6]. The experiments presented in Part I were
also used to evaluate the enclosing surface methods.

The equivalent ranges predicted by the MOI or enclosing surface
methods are needed by most multiaxial fatigue damage models,
such as the ones proposed by Sines [7], Crossland [8], Findley [9],
McDiarmid [10,11], Brown–Miller [12], Fatemi–Socie [13], and by
the Smith–Watson–Topper (SWT) model [14]. A generic NP history
should be projected onto a candidate plane, and then counted using
a multiaxial rainflow algorithm to identify individual cycles [15]. For
each counted cycle or half-cycle, the equivalent range can be com-
puted using enclosing surface methods [16–20], which try to find
circles, ellipses or rectangles that contain the entire path (in the
2D case). Another promising method to compute equivalent ranges
was presented in Part I of this paper, the so-called Moment Of Inertia
(MOI) method, which calculates the ranges and mean components of
a given history path in a 2D deviatoric stress or strain space.

However, in the form presented in Part I, these methods are
only applicable to periodic histories or to infinite life calculations.

http://dx.doi.org/10.1016/j.ijfatigue.2011.10.012
mailto:meggi@puc-rio.br
mailto:jtcastro@puc-rio.br
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Finite life calculations can be performed, but usually the available
models implicitly assume that each block of the periodic loading
path contains a single cycle. To generalize the existing methods
to finite life predictions in periodic histories with multiple cycles
at each block or period, or to non-periodic histories, a cycle count-
ing algorithm must be introduced.

The rainflow algorithm [21,22] is reputably the best approach to
identify the most damaging events embedded in a variable ampli-
tude (VA) history. For linear elastic uniaxial histories, it is indiffer-
ent to perform the uniaxial rainflow count on the stresses or on the
strains. In addition, the sequential (ordered) rainflow count is al-
ways a better option over the traditional rainflow, since it pre-
serves the original loading order. The sequential rainflow is
obtained by simply reordering the resulting traditional rainflow
count by the final counting point [23,24]. Even for linear elastic
problems, where the damage caused by each event should not de-
pend on the other events nor on the loading order, it is a good idea
to choose the sequential rainflow to correctly predict in which
event the accumulated damage reaches its critical value (usually
1.0, according to Miner [25]). The use of a sequential rainflow
count is also recommended for crack growth predictions, to cor-
rectly account for load interaction effects without changing the
load order.

For elastoplastic uniaxial histories, it is fundamental to calcu-
late the hysteresis loops before performing any rainflow count.
After measuring/calculating both stress and strain histories, the
sequential rainflow count must be applied to the strains, never to
the stresses. The reason for that can be seen in Fig. 1.

The sequential rainflow count of the stresses from the original
loading {A ? B ? C ? D} from Fig. 1(i) would result in the half-cy-
cles AB, BC and CD. The strain range DeAD from the AD half-cycle is
certainly the most damaging in that history, however this half-cy-
cle was not identified in such stress count. Since the strain range is
the most relevant quantity in damage calculation under elastoplas-
tic strains, the sequential rainflow must be performed on the
strains (not stresses), resulting in the correct half-cycles CB, BC
and AD. Fig. 1(ii) provides another example, where the rainflow
of stresses would wrongfully predict the half-cycles AB, BC and
CD, while the rainflow of strains would lead to the expected CB,
BC and AD.

However, even for uniaxial loads, the rainflow of strains does
not always pick up the most damaging events. Two notable excep-
Fig. 1. Examples of uniax
tions are shown in Fig. 1(iii) and (iv). In Fig. 1(iii), both rainflow of
strains and stresses would result in the half-cycles AB, BC and CD,
where CD should be the most damaging event due to its higher
strain range DeCD. This count is correct if the Smith–Watson–Top-
per (SWT) damage model is used [14], because its damage param-
eter rmax � De/2 = rD � DeCD/2 is indeed maximum at the half-cycle
CD, since both stress rD at point D and strain range DeCD are the
highest in the history.

But, if the Morrow damage models are used [1], the maximum
damage would probably be associated with the half-cycle AD.
Although the strain range DeAD is slightly smaller than DeCD in
Fig. 1(iii), the mean stress rm,AD = rD/2 in AD is much higher than
the mean stressrm,CD = (rC + rD)/2 in CD. If the compressive deforma-
tion at point C is close to zero, then according to Morrow the combina-
tion of DeAD and rm,AD will result in a higher damage than the
combination DeCD and rm,CD. So, a rainflow count of the damage
parameters, which would try to find the events associated with the
highest damages and consequently the maximum accumulated dam-
age, would result in the half-cycles CB, BC and AD for the Morrow dam-
age models. But, for the SWT damage model, the rainflow of damage
parameters would agree with the rainflow of strains, resulting in AB,
BC and CD. In summary, the rainflow count may depend on the
adopted damage model, a problem not as well reported as it should.

The other notable exception where the rainflow of strains may
not pick up the most damaging event from a uniaxial history is
shown in Fig. 1(iv). In this case, the rainflow of strains results in
the half-cycles CB, BC and AD, while the rainflow of stresses obtains
AB, BC and CD. If the compressive deformation at point C is close to
zero, then the strain range DeCD will be very close to DeAD. But both
mean stress rm,CD and maximum stress rC from CD are much high-
er than, respectively, the mean stress rm,AD and maximum stress
rA = 0 from AD, as seen in Fig. 1(iv). Therefore, the Morrow and
even the SWT damage models would predict CD as the most dam-
aging event. This would imply that the maximum accumulated
damage would be associated with the count AB, BC and CD, which
would not agree with the rainflow of strains.

Fortunately, for uniaxial histories, in practice the possibly inac-
curate fatigue life calculated from the rainflow of strains is very
close to the (correct) life from the rainflow of damage parameters.
The two notable exceptions discussed above must involve the ini-
tial point A from the entire loading history, therefore this miscalcu-
lated damage problem can only affect a single half-cycle from the
ial hysteresis loops.
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entire load history (the half-cycle that includes point A). So, even
though the (miscalculated) damage from using the rainflow of
strains may be much lower than the actual damage value, its influ-
ence on the total initiation life should be small. Nevertheless, these
issues are an indication that rainflow algorithms can lead to inac-
curate predictions if not fully understood.

In summary, for the uniaxial linear elastic case, the traditional
or sequential rainflow of stresses, strains or damage parameters re-
sult in the same count, therefore any of them can be used in the SN
method without problems. But the rainflow of stresses is not
appropriate in the presence of plastic strains. In this case, the
sequential rainflow of strains should be used in the uniaxial elasto-
plastic case.

For multiaxial problems, however, the uniaxial rainflow of
stresses or strains may lead to significant errors, even in the linear
elastic case, as discussed in the next section.

2. Rainflow of a simple proportional biaxial load history

The limitations of the uniaxial rainflow algorithm when dealing
with multiaxial loadings can be seen in the following example: cal-
culate the rainflow count that maximizes the accumulated dam-
age, according to the SWT model [14], of a biaxial history
consisting of 100 consecutive loading blocks of the 2 cycles
(rx,ry) = {(0,0), (300,�300), (�100,�360), (400,120), (0,0)} MPa,
using Young modulus E = 200 GPa, yield strength SY = 500 MPa,
and Poisson coefficient mel = 1/3.

Since the stresses in this simple proportional load history are al-
ways below SY, the strains ex and ey will be assumed elastic, ob-
tained from Hooke’s law

ex ¼ ðrx � m � ryÞ=E ¼ f0;2;0:1;1:8;0g � 10�3

ey ¼ ðry � m � rxÞ=E ffi f0;�2;�1:63;�0:067; 0g � 10�3
ð1Þ
Fig. 2. Strains and stresses in the x direction for
There is no need to rainflow count the entire strain history. It is
enough to perform the rainflow count on a window of two consec-
utive cycles of the entire history, replicating the result for the
remaining identical blocks. Note, however, that such window must
begin on the lowest valley elow or on the highest peak ehigh of the
loading block to be able to fully identify the largest cycle
elow ? ehigh ? elow.

For the damage calculation problem in the x direction, the ori-
ginal block coincidently starts at the lowest valley ex,low = 0, so
the (sequential) rainflow count of the strains ex can begin at point
A in Fig. 2, resulting in the paths AB, DC0, CD and BCC0E. Both paths
AB and BCC0E result in Dex = 2.0 � 10�3, rx,max = rx,B = 300 MPa, and
a SWT damage parameter rx,max � Dex/2 = 0.3, while both paths DC0

and CD give Dex = 1.7 � 10�3, rx,max = rx,D = 400 MPa, and a SWT
damage parameter rx,max � Dex/2 = 0.34.

Now, assume that each block of this linear elastic load history
was applied backwards, i.e., in the order E ? D ? C ? B ? A. In
theory, there is no reason for the accumulated damage to be differ-
ent than the one from the original (forward) history, unless closure
effects are introduced in the crack initiation modeling. But, in this
reverse order from E to A, the (sequential) rainflow count of the ex

strains results in paths EDD0B, DC, CD0 and BA, where D0 is also de-
fined in Fig. 2. Path EDD0B results in Dex = 2.0 � 10�3,
rx,max = rx,D = 400 MPa, and a SWT damage parameter rx,max � Dex/
2 = 0.4; path DC gives Dex = 1.7 � 10�3, rx,max = rx,D = 400 MPa,
and a SWT damage parameter rx,max � Dex/2 = 0.34; path CD0 gives
Dex = 1.7 � 10�3, rx,max = rx,D0 = 258 MPa (obtained from interpo-
lating the graph), and a SWT damage parameter rx,max � Dex/
2 ffi 0.22; and finally path BA gives Dex = 2.0 � 10�3,
rx,max = rx,B = 300 MPa, and a SWT damage parameter rx,max � Dex/
2 = 0.3. Note that the maximum stress along a counted path may
happen at any location inside it, e.g. at point D for path EDD0B.
each loading block of the biaxial example.
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Due to the high non-linear influence of the damage parameter
on the SWT model life prediction, it is very likely that the accumu-
lated damage associated with this rainflow count in the reverse or-
der becomes significantly higher than the one from the rainflow in
the forward order, mainly due to the contribution of the path
EDD0B and its highest SWT damage parameter 0.4.

So, if BCC0E is an acceptable (forward) path for the event that starts
in B and ends in E, with a SWT damage parameter 0.3, then why not
consider the alternative forward path BD0DE (identical to the EDD’B
path, but in the forward direction) associated with the much higher
damage parameter 0.4? From this reasoning, the rainflow count in
the x direction that maximizes the SWT damage for the 100 blocks
should result in the triplets (Dex,rmax,n) = (2.0 � 10�3,400,50),
(1.7 � 10�3,400,50), (1.7 � 10�3,258,50), and (2.0 � 10�3,300,50),
where n is the number of cycles.

In summary, the forward rainflow count of the strains does not
pick up the most damaging event in this multiaxial example. It is
recommended to perform both forward and reverse rainflow
counts to choose the one associated with the highest accumulated
damage. Even so, there is no guarantee that there would not be an-
other path combination leading to a higher accumulated damage
than the one from the forward and reverse counts. This is a signif-
icant limitation of the use of a uniaxial rainflow count, even in a
simple biaxial history.

Note that the rainflow of stresses rx from each loading block, in
either forward or reverse direction, would never pick up the event
with highest SWT damage parameter 0.4. Note also that the rain-
flow of rx would require the count to start at C or D (the lowest val-
ley or highest peak in rx).
Fig. 3. Strains and stresses in the y direction for
But the previous calculations only consider cracks that might
initiate in a plane perpendicular to the x direction. To predict,
according to SWT, whether cracks would initiate perpendicular
to the y direction, it is necessary to repeat the calculations for
the strains ey and stresses ry.

For the damage calculation problem in the y direction, the rain-
flow count of the strains must begin at the highest peak ey,high = 0 at
point A (or at the lowest valley ey,low = �2.0 � 10�3 at point B), see
Fig. 3.

The (sequential) rainflow count of ey, beginning at point A, re-
sults only in the paths AB and BCDE. The path AB results in
Dey = 2.0 � 10�3, ry,max = ry,A = 0, and a SWT damage parameter
ry,max � Dey/2 = 0, while path BCDE gives Dey = 2.0 � 10�3,
ry,max = ry,D = 120 MPa, and a SWT damage parameter ry,max � Dey/
2 = 0.12. A rainflow count of ey in the reverse path would arrive
at the same result. Such low damage parameters in y indicate that
the dominant crack should initiate perpendicular to the x direction.

Note that the rainflow of stresses ry from each loading block
would require the count to start at C or D (the lowest valley or
highest peak in ry), resulting in a quite different count, namely
the half-cycles CD and DEABC, with a lower SWT damage parame-
ter of 0.094 each.

From this simple example, it can be concluded that, for biaxial
histories: (i) the rainflow of strains is much more likely to pick
up the most damaging cycle than the rainflow of stresses; (ii) the
forward and backward rainflow counts can lead to different accu-
mulated damages, so it is a good idea to perform both; (iii) the
rainflow count can give very different loading paths and numbers
of counted cycles depending on the direction (e.g. 2 strain cycles
each loading block of the biaxial example.
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were counted in the x direction for every block, while only 1 strain
cycle was identified in y) and on the chosen quantity to be counted
(i.e., rainflow of strains or stresses).

In the next section, the issues involved in applying a rainflow
count to a general multiaxial history are discussed.

3. Rainflow of a multiaxial history

The uniaxial rainflow approach presented in the previous sec-
tion was only possible since crack initiation in the x or y directions
are usually decoupled in a simple biaxial (and therefore propor-
tional) load history. For general NP multiaxial histories, the tradi-
tional unixial rainflow count, applied to some stress or strain
component that is assumed dominant to describe the history, does
not provide good life predictions. This is so because the peaks and
valleys of the stresses and the corresponding strains do not usually
coincide, even in the same direction, not to mention in different
directions.

Another important issue involves the common practice of filter-
ing non-reversals from a measured history. When dealing with
measured multiaxial loading histories, the sampling points that
do not constitute a reversal in any of its stress or strain compo-
nents are usually eliminated. Filtering points that do not constitute
a reversal helps to decrease computational cost in multiaxial fati-
gue calculations, especially when dealing with over-sampled data
[26].

But filtering out all points that do not constitute a reversal in
one stress or strain component may cause significant damage pre-
diction problems, discussed next. First, the reversal points obtained
from a multiaxial rainflow algorithm may not occur at the reversal
of one of the stress or strain components. E.g., the relative Mises
strain, used in Wang–Brown’s rainflow count, may reach a peak va-
lue at a point that is not a maximum or minimum of any strain
component. But this most important point would have been fil-
tered out by any non-reversal filtering algorithm, compromising
the results.

The second problem may occur because the entire path be-
tween two reversals is needed to evaluate the equivalent stress
or strain associated with each count, e.g. using an enclosing surface
method or the Moment Of Inertia (MOI) method presented in Part I
of this paper. Filtering out points along such path would almost
certainly result in lower equivalent stress or strain range estimates
than expected.

Another issue with rainflow counting NP multiaxial histories is
whether or not to use a critical plane approach. The Wang–Brown
multiaxial rainflow algorithm is general enough to be directly ap-
plied to a multiaxial history involving all six strain components.
But the counted cycles will probably occur in different planes,
not reproducing the crack initiation mechanism. For instance, if
the Wang–Brown rainflow was applied to the biaxial example dis-
cussed above, the resulting half-cycles would be obtained based on
relative Mises strain quantities that mix the strains in both x and y
direction, without decoupling their effect, as it would be expected
in this case.

Instead, a critical plane approach must be followed: the multi-
axial history must be projected onto a candidate plane, and only
then should a multiaxial rainflow count be used.

In this critical plane approach, the stress and/or strain history is
projected onto a candidate plane from the critical point. A uniaxial
rainflow count is then applied to an appropriate strain or stress
component, which depends on the chosen damage model: for the
eN and SWT [14] damage models, the normal strain perpendicular
to the candidate plane is rainflow counted; in the Brown–Miller
[12], Fatemi–Socie [13] and Wang–Brown [5] damage models, a
shear strain component acting parallel to the candidate plane is
rainflow counted; and in the Findley [9] damage model, a shear
stress component parallel to the candidate plane is counted.

While performing such rainflow count on the candidate plane,
the other stress and strain components cannot be overlooked or
discarded. For instance, if the SWT damage model is used, at every
rainflow counted half-cycle e1, the maximum value of the normal
stress r\1 parallel to e1 along the entire half-cycle must be stored
to compute r\1max [15]. Since for complex NP multiaxial load his-
tories these maxima may happen at any point along the half-cycle,
not only at the peaks and valleys of a given component, non-rever-
sals should never be filtered out before performing the rainflow
count.

Note also that, if only the strain (or stress) history is provided,
one might need to calculate the entire stress–strain history from
proportional multiaxial stress–strain relations or from incremental
plasticity techniques, before performing the rainflow count. After
performing the rainflow count at each candidate plane, the result-
ing damage is calculated. The critical plane is then the candidate
plane that results in the highest fatigue damage.

However, it must be noted that Case B cracks (defined in Part I
of this paper and also in [1]) can have two shear strain (or stress)
components acting parallel to each candidate plane. A uniaxial
rainflow approach would either neglect the effect of one of such
shear components, or consider that one of them is dominant over
the other during the rainflow algorithm application [15]. But this
practice can be non-conservative, since both shear components in-
duce crack initiation. To deal with that, a true multiaxial rainflow
algorithm must be used, accounting for all stress or strain compo-
nents, such as Wang–Brown’s algorithm, discussed next.

4. Wang–Brown’s multiaxial rainflow algorithm

Wang and Brown [5] proposed an interesting multiaxial gener-
alization of the rainflow count that is applicable to any propor-
tional or NP history of strains (or stresses, with simple
modifications to the algorithm). Wang–Brown’s multiaxial rain-
flow is based on the Mises strain eMises as an indirect measure of fa-
tigue damage.

The problem with using eMises is the loss of the loading event
sign, since Mises values are always positive. Therefore, in 90�
out-of-phase histories it is even possible that eMises remains con-
stant, which would wrongfully result in an infinite life prediction.
To solve this issue, the relative Mises strain eRMises is used, calcu-
lated from the difference between the strain components
(exj,eyj,ezj,cxyj,cxzj,cyzj) of each (jth) point in the history and the
strain components (exi,eyi,ezi,cxyi,cxzi,cyzi) of the initial (ith) point
of the current count:

eRMises

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDex�DeyÞ2þðDex�DezÞ2þðDey�DezÞ2þ1:5ðDc2

xyþDc2
xzþDc2

yzÞ
q

ffiffiffi
2
p
�ð1þ�mÞ

ð2Þ

where Dex � exj � exi, Dey � eyj � eyi, Dez � ezj � ezi, Dcxy � cxyj � cxyi,
Dcxz � cxzj � cxzi, Dcyz � cyzj � cyzi, and j > i.

The relative strains need to be re-calculated for every initial
counting point, a computationally intensive task for very long his-
tories. Note however that the relative strain eRMises is only used to
locate the initial and final counting points of each half-cycle, after
which it is possible to apply at these points any multiaxial damage
model (even models that do not include a Mises strain parameter).

As in the uniaxial case, Wang–Brown’s multiaxial rainflow is
based on three simple rules:

1. The first count must start at the point with the largest value of
eMises from the entire history.
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2. Each count must be initiated sequentially at each peak or valley
of a strain component, and the relative Mises strain eRMises of the
subsequent history must be computed with respect to the ini-
tial point.

3. The final point of each count is obtained when reaching:
(a) the largest value of eRMises with respect to the initial point of

the history, or
(b) any path used in a previous count.

Note that the maxima and minima of each stress or strain com-
ponent may not happen at the beginning or at the end of the
counted half-cycle, as discussed before. It may happen at any point
along the cycle. Therefore, any stress or strain range must be com-
puted considering the maximum and minimum values along the
entire path between two reversions, not only the initial and final
values from the half-cycle.

The following example clarifies the necessary steps to imple-
ment this routine. The objective is to rainflow count the multiaxial
NP history of cyclic tension–torsion formed by successive blocks of
normal and shear strains given by (ex,cxy) = {(2,1)?(�1,2)
? (2,�2) ? (�2,�2) ? (2,2) ? (�2,0)}% repeatedly applied to a
steel specimen.

Assuming the elastic Poisson coefficient mel = 0.3 and eel ffi epl,
the effective Poisson coefficient [1] is �m ¼ ðmeleel þ 0:5eplÞ=
ðeel þ eplÞ ¼ 0:4 Defining e � ex and c � cxy, and using Hooke’s law
assuming ry = rz = 0, one can obtain

ey ¼ ez ¼ ��me) eMises ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ 3½c=ð2þ 2�mÞ�2

q
ð3Þ

Translating the block to begin at the point with highest absolute
eMises (point A = (2,2), even though points E and F have the same
eMises in the time history shown in Fig. 4), the c–e diagram from
Fig. 4 is obtained. The initial point of the first event of the rainflow
count is A(2,2). The relative Mises strains with respect to A are gi-
ven by

eRMises
ðAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe� 2%Þ2 þ 3 � ½ðc� 2%Þ=ð2þ 2�mÞ�2

q
ð4Þ

resulting in the relative history from Fig. 5. The count of this
first event stops at point F, which has the highest eRMises with re-
spect to A, see Fig. 5. Note that in the path B–B0 of Fig. 5 the value
of eRMises is constant, therefore in the corresponding c–e diagram it
describes an arc of ellipse centered in A and with aspect ratioffiffiffi

3
p

=½2ð1þ �mÞ�. Along the entire path A–B–B’–F, the highest value
of e = 2% takes place at point A, and the lowest e = �2% takes place
at B and F. The highest c = 2% also takes place at A, and the lowest
c = �2% takes place at the entire path B0–F. In this way, according
to Wang–Brown’s method, in this half-cycle the absolute ranges
De = 4% and Dc = 4% are obtained.
Fig. 4. Strain history for the considered NP l
Note that the calculation of the exact location of point B0 in the
path E–F of the c–e diagram is important to obtain the ranges De
and Dc from the following counts. The position is calculated by
finding the interpolation parameter a from B0 = (e, c) = (2,�2) +
a � [(�2, �2) �(2, �2)] that makes the eRMises of B0 with respect to
A equal to 4.19% (which is equal to the eRMises of point B with re-
spect to A), hence

eRMises
ðAÞjB0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð2�4aÞ�2�2þ3

ð�2Þ�2
2þ2�m

� �2
s

¼4:19% ) a¼0:844

ð5Þ

So, B0 is located at (e,c) = (2–4a,�2) = (�1.378,�2)%.
The initial point of the count of the second event is B(�2,0). The

relative Mises strains with respect to B are given by

eRMises
ðBÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeþ 2%Þ2 þ 3 � ½ðc� 0%Þ=ð2þ 2�mÞ�2

q
ð6Þ

resulting in the relative history from Fig. 6. The count of this second
event stops at point A which, together with point E, has the largest
relative eRMises with respect to B, see Fig. 6. The paths C–C0 and E–A
in the c–e diagram are arcs of ellipses centered at B. Note that it is
important to draw the path B0–F in these two figures, to avoid
counting it more than once. Note also that, if Pi is the initial point
of the count, the successive plots eRMises(Pi) � (remaining events) fol-
low the rules of the traditional rainflow algorithm.

The position of point C0 in the D–E path of the c–e diagram is
interpolated by the expression (e,c) = (�1,2) + a � [(2,�2)�(�1,2)],
where a is the value that makes the eRMises of C0 with respect to B
equal to 4.05% (which is equal to the eRMises of C with respect to
B), hence

eRMises
ðBÞjC0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð�1þ 3aÞ � ð�2Þ�2 þ 3

ð2� 4aÞ � 0
2þ 2�m

� �2
s

¼ 4:05% ) a ¼ 0:961 ð7Þ

So, C0 is located at (e,c) = (�1 + 3a,2–4a) = (1.883,�1.844)%.
Along the entire path B–C–C0–E–A, the largest value of e would

be higher than 2%, taking place in the middle of the elliptic arc
E–A of Fig. 6. Note, however, that the path E–A is a result of the
rainflow count, it is not an actual path followed during the history.
Therefore, it is reasonable to assume that the largest value of e is
2%, which happens exactly at points E and A. The minimum
e = �2% takes place in B, resulting in De = 4% in this count accord-
ing to Wang–Brown’s method. The highest c = 2% takes place at A
and the lowest c = �2% at E, resulting in Dc = 4%. Be careful not
to calculate Dc as the difference (2�0%) between the values of c
at A and B, the final and initial points of the path, because in this
case the lowest value of c takes place along the path, at point E.
oading and corresponding c–e diagram.



Fig. 5. Rainflow count of the first event of the history and corresponding c–e diagram.

Fig. 6. Rainflow count of the second event of the history and corresponding c–e diagram.
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A criticism to this procedure that obtains Dc = 4% instead of 2%
is that most of the strain variation De takes place in the path B–C0,
whereas most of the variation Dc takes place subsequently, in the
path C0–C–E–A. However, when calculating the associated damage,
Wang–Brown’s method assumes that both variations take place at
the same time, and not sequentially. This could possibly result in
conservative predictions in this case. If, on the other hand, only
the extremes A and B of the path were used to calculate the strain
variations, obtaining Dc = 2% instead of 4%, highly non-conserva-
tive predictions would be probably obtained. Such inconsistencies
will be solved in the Modified Wang–Brown count proposed in the
next section, where the MOI method will be used to calculate the
equivalent strain (or stress) ranges associated with a complex path.

The third event begins at point C, and stops at B0 because it
found a previous count, as shown in Fig. 7, resulting in the path
C–D–D0–B0. In the corresponding c–e diagram, the transition D–D0

happens through an arc of ellipse centered at C, where the eRMises

relative to C is

eRMises
ðCÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe� 2%Þ2 þ 3 � ½ðc� 1%Þ=ð2þ 2�mÞ�2

q
ð8Þ

The position of D0 in the path E–F is interpolated by (e,
c) = (2,�2) + a � [(�2,�2)�(2,�2)], where a makes eRMises with re-
spect to C equal to 3.06% (the same value as eRMises of D with respect
to C), hence

eRMises
ðCÞjD0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð2� 4aÞ � 2�2 þ 3

ð�2Þ � 1
2þ 2�m

� �2
s

¼ 3:06% ) a

¼ 0:609 ð9Þ

So, D0 is located at (e,c) = (2 – 4a,–2) = (�0.437,�2)%.
Note that along the path C–D–D0–B0 the largest De takes place

between B0 and C, giving a normal strain range
De = 2% � (�1.378%) = 3.378%, whereas the largest shear strain
range Dc takes place between the path D0–B0 and point D, with
Dc = 2% � (�2%) = 4%.

The counting procedure for the remaining half-cycles of the
block is similar, see Figs. 8–10, resulting in the half-cycles D–C0,
with normal and shear strain ranges De = 1.883% � (�1%) =
2.883% and Dc = 2% � (�1.844%) = 3.844%; E–D0, with De = 2% �
(�0.437%) = 2.437% and Dc = 0%; and F–A, with De = 4% and
Dc = 4%, according to Wang–Brown’s algorithm.

The multiaxial rainflow count results in the ranges and mean
loads shown in Fig. 11, corresponding to the paths A–B–B0–F, B–
C–C0–E–A, C–D–D0–B0, D–C0, E–D0 and F–A, represented by arrows
in the c–e diagram.

Multiaxial damage models based on strain ranges, e.g. Brown–
Miller, Fatemi–Socie or SWT, can then be applied to these half-cy-
cles. Note that the Sines and Findley models are not applicable in
this case, because ea and/or ca P 2% implies in significant plasticity
for metals, while those models assume linear elastic strains; be-
sides, Sines’ model should not be used in NP histories.
5. Modified Wang–Brown (MWB) algorithm

The original Wang–Brown algorithm is not difficult to be imple-
mented in histories of uniaxial tension/bending combined with
torsion, which can be represented only by one normal rx and one
shear sxy stress components (or one normal ex and one shear cxy

strain components). In this case, the sub-space of normal and shear
components is planar (it is represented by a diagram in only two
dimensions), and the only difficulty in applying the algorithm hap-
pens when solving for the equations of the ellipses associated with
the points with same relative Mises stress or strain.

However, in a generic multiaxial history, the dimension of
the diagram may be increased, requiring the calculation of



Fig. 7. Rainflow count of the third event of the history and corresponding c–e diagram.

Fig. 8. Rainflow count of the fourth event of the history and corresponding c–e diagram.

Fig. 9. Rainflow count of the fifth event of the history and corresponding c–e diagram.

Fig. 10. Rainflow count of the last event of the history and corresponding c–e diagram.
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Fig. 11. Rainflow-counted strain ranges and corresponding c–e diagram with arrows representing the resulting half-cycles.
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intersections between straight lines and ellipsoid or hyper-ellip-
soid surfaces, increasing the computational complexity.

The Modified Wang–Brown method solves this problem by
working in the reduced five-dimensional stress E5r [6] or strain
E5e sub-spaces presented in Part I of this paper, or in a lower
dimension sub-space from them. In this way, a general multiaxial
strain or stress history is represented by a set of points
Pi = (e1,e2,e3,e4,e5) or Pi = (S1,S2,S3,S4,S5), respectively, where

S1 � rx �
ry

2
� rz

2
¼ 3

2
Sx; S2 �

ry � rz

2

ffiffiffi
3
p
¼ Sy � Sz

2

ffiffiffi
3
p

S3 � sxy

ffiffiffi
3
p

; S4 � sxz

ffiffiffi
3
p

; S5 � syz

ffiffiffi
3
p ð10Þ
Fig. 12. Rainflow counts using the original Wang–Brown algorithm (left) and the
modified version (right) for a triangular path.
e1 �
3
2
� ex

1þ �m
¼ 2ex � ey � ez

2 � ð1þ �mÞ ; e2 �
ey � ez

2 � ð1þ �mÞ
ffiffiffi
3
p
¼ ey � ez

2 � ð1þ �mÞ
ffiffiffi
3
p

;

e3 �
cxy

ffiffiffi
3
p

2 � ð1þ �mÞ ; e4 �
cxz

ffiffiffi
3
p

2 � ð1þ �mÞ ; e5 �
cyz

ffiffiffi
3
p

2 � ð1þ �mÞ
ð11Þ

Wang–Brown’s multiaxial rainflow algorithm is rather simplified
when working in such spaces, because the distance between two
points is already the relative Mises strain (or stress) between them.
The three rules of the rainflow count have now simple geometric
interpretations, resulting in:

1. The count must be initiated at the point with highest norm, i.e.,
with the longest Euclidean distance to the origin of the diagram.
This first initial counting point is called P1, and the subsequent
ones are called P2, . . . ,Pn, in the same sequence of the original
history.

2. Each count must be sequentially initiated at each point Pi of the
diagram.

3. The final point of each count is obtained when reaching:
(a) the point Pj most distant from the initial point Pi (with j > i)

in the reduced sub-space, or
(b) any path used in a previous count.

The first rule in Wang–Brown’s algorithm was conceived to try
to guarantee that the largest eRMises (or relative Mises stress rRMises)
of the history is identified, one of the main objectives of a rainflow
count. However, this rule can fail to reach this objective if the point
P1 with largest norm is not one of two points of the diagram far-
thest apart from each other.

This is easy to check in the example from Fig. 12, which shows
an e1–e3 strain diagram with a triangular path. The point
(e1,e3) = (0.8%,0%) is clearly the one with largest norm, equal to
0.8%, however its Wang–Brown count results in two half-cycles
with eRMises = 1.0%. Instead, if the count was started at the point
(e1,e3) = (0%,0.6%), both half-cycles would result in eRMises = 1.1%.
It is not difficult to prove that the largest relative Mises strain (or
stress) of the history can be underestimated by up to 1 � p2/
2 = 29.3% using the original Wang–Brown algorithm. Even if an
enclosing surface method or the MOI method were applied to the
resulting half-cycles, to account for the shape of the entire path,
and not only the value of eRMises, the original Wang–Brown algo-
rithm would still underestimate the resulting equivalent ranges.
The conclusion is that the starting point of the first count must
be better chosen.

So, the first rule of the multiaxial rainflow count is now modi-
fied. The modified rule is to search for the pair of points in the devi-
atoric space with largest relative distance, and between them the
point P1 farthest from the origin. But the Modified Wang–Brown
(MWB) algorithm differs from the original method not only in such
first rule. Other rules are modified and introduced as well. The
MWB method can be summarized by a set of 8 rules:

1. Find among the n � (n � 1)/2 pairs of points from an n-point
path the one(s) that form the longest chord in the 5D strain
(or stress) sub-space, and choose among them the one with
greatest distance from the origin; label this point P1, and the
subsequent P2, . . . , Pn following their original order.

2. Each count should be sequentially initiated at P1, P2, . . . ,
Pi, . . . , Pn.

3. The final point in each count is obtained when reaching:
(a) the point Pj farthest away (in an Euclidian sense) from the

initial point Pi (j > i), or
(b) any finite segment (not just a point or a finite number of

points) from a previous count;
4. Once found the initial and final points Pi and Pj, the count is

defined by the traveled path portions closest to the straight
segment Pi–Pj in an Euclidean sense (to avoid long ‘‘detours’’
from the straight line Pi–Pj that defines such half-cycle).
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5. Every time a full cycle is counted, i.e. two half-cycles with
identical extreme points are counted, use the Moment Of
Inertia (MOI) method (or some enclosing surface method)
to calculate the equivalent strain (or stress) range and mean
or maximum from the full cycle to obtain the associated fati-
gue damage using some multiaxial model.

6. After rainflow counting the entire load history, repeat step 5
to calculate the damage contribution of the half-cycles that
did not close into a full cycle.

7. Use some damage accumulation rule, e.g., Miner’s rule [25],
to find the total multiaxial damage.

8. If using a critical plane approach, repeat steps 1–7 for every
candidate plane, to find the critical plane that maximizes the
accumulated multiaxial damage; note that only Case B can-
didate planes will need a multiaxial rainflow count, because
the single shear component in Case A cracks can be counted
using a uniaxial rainflow algorithm such as the one in [15].

Note that the Moment Of Inertia (MOI) method, presented in
Part I of this paper, finds a better estimate of the equivalent range
associated with a counted cycle or half-cycle, better than simply
searching for the extreme values of each component along the
path, as the original Wang–Brown method did. The original meth-
od would combine ranges in different components that did not
happen at the same time, losing information about the degree of
non-proportionality of the counted path and the phase difference
between components.

6. Computational implementation of the MWB algorithm

The practical implementation of the proposed MWB multiaxial
rainflow count is described next, including a detailed description of
its computational algorithm. During the execution of the algo-
rithm, when a segment Pi–Pi+1 is counted, totally or partially, an
interpolation variable ai (1 6 i 6 n) is associated to it, such that
0 6 ai 6 1. If the entire segment Pi–Pi+1 has been counted, then
ai = 0, otherwise ai is computed from the intersection P0i between
Pi–Pi+1 and the most recent count, see Fig. 13, using

ai ¼
jP0i � Pij
jPiþ1 � Pij

ð12Þ

In this way, a segment associated with 0 < ai < 1 will have its
segment P0i � Piþ1 already counted, whereas the portion Pi–P0i is still
available for future counts, where P0i = Pi + ai � (Pi+1 � Pi).

In the computational algorithm, all ai are initialized with some
value outside the interval [0,1] (e.g. ai = �1, for i = 1,2, . . . ,n) to
indicate that, initially, no path has been counted. Note that it is
possible to have ai = 1.0 if a previous count crossed the segment
exactly at Pi+1, which would create a stopping point for future
counts, but without using up any portion of the segment Pi–Pi+1.
But rule 3 above states that a point or a finite number of points pre-
viously counted cannot define the end of a count, therefore any
ai = 1.0 must be reset to ai = �1 in the algorithm not to create a
Fig. 13. Definition of the variable ai that delimits the segment P0i–Pi+1 already
accounted for and the segment Pi-P0i that will still be counted by the MWB
algorithm.
stopping point at Pi+1 in this case. Note that in the algorithm the
history paths are all assumed as formed by straight segments. If
however the paths are curved, then they must be approximated
by sufficiently refined polygonal paths.

Since the transformations that converted the stress and strain
components into their deviatoric forms, as well as the transforma-
tions that projected them onto the reduced sub-spaces E5r and E5e,
are all linear (even for the elastoplastic case), the stresses and
strains at a point P0i in the straight segment Pi–Pi+1 can be linearly
calculated from ai and the coordinates of points Pi and Pi+1. E.g.,
the projected deviatoric strain e1 at point P0i is simply
e1,i + ai � (e1,(i+1) � e1,i). This linearity simplifies very much the cal-
culations in the proposed multiaxial rainflow algorithm, eliminat-
ing the need to calculate intersections between segments and
ellipses, ellipsoids or hyper-ellipsoids, as it was required in the ori-
ginal Wang–Brown algorithm.

As mentioned before, the multiaxial rainflow count starts at
each point Pi of the history, i = 1, 2, . . . , n. The algorithm to perform
the count from an initial point Pi is described next.

If the path Pi–Pi+1 is already associated with a variable ai differ-
ent than �1, calculated during a previous count, then the count
stops, and the stopping point will be P0i = Pi + ai � (Pi+1 � Pi). Other-
wise, if the path Pi–Pi+1 is not associated with any ai different than
�1, then this entire segment is counted and ai is set to zero.

Next, the algorithm searches for the first point Pj+1 (j > i) that
has a greater or equal distance to Pi+1 with respect to Pi. If it does
not exist, then Pi+1 will be the final point of the count. Otherwise,
the intersection with the segment Pj–Pj+1 is calculated at the point
P0j with same distance to point Pi as Pi+1, see Fig. 14. The value of aj

associated with point P0j is obtained from Stewart’s Theorem [27]
applied to triangle Pi–Pj–Pj+1

b2 � ½ð1� ajÞ � a� þ c2 � ½aj � a� � p2 � a ¼ ½aj � a� � ½ð1� ajÞ � a� � a ð13Þ

where b, c and p are defined in Fig. 14, resulting in

a2 � a2
j þ ðc2 � b2 � a2Þ � aj þ ðb2 � p2Þ ¼ 0 ð14Þ

aj ¼
ða2 þ b2 � c2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ b2 � c2Þ2 � 4a2ðb2 � p2Þ

q
2a2 ð15Þ

The valid solution will be the lowest aj = a0j (between the 2 solu-
tions) that satisfies 0 6 a0j 6 1. If the segment Pj–Pj+1 was already
associated with some aj = a	j (i.e., a portion from it had already
been counted), then there are two hypotheses: (i) if a0j < a	j , then
the portion between a0j and a	j is counted, the stopping point be-
comes the one associated with a	j (since it crossed a segment from
a previous count), and aj = aj

0 is stored, replacing a	j ; or (ii) if
a0j P a	j , then the intersection point P0j would be invalid since it
would take place on a previously counted segment, therefore the
stopping point must be set as Pi+1.
Fig. 14. Calculation of the intersection point P0j between the current multiaxial
rainflow count and the segment Pj–Pj+1 in a sub-space of E5e (or E5r). Note that,
usually, the triangles Pi–Pj–Pj+1 and Pi–Pi+1–P0j do not share the same plane.
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On the other hand, if no portion of the segment Pj–Pj+1 had been
accounted for (i.e., aj was equal to �1), then the calculated a	j is
stored in aj, counting then the segment P0j–Pj+1. As mentioned be-
fore, if aj results in 1.0 then it must be reset to aj = �1 not to create
an unnecessary stopping point for future counts. This count contin-
ues from Pj+1 in a similar way as the one coming from Pi+1. The
algorithm then searches for the first point Pm+1 (m > j) with a great-
er or equal distance than Pj+1 with respect to Pi. If it does not exist,
then Pj+1 will be the final point of this count. Otherwise, the inter-
section with the segment Pm–Pm+1 is calculated at a point P0m, with
the same distance as Pj+1 with respect to Pi. The value of am = a0m
associated with P0m is obtained applying Stewart’s Theorem [27]
to the triangle Pi–Pm–Pm+1. The expression of am is analogous to
the one obtained before for aj, being enough to exchange Pj for
Pm, Pj+1 for Pm+1, and Pi+1 for Pj+1.

The above procedure continues in a similar way. If the segment
Pm–Pm+1 was already associated to some am = a	m different than �1,
then there are 2 hypotheses: (i) if a0m < a	m, then the segment
bounded by the points associated with a0m and a	m is counted, the
stopping point is associated with a	m, and am = a0m is stored, replac-
ing a	m; or (ii) if a0m P a	m, then the intersection point P0m would be
invalid and the stopping point is Pj+1. If no portion of the path Pm–
Pm+1 had been counted, then the value am = a0m is stored, the seg-
find among the n(n−1)/2 pairs of points the one(s) farthest apart from
each other, choosing among them the one with greatest distance from

origin; label it P1, and the subsequent P2, ..., Pn following their original
order; define Pn+1 ≡ P1 to account for the cyclic nature of the loading

find the projections Pi of a multiaxial stress or strain history onto the
subspaces E5σ or E5ε, or a lower dimension subspace of them, i = 1,...,n
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Fig. 15. Flowchart of the proposed Modified Wang–Brown (MWB) algorithm.
ment P0m–Pm+1 is counted, and the count continues from Pm+1. The
algorithm then searches for the first point Pr+1 (r > m) with a longer
distance than Pm+1 with respect to Pi, and so on.

The algorithm continues until the stopping point for the count
started at Pi is found. The linearity of the adopted transformations
allows all resulting stresses and strains at any intersection point to
be obtained from a simple interpolation involving the ai

coefficients.
The entire process is performed for all starting points Pi

(i = 1,2, . . . ,n). Note that a count can stop at point P1 if the history
is periodic, in which case the segment Pn–P1 exists and it cannot
be left out. At the end of the algorithm, all segments will be
associated with values ai = 0, indicating that all of them were
entirely counted. Fig. 15 shows the flowchart of the entire MWB
algorithm.
7. Application of the MWB algorithm

In this section, the MWB rainflow algorithm is applied to the NP
history presented in Section 4, formed by blocks of (ex, cxy) =
{(2,1) ? (�1,2) ? (2,�2) ? (�2,�2) ? (2,2) ? (�2,0)}% repeat-
edly applied to a steel specimen. This step-by-step example is
important to point out several implementation details of the
algorithm.

Assuming mel = 0.3 and eel ffi epl, it is found that �m ¼ 0:4. Defining
e � ex and c � cxy, and using Hooke’s law assuming ry = rz = 0, then
ey ¼ ez ¼ ��me. The projection onto the E5e sub-space results in

e1 ¼
2ex þ �mex þ �mex

2 � ð1þ �mÞ ¼ ex; e2 ¼
ey � ez

2 � ð1þ �mÞ
ffiffiffi
3
p
¼ 0;

e3 ¼
cxy

ffiffiffi
3
p

2 � ð1þ �mÞ ; e4 ¼ 0; e5 ¼ 0 ð16Þ

which can be represented in the 2D sub-space. �e000 � ½e1e3�T The
projected history is then given by (e1,e3) = (ex,0.6186 � cxy) =
{(2, 0.6186) ? (�1, 1.2372) ? (2,�1.2372) ? (�2,�1.2372) ?
(2,1.2372) ? (�2,0)}%. Among all pairs of points (consecutive or
not) of the history, the most distant pair (i.e., with the highest eRMises

between them) is (�2,�1.2372)% and (2,1.2372)%, called F and A,
respectively, in the example from Section 4, see Fig. 16. The distance
between them in the 2D deviatoric sub-space is eRMises = 4.7035%.
Since both points have the same distance 2.3517% to the origin,
any of the two can be chosen to be the first initial point P1. Choosing
the point (2,1.2372)% (previously called A) to be P1, the subsequent
points are called P2, P3, P4, P5 and P6 (B, C, D, E and F, respectively, in
the example from Section 4), following the same order of the
original cyclic history, see Fig. 16. This periodic history, re-ordered
starting from P1, becomes then (e1,e3) = {(2,1.2372) ? (�2,0)
? (2,0.6186) ? (�1,1.237 2) ? (2,�1.2372) ? (�2,�1.2372)}%.

The count that begins in P1 uses up the entire segment P1–P2,
resulting in a1 = 0. It is easy to see in Fig. 16 that the only point
more distant than P2 with respect to P1 is P6, therefore
a = |P6 � P5| = 4.0%, b = |P5 � P1| = 2.4744%, c = |P6 � P1| = 4.7035%
and p = |P2 � P1| = 4.1870%, resulting in

a5 ¼
ða2 þ b2 � c2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ b2 � c2Þ2 � 4a2ðb2 � p2Þ

q
2a2

¼ 0:8444
�0:8444

�
ð17Þ

The lowest solution above that satisfies 0 6 a5 6 1 is
a5 = 0.8444. The first count then ends at point P6, the most distant
from P1, resulting in the path P1–P2–P05–P6, where P05 = P5 + a5 �
(P6 � P5) = (�1.3776, �1.2372)%. Note that P05 corresponds to point
B0 from the example from Section 4, as expected.
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The count that begins in P2 uses up the entire segment P2–P3,
resulting in a2 = 0. The next point more distant than P3 with re-
spect to P2 is P5, hence a = |P5 � P4| = 3.8888%, b = |P4 � P2| =
1.5908%, c = |P5 � P2| = 4.1870%, and p = |P3 � P2| = 4.0475%, result-
ing in a4 = 0.9611 or �0.9530. The lowest solution that satisfies
0 6 a4 6 1 is a4 = 0.9611. The count then reaches point P5, but since
P1 (which would be called Pn+1 = P6+1 = P7 according to the algo-
rithm of Fig. 15) and P5 have the same distance 4.1870% with re-
spect to P2, then the condition |P7 � P2| |P5 � P2| is true, and so
the count continues, only stopping in P7 � P1, the most distant
point from P2. Since this count arrived at P1 without going through
the segment P6–P1, a6 becomes equal to 1.0. To avoid creating an
unnecessary stopping point for future counts at the end of P6–P1

due to a6 = 1.0, the algorithm resets a6 = �1. In summary, this sec-
ond count results in the path P2–P3–P04–P5–P06, where P04 = P4 + a4 �
(P5 � P4) = (1.8834,�1.1410)%, and P06 = P6 + a6 � (P7 � P6) � P7 � P1.
+ a6 � (P7 � P6) � P7 � P1. Note that this path corresponds to B–C–
C0–E–A from the example from Section 4, as expected.

The count that begins in P3 uses up the entire segment P3–P4,
thus a3 = 0. The next point more distant than P4 with respect to
P3 is P6, so a = |P6 � P5| = 4.0%, b = |P5 � P3| = 1.8558%, c = |P6 � P3

| = 4.4095% and p = |P4 � P3| = 3.0631%, obtaining a5 = 0.6092 or
�0.6092, hence a5 = 0.6092. However, a previous count had al-
ready used part of the segment P5 � P6, with an intersection point
P05 associated with a5 = 0.8444. Since 0.6092 < 0.8444, the value of
a5 is updated with a5 = 0.6092, a new intersection point before P05
is defined in the segment P5–P6, denominated
P005 = P5 + a5 � (P6 � P5) = (�0.4370,�1.2372)%, and this count stops
at P5

0 since it reaches a segment P05–P6 used in a previous count.
The resulting path is then P3–P4–P005–P05, which corresponds to C–
D–D0–B0 from the example from Section 4.

The count that begins in P4 needs to stop at point P04, associated
with a4 = 0.9611, because the portion P04–P5 had already been
counted. The resulting path is then P4–P04 and a4 is set to zero. Sim-
ilarly, the count that begins in P5 needs to stop at point P005, associ-
ated with a5 = 0.6092, because the portion P005–P05–P5 had already
been counted. The resulting path is P5–P005 and a5 is set to zero.

Finally, the count that begins in P6 needs to stop at its most dis-
tant point P7 � P1. Note that P06 itself did not constitute a stopping
point because it was the single point of the segment P6–P7 used in
previous counts. Only previously counted segments (and not
points or finite sets of points) can stop a count before reaching
the most distant point, this is why a6 had been reset to �1, instead
of leaving its previously calculated value 1.0. The resulting counted
path is P6–P1 and a6 is set to zero.

When the algorithm ends, the entire history has been accounted
for, and all ai end up with zero values, as expected. The MWB count
results in this example in the exact same half-cycles from the ori-
ginal Wang–Brown method obtained in the example from Section
4, see Fig. 17, however with a much lower complexity and
computational cost. The MWB algorithm has simple geometric
interpretations, it does not require the calculation of intersections
with hyperellipses, and it does not require the recalculation of all
eRMises for every count. In addition, it always finds the events with
largest eRMises, as opposed to the traditional Wang–Brown method,
as discussed before.

To calculate the fatigue damage, the MWB method first tries to
combine half-cycles into full cycles, and then it applies the MOI
method to calculate the equivalent strain (or stress) ranges associ-
ated with each count. Using the MOI (or even an enclosing surface)
method is a considerable improvement over the original Wang–
Brown method, which defined the ranges of each component only
from their maxima and minima along the path, losing information
about non-proportionality and phase difference between the
components.

In this example, the MOI method would be applied to the half-
cycles defined by the paths P4–P04, P5–P005, P3–P4–P005–P05 and P2–P3–
P04–P5–P06, and to the combined full cycle P1–P2–P05–P6–P7. Note that
these paths are presented above ordered by the last point of each
path, to try to preserve load order information, similarly to the
sequential rainflow algorithm [23–24]. This reordering is simple
to implement computationally, and it is very important for very
long non-periodic histories, in special in the presence of plastic
strains (due to plasticity memory effects).

After obtaining the equivalent ranges and mean components of
all rainflow-counted paths, any multiaxial model can be applied to
calculate the accumulated damage at the considered candidate
plane. The critical plane will then be the candidate plane with
highest accumulated damage, as discussed before.
8. Conclusions

Wang and Brown proposed a multiaxial rainflow count based
on the relative Mises strain eRMises as an indirect measure of the
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damage during a half-cycle. But the original method requires the
calculation of eRMises at every rainflow count for all subsequent
starting points. In this work, a Modified Wang–Brown (MWB) rain-
flow counting method was proposed, based on the representation
of the stress or strain history in a reduced 5D sub-space of the
six deviatoric strain (or stress) components. The MWB uses im-
proved rules to guarantee that the event with highest eRMises is al-
ways counted. The MWB method can be applied to a critical plane
approach to range-count the two shear components present in
Case B cracks, using a 2D sub-space of the considered 5D deviatoric
space. Coupled with the Moment Of Inertia or some enclosing sur-
face method, the MWB can better account for the path shape influ-
ence on the associated fatigue damage. The method has simple
geometric interpretations that considerably simplify its implemen-
tation: e.g. the distance between 2 points in the considered devia-
toric strain sub-space is the eRMises between them. The
computational implementation of the algorithm was discussed in
detail, including a detailed flowchart with all necessary calculation
steps.
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