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Practical steps required to obtain robust finite element triangular meshes for crack path and stress inten-
sity calculation purposes are evaluated, and techniques to use their predictions to calculate fatigue lives,
including load interaction effects, are discussed. These steps address: (a) how to simulate efficiently 2D
crack paths under bi-axial loading using automatic remeshing schemes; (b) how to choose the best
method to calculate stress intensity factors along the crack path; and (c) how the numerical problems
associated with excessive FE mesh refinement along the crack path may affect predictions. Various mod-
eling strategies are compared using different crack geometries and mesh refinements to quantify their
performance, particularly when the elements around the crack tip are very small compared with the ele-
ments far from it. It is shown that, contrary to many other stress analysis applications, excessive mesh
refinement may significantly degrade the calculation accuracy in crack problems. A limit for the elements
size ratio is clearly established.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The theory required to predict the generally curved crack propa-
gation path in two-dimensional (2D) structural components under
bi-axial loading is well known, but its implementation in an efficient
and reliable code is still far from a trivial task. The purpose of this
work is to describe how the difficulties involved in translating such
theoretical tools into practical numerical techniques have been
solved, and how these techniques were used in a successful spe-
cial-purpose academic program called Quebra2D, which means 2D
fracture in Portuguese [1,2]. This software is an interactive graphics
program for simulating two-dimensional fracture processes based
on numerical finite element (FE) techniques. Three important sub-
jects required to accomplish a complete and robust simulation of
fatigue crack growth (FCG) are studied: (a) how to compute effi-
ciently FCG under complex loading; (b) how to deal with numerical
problems that come up when the element size at crack tip is very
small compared to the entire model size; and (c) how to choose
the best method to compute stress intensity factors (SIF).

The complete automatic simulation of crack propagation in 2D
using FE method was first presented by Bittencourt et al. [3] and
Lim et al. [4]. Bittencourt used an advancing front method to create
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an initial FE mesh, and then redefined this mesh locally, in a region
close to the crack tip, in the subsequent FCG simulation steps,
avoiding in this way the need for global remeshing at each FCG
step. In his simulation, three methods to compute SIF [5–8] and
three techniques to compute the crack path incremental direction
were employed [9–11]. Lim also used a local procedure to remesh
just close to the crack tip, implementing four displacement-based
SIF computation techniques [12]. Many similar works have been
published [2,13–22], generally proposing new mesh generation
algorithms or new methods to improve the numerical computation
of SIF values. For example, previous works by this paper authors
[2,16] proposed a FCG under complex loading simulation tech-
nique that uses an unbound global–local technique. This is a better
approach than simulating FCG considering constant amplitude
loading in Paris equation [23], because it only represents part of
the material crack growth behavior. However, none of the previous
works not provide sufficient information to create an environment
to efficiently compute FCG.

This work does not intend to re-analyze the advantages and dis-
advantages of using FE in computational fracture mechanics, nei-
ther to compare FE with other approaches. This task has been
recently addressed by Ingraffea [24], who studied the taxonomy
of the many methods used to represent cracks in a numerical mod-
el, and the fundamental differences between them. Details about
the historical development of computational fracture mechanics
are not discussed here either, as they can be obtained in the works
by Ingraffea and Wawrzynek [25] and Sinclair [26], for instance.
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In the following sections, first a brief description of a computa-
tional architecture required to implement a robust and efficient FE-
based FCG program is presented. Then important details needed to
automate crack growth numerical predictions under complex load-
ing are discussed. Finally, based on 864 FE calculations, the various
SIF predictions schemes are compared.

2. Automatic crack propagation

The automatic crack propagation strategy adopted in this work
is based on a full geometric description of the cracked body two-
dimensional model. This means that there is a geometric model
that represents the cracked structure, and the FE mesh is attached
to this geometric model. Analysis attributes, such as loads, support
conditions, and material properties are also attached to the geo-
metric model. The geometric description consists of a set of curves
that represent the boundaries of the regions in the model. Bound-
ary conditions (supports and/or loads) are associated with the
curves, and domain parameters (such as material properties and
thickness) are attached to regions.

This strategy was implemented in the Quebra2D [1,2] program.
The crack representation scheme used in Quebra2D is based on the
discrete approach. In this sense, the program is similar to well-
known 2D simulators, such as Franc2D [3,27] for instance.
Quebra2D includes all methods mentioned above to compute crack
increment directions and associated SIF along the crack path.
Moreover, its adaptive FE analyses are coupled with modern and
very efficient automatic remeshing schemes, which substantially
decrease the computational effort.

Fig. 1 shows a simplified structure of the Quebra2D program.
The program does not have a direct user interface. Instead, it pro-
vides a medium level C++ application programming interface (API)
module. This allows Quebra2D to be run without user interference,
a desirable situation when it is used within an external code, or
when running several examples within a programming loop.

As shown in Fig. 1, Quebra2D is composed by several modules
controlled by a ‘‘Manager’’ that communicates with the API mod-
ule. These modules are: Mesh Structure, which stores the mesh
and the FE results; Geometric Structure, which stores the crack
and piece geometries; Mesh Generator, responsible for the auto-
matic FE generation, including the meshing and re-meshing steps;
Fig. 1. Internal structure of Quebra2D.
Rosette Shapes, responsible for generating the special finite ele-
ments around the crack tip; Attributes, where the model attributes
such as nodal restrictions, loads and material properties are stored;
Solve, module responsible for the numerical analysis; SIF Calculator,
which calculates KI and KII stress intensity factors using the FE re-
sults; Crack Growth Direction, which calculates the crack increment
angle at each calculation step; and finally Jobs, which is the module
responsible for determining the type of the static, crack propaga-
tion, and mesh adaptive analysis. This program modular structure
allows any module to be altered without interfering with the oth-
ers. For instance, Quebra2D can be used with almost any commer-
cial FE code.

The Mesh Generator module contains an algorithm to generate
triangular elements [28]. The meshing algorithm works both for
regions without cracks or with one or multiple cracks, which
may be either embedded or surface breaking. This is an adaptation
of an algorithm previously proposed for generating unstructured
meshes for arbitrarily shaped three-dimensional regions [29]. The
same strategy was adopted for surface mesh generation [30].

A typical computational procedure to predict propagation of
curved cracks adopts the following sequence of steps. Given an ini-
tial geometric model with cracks and attributes, a few options
must be chosen or read from an input data file: the method to ob-
tain KI and KII; the crack increment direction criterion; the equiva-
lent SIF Keq criterion; the propagation threshold DKth; the material
or structure toughness KC; the load ratio R = Kmin/Kmax; the con-
stants of the material FCG rule, such as Paris’ coefficient and expo-
nent A and m (when dealing with multiple cracks that can
interact); the maximum crack increment size Da; and the number
of steps or increments required to simulate the crack path. The
next simulation step is to create a mesh in the model domain, fol-
lowed by the FE analysis. Then, the equivalent SIF DKi and the glo-
bal angle of crack propagation direction hi are obtained from the FE
results, for each crack in the model. In addition, the maximum
equivalent SIF DKmax is obtained searching through all DKi, and
the equivalent SIF at the maximum load is found from the load ra-
tio R by Kmax = DKmax/(1 � R). After finishing all these tasks, the en-
tire process is restarted for the next crack growth simulation step.

However, this global sequential procedure, in spite of being
adopted by most FCG simulation programs, is not efficient for mod-
eling long variable amplitude loading histories. Indeed, such com-
plex load histories usually cause different crack increments at each
load cycle, which require remeshing and time-consuming FE recal-
culations. Moreover, load interaction effects such as FCG retarda-
tion after overloads compromise even more the computational
efficiency of this approach.

To cope with this problem, the authors have proposed an un-
bound global–local approach in which crack increments are locally
calculated at each load cycle in an efficient manner, even consider-
ing crack retardation effects if necessary. The local approach does
not require a global solution of the whole structure stress field. It
is based on the direct integration of the fatigue crack propagation
rule of the material, da/dN = F(K, Kmax, Kth, KC, ...), where K and Kmax,
the stress intensity range and maximum, are the two fatigue crack-
ing driving forces; Kth and KC, the fatigue crack propagation thresh-
old and the toughness of the material-structure set, are the
material related properties that induce the sigmoidal shape of typ-
ical da/dN curves; whereas the ellipsis represent the possible influ-
ence of other parameters on FCG, such as the opening SIF Kop, or
non-mechanical (e.g. environmental or chemical) driving forces.
Appropriate expressions for K and for the da/dN rule must be used
to obtain satisfactory cracking life predictions.

The need for good SIF expressions is a major drawback of the lo-
cal approach, because they simply are not available for most real
components, in which cracks tend to curve while they cross non-
uniaxial stress fields. In such cases, designers must use engineering
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common sense to choose approximate KI handbook expressions to
simulate FCG real problems by the local approach. The error in-
volved in such approximations obviously increases as the real
crack deviates from the modeled crack, and in such cases the accu-
racy of the local approach is questionable and its predictions unre-
liable. In spite of this drawback, this problem can be efficiently
solved as follows.

Since the advantages of the global and local approaches are
complementary, the problem can be successfully divided into
two parts. First, an appropriate FE program (such as Quebra2D) is
used to calculate the generally curved crack path and its associated
Mode I stress intensity factor KI(a) along the crack length a, under
constant amplitude loading. Then, an analytical expression is ad-
justed to the discrete KI(a) values calculated at as many points as
required along the crack path, to be used as input to a local
approach program (such as the ViDa program, described below).
Finally, the actual variable amplitude loading can be efficiently
treated by the direct integration of the crack propagation rule, con-
sidering retardation effects if required. Neither the DK expression
nor the type of crack propagation rule need to have their accuracy
compromised when using this dual approach, a hypothesis exper-
imentally verified in many cases.

The local approach program used in this work is named ViDa
(which means life in Portuguese). This piece of software has been
developed to automate all the traditional local approach methods
used in fatigue design [31,32], including the SN, the IIW (for welded
structures) and the eN methods for crack initiation, and the da/dN
method for crack propagation. FCG lives can be calculated by the
DKrms or the cycle-by-cycle methods, for either planar or 3D prob-
lems, as long as proper SIF expressions are provided (e.g. which can
be calculated by Quebra2D.).

To properly simulate FCG under variable amplitude loading
problems, several load interaction models are included in the ViDa
software [33–36]. For example, Wheeler’s model, perhaps one of
the simplest and most well known [33], introduces a crack-growth
reduction factor bounded by zero and unity. This factor is calcu-
lated for each cycle to predict retardation as long as the current
plastic zone Zi is contained within a previously overload-induced
plastic zone Zol. The retardation is maximum just after the over-
load, and it ends when the border of Zi touches the border of Zol.

Therefore, if aol and ai are the crack sizes at the instant of the
overload and at the (later) ith cycle, and (da/dN)ret,i and (da/dN)i

are the retarded and the corresponding non-retarded crack growth
rates (at which the crack would be growing in the ith cycle if the
overload had not occurred), then, according to Wheeler:

da
dN

� �
ret;i

¼ da
dN

� �
i

� Zi

Zol þ aol � ai

� �b

; if ai þ Zi < aol þ Zol ð1Þ

where b is a fitting constant, obtained by selecting the closest match
between an experimentally measured curve under variable ampli-
tude loading and the predicted FCG curves using several b-value
candidates. However, this model cannot predict crack arrest be-
cause the resulting (da/dN)ret,i is always positive. Cut-off values have
been proposed to include crack arrest in the original Wheeler mod-
el, however this approach results in discontinuous (da/dN)ret,i equa-
tions. Meggiolaro and Castro [37] used a simple but effective
modification to the original Wheeler model in order to predict both
crack retardation and arrest. This approach, called the Modified
Wheeler model, uses a Wheeler-like parameter to multiply DK in-
stead of da/dN after the overload

DKretðaiÞ ¼ DKðaiÞ �
Zi

Zol þ aol � ai

� �c

; if ai þ Zi < aol þ Zol ð2Þ

where DKret(ai) and DK(ai) are the values of the SIF ranges that
would be acting at ai with and without retardation due to the
overload, and c is an experimentally adjustable constant, usually
different from the original Wheeler model exponent b. This simple
modification can be used with any of the FCG rules that recognize
DKth to predict both retardation and arrest of fatigue cracks after
an overload, the arrest occurring if DKret(ai) 6 DKth.

Another crack retardation model included in ViDa is the Con-
stant Closure model, originally developed at Northrop for use in
their classified programs [34]. It is based on the observation that
for some variable amplitude load histories the closure stress does
not deviate significantly from a certain stabilized value (if the spec-
trum has a ‘‘controlling overload’’ and a ‘‘controlling underload’’
that occur often enough to keep the residual stresses constant,
and thus the closure level constant).

In the constant closure model, the opening SIF Kop is the only
empirical parameter, with typical values estimated between 20%
and 50% of the maximum overload stress intensity factor. The va-
lue of Kop, calculated for the controlling overload event, is then ap-
plied to the following (smaller) loads to compute crack growth,
recognizing crack retardation and even crack arrest (if Kmax 6 Kop).

The main limitation of the Constant Closure model is that it can
only be applied to loading histories with ‘‘frequent controlling
overloads,’’ because it does not model the decreasing retardation
effects as the crack tip cuts through the overload plastic zone. In
this model, it is assumed that a new overload zone, with primary
plasticity, is formed often enough before the crack can significantly
propagate through the previous plastic zone, thus not modeling
secondary plasticity effects by keeping Kop constant.
3. Stress intensity factor predictions

Sinclair [26] presents an extensive review of SIF numerical pre-
diction models. However, most comparisons are somewhat incom-
plete in at least one of three important aspects. First, they discuss
numerical results generated by ‘‘artificial’’ meshes that do not
adapt to the (growing) crack path, contrary to the automatically
generated meshes presented in this paper. Second, they do not
show convergence analysis of the results when the elements size
is decreased around the crack tip, increasing the number of ele-
ments in the analyzed numerical model. Third, they present only
Mode I results.

This section compares SIF values obtained by three methods
using the Quebra2D methodology: the displacement correlation
technique (DCT) [5]; the potential energy release rate, computed
by means of a modified crack-closure integral technique (MCC)
[6,7]; and the J-integral, computed by means of the equivalent do-
main integral (EDI) together with a mode decomposition scheme
[8,38–41]. The objective of this study is to overcame the three lim-
itations of previous comparisons available in the literature. The
model shown in Fig. 2a is employed to compare SIF calculated by
using the three different methods in FE analysis. This model is a
representation of a very large plate with a small crack, aiming to
reproduce the infinite plate solution. The plate has
2000 � 2000 mm with an inclined central crack of length
2a = 2 mm. The plate is loaded by a uniform stress in the vertical
direction; see Fig. 2a. This example is studied varying the crack an-
gle with the horizontal axis from 0� to 80�, at 10� steps. To analyze
the SIF calculation convergence, the density of the FE mesh is mod-
ified varying the number n of the elements at each of the two crack
faces, with n = 4, 8, 16, 32, 64, 128, 256 and 512 elements. In all
models, eleven nodes are used at each edge of the plate. Fig. 2b
shows an example of a mesh generated by Quebra2D for the 80�
crack with four elements on each of the two crack faces.

Four different strategies for mesh generation were considered
in the model, featuring meshes with or without additional refine-
ment to force equal size between neighboring cells near the crack



Fig. 2. (a) Model used to compare the SIF calculated by the three different methods and (b) typical FE mesh.

Fig. 4. Ratio between FE-calculated and actual Mode II SIF for different crack angles
and calculation methods, as a function of the number of crack face elements; the
dashed lines are averages over the nine analyzed crack angles (0�, 10�, . . . ,80�).
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tip and, for either case, with or without performing additional
smoothing on the final meshes. In this way, elements around the
crack tip ended up with different shapes and arrangements. FE
analyses were performed for each of the four meshing strategies,
for eight different numbers of crack face elements (n = 4, 8, 16,
32, 64, 128, 256 and 512), nine considered crack angles (0�,
10�,. . ., 80�), and three KI calculation models (DCT, MCC and EDI),
resulting in 864 calculations. It was found that the KI calculation
errors do not significantly depend on the meshing strategy or on
the crack angle, but they are very much influenced by the number
of crack face elements and calculation model. Figs. 3 and 4 show
the ratio between the FE-calculated and the actual (theoretical)
Mode I or II SIF for different crack angles and calculation methods,
as a function of the number of crack face elements.

It is clearly seen from Figs. 3 and 4 graphs that, in average, the
EDI SIF calculation method results in better predictions than the
MCC, which in turn is usually better than the DCT. Note from
Fig. 4 that the value of KII calculated by the DCT method does not
converge to the theoretical value as the mesh is refined. For the
other cases, the calculation precision tends to improve (i.e., the ra-
tio between the calculated and actual values tends to 1) as the
number of crack face elements is increased.

Note, however, that the calculation errors and associated stan-
dard deviations tend to increase for a number of crack face ele-
ments greater than 16. These increasing errors are a result of an
ill-conditioned numerical problem [42]. Formally, the condition
number of a matrix is defined as the ratio between its largest
eigenvalue (in absolute value) and its eigenvalue closest to zero.
A matrix is singular if its condition number is infinite, and it is
Fig. 3. Ratio between the FE-calculated and the actual Mode I SIF for different crack
angles and calculation methods, as a function of the number of crack face elements;
the dashed lines are averages over the nine analyzed crack angles (0�, 10�, . . . ,80�).
ill-conditioned if its condition number is too large, that is, if its
reciprocal approaches the machine’s floating-point precision [43]
(e.g., less than 10�6 for single or 10�12 for double precision com-
puter variables).

The linear algebraic system solution from the linear FE analy-
sis used by Quebra2D is obtained by the direct Gauss–Jordan
elimination method. This method itself is not applicable to
Fig. 5. FE-calculated to actual Mode I SIF ratio for different crack angles and
calculation methods, as a function of the longest-to-shortest element edge length
ratio; the dashed lines are averages over the nine analyzed crack angles (0�,
10�, . . . ,80�).



Fig. 6. FE-calculated to actual Mode II SIF ratio for different crack angles and
calculation methods, as a function of the longest-to-shortest element edge length
ratio; the dashed lines are averages over the studied crack angles (0�, 10�, . . . ,80�).
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ill-conditioned matrices. This ill-conditioned problem is caused
here by the large disparity between the sizes of elements in the
mesh. In all the studied examples, the longest element edge has
length 200 mm, located at the plate border. The shortest edge oc-
curs at each crack face, with length 2a/n, where 2a = 2 mm is the
considered crack length and n is the number of elements at each
crack face. Thus, the ratio between the longest and shortest
element edges is given by 200/(2/n) = 100 � n, which varies be-
tween 400 and 51,200 for the considered values of n between 4
and 512.

Figs. 5 and 6 show the ratio between the FE-calculated and the
actual Mode I or II SIF, including results from numbers n of crack
face elements above 32. It is possible to verify from these figures
that the calculation errors dramatically increase for high longest-
to-shortest element edge length ratios 100 � n. This work does
not intend to solve this numerical problem, however many
solutions can be found in literature [43]. Therefore, unless such
ill-conditioning problem is addressed, it is recommended to per-
form the calculations using meshes with length ratios 100 � n up
to 100 � 16 = 1600.
4. Conclusions

In this work, computational algorithms used to calculate the
curved path of fatigue cracks in generic 2D structural components
were presented. The actual performance of the three main SIF cal-
culation methods was evaluated by comparing their predictions on
864 FE calculations with different crack geometries and mesh
refinements on a very large plate, with the idealized analytical
solution for this problem. It was found that the EDI method results
in better predictions than the MCC, which in turn is usually better
than the DCT. In some cases, the DCT method does not converge to
the theoretical value of SIF.

Using the direct Gauss–Jordan elimination method in the linear
FE analysis, it was found that the ratio between the longest and
shortest element edge lengths should be kept below 1600 to avoid
calculation errors in SIF calculations. For meshes with length ratios
higher than 1600, improved numerical methods to deal with ill-
conditioned matrices would be necessary to not compromise the
calculation accuracy of the calculated SIF.

The main models to predict the crack incremental direction
were reviewed. An automatic crack propagation algorithm was
presented to calculate the curved crack path and associated SIF.
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