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This work studies further an approach originally proposed to evaluate equivalent stress and strain ranges
in non-proportional (NP) load histories, called the Moment Of Inertia (MOI) method. The MOI method
assumes that the path contour in the deviatoric stress or strain diagram is a homogeneous wire with unit
mass. The center of mass of such wire gives then the mean component of the path, while the moments of
inertia of the wire can be used to obtain the equivalent stress or strain ranges. The MOI method is an
alternative to convex enclosure methods, such as Dang Van’s Minimum Ball or the Maximum Prismatic
Hull methods, without the need for computationally-intensive search algorithms or adjustable
parameters. The MOI method is extended here to calculate as well the non-proportionality factor Fnp of
generic multiaxial load histories, formulated in an alternative sub-space of the deviatoric plastic strains.
Experimental results for 14 different multiaxial histories prove the effectiveness of the MOI method to
predict the observed non-proportionality factors. Hence, it can be a most useful tool for the computation
of multiaxial fatigue damage in practical applications.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Several multiaxial fatigue damage models have been introduced
in the literature, such as the ones proposed by Sines, Crossland,
Findley, McDiarmid, Brown–Miller, Fatemi–Socie and Smith–
Watson–Topper (SWT) [1]. All of them require some measure of
an equivalent stress or strain range, which may be difficult to
obtain for non-proportional (NP) multiaxial load histories.

For a given multiaxial stress–strain NP history, the fatigue dam-
age can be calculated by projecting the history onto a candidate
plane at the critical point [1]. This critical plane approach is simple
to compute for Case A cracks, which initiate perpendicular to the
free surface. In this case, the in-plane shear stress or strain may
be counted using a uniaxial rainflow algorithm [2]. On the other
hand, for Case B cracks, which initiate at a 45� angle from the free
surface, a multiaxial rainflow count must be performed to identify
individual cycles formed by the in-plane and out-of-plane shear
components [3].

For each rainflow-counted cycle, the equivalent stress or strain
range is often computed using the so-called convex enclosure
methods [4], which try to find circles, ellipses or rectangles that
contain the entire projected path in the 2D case, or hyperspheres,
hyperellipsoids or hyperprisms in a generic 5-dimensional (5D)
equivalent stress space. The traditional convex enclosure methods
have been reviewed in [4]: the Minimum Ball, Minimum Circum-
scribed Ellipsoid, Minimum Volume Ellipsoid, Minimum F-norm
Ellipsoid (MFE), Maximum Prismatic Hull and Maximum Volume
Prismatic Hull. These methods make use of stress and strain
parameters such as the von Mises stress and strain ranges DrMises

and DeMises, defined by:

DrMises ¼
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where the �m is the mean (or effective) Poisson coefficient
�m ¼ ð0:5ep þ meeeÞ=ðep þ eeÞ, while ee and ep are the elastic and plastic
components of the strains, and me and mp are the elastic and plastic
Poisson coefficients (mp = 0.5 assuming plastic strains conserve
material volume).

Extensive simulations from [4] showed that all convex enclo-
sure methods can lead to poor predictions of the mean stresses
or strains, if they are assumed as located at the center of the ball,
ellipse or prism, as seen in Fig. 1(a), which shows a stress path
shaped very differently from an ellipse and its Minimum F-norm
Ellipsoid (MFE) enclosure. Convex enclosure methods may also
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Fig. 1. History path examples showing the inadequacy of convex enclosure
methods, such as the Minimum F-norm Ellipsoid (MFE), to predict mean compo-
nents or the non-proportionality factor Fnp.
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result in poor estimates of stress or strain amplitudes, in special for
highly non-convex NP history paths, such as cross or star-shaped
paths.

If only the stress or strain history is measured, then an incre-
mental plasticity algorithm must be implemented to obtain the
stress–strain behavior caused by a NP loading. To account for NP
hardening effects, it is necessary to correctly evaluate the non-pro-
portionality factor Fnp associated with the load history and the
additional hardening coefficient anp. The factor Fnp depends solely
on the shape of the history path [5], while anp depends not only
on the material and its microstructure, but also on the strain
amplitudes involved in the history. The additional hardening coef-
ficient can be estimated from

anp ¼
rOP

rIP
� 1 ð3Þ

where rIP and rOP are the equivalent von Mises stress amplitudes ob-
tained under the same strain level for, respectively, in-phase (Fnp = 0)
and 90� out-of-phase (Fnp = 1) loadings. This rOP/rIP ratio is usually
calculated at high plastic strains, however it can be defined at any
strain level, resulting in some strain amplitude dependence of anp.

If anp is eliminated from the Fnp equation, then Fnp can be ob-
tained for a given von Mises stress amplitude r from

Fnp ¼
r=rIPð Þ � 1

rOP=rIPð Þ � 1
ð4Þ

as long as r is measured in the same material and under a similar
strain level as the one from the rIP and rOP measurements. Using
the above equation, Fnp can be calculated from experiments without
the need to explicitly obtain anp or to worry about its strain ampli-
tude dependence. In the absence of experimental data to measure r,
rIP and rOP, the NP factor Fnp must be estimated from the load his-
tory path. The main Fnp estimates are presented next.
2. Estimates of the non-proportionality factor Fnp

Originally, Fnp was estimated from the aspect ratio of the convex
enclosure that contains the history path (e.g. the aspect ratio b/a of
an enclosing ellipse with semi-axes a and b). But such convex
enclosure estimates can lead to poor predictions of Fnp, as seen in
Fig. 1(b). This example shows a path that does not encircle the ori-
gin of the von Mises r � s

p
3 diagram, while entirely located far

away from it. Despite the almost circular shape of the enclosing
Minimum F-norm Ellipsoid (MFE), which would suggest Fnp ffi 1,
the principal direction in fact varies very little along such path,
since the angle between each point in the path and the origin of
the 2D diagram varies very little during each cycle – thus, the ac-
tual Fnp should be very small in this example.
Another notable example where convex enclosures fail to calcu-
late Fnp is shown in Fig. 1(c), where a loading path describes a
straight line that does not cross the origin of the diagram. This par-
ticular path induces a 45� variation of the principal direction, imply-
ing in Fnp 0, however any convex enclosure method would predict
Fnp = 0 for such straight line. This path is an interesting example of
how an in-phase loading (which is represented by a straight path)
can be non-proportional (making the principal direction vary). Note
also that convex enclosure methods can lead to poor Fnp predictions
even in paths that encircle the origin, in special when the path shape
is very different from an ellipse or rectangle, or when the mean
value of the path is not located close to the origin.

The use of the stress path to estimate Fnp is also questionable.
Fig. 1(d) shows a stress path that combines a purely elastic ten-
sion–torsion portion (well inside the yield surface with radius SY)
with uniaxial tension–compression plastic straining. Since NP hard-
ening is caused by plastic straining, the purely elastic portion should
not influence the value of Fnp. As plastic strains only occur along
such path under uniaxial conditions, it is expected that Fnp = 0,
which is confirmed by experiments and incremental plasticity sim-
ulations using Tanaka’s NP model [6]. However, a convex enclosure
method applied to such stress path would wrongfully predict Fnp

much greater than zero, as suggested by the MFE ellipse in
Fig. 1(d). Therefore, any accurate Fnp estimation method should be
based on the plastic strain path, not on the stress or total strain path.

Several methods have been proposed to estimate Fnp, besides
the ones based on convex enclosures. Kanazawa et al. [7] estimated
Fnp as a rotation factor, defined by the ratio between the shear
strain range at 45� from the maximum shear plane and the maxi-
mum shear strain range. This factor correctly tends to the limits
Fnp = 0 for proportional loadings and Fnp = 1 for 90� out-of-phase
strain histories (assuming the relation ca ¼ ð1þ �mÞ � ea between
strain amplitudes for Case A cracks [1]). But it fails to correctly
compute Fnp for more complex histories.

Itoh et al. [8] estimated Fnp using an integral definition along the
strain path:

Fnp ¼
p

2TeImax

Z T

0
eIðtÞ � j sin nðtÞj � dt ð5Þ

where eI(t) is the absolute value of the maximum principal strain at
each instant t, eImax is the maximum value of eI(t) along the entire
path, n(t) is the angle between the principal directions associated
with eI(t) and eImax, and T is the time period of the path.

Itoh’s method works for simple 2D (e.g. tension–torsion) histo-
ries, but it should not be applied to more general 3D to 6D histo-
ries, since it is based on a scalar measure, the angle n(t). For
instance, if the directions of eI(t) along a load path describe a cone
with symmetry axis in the direction of eImax, then n(t) would be
constant and equal to half the cone apex angle, regardless of the
chosen path. Constant amplitude or 90� out-of-phase cycles could
result in the same n(t) and eI(t) histories, wrongfully calculating the
same Fnp for both cases. Instead of using the scalar measure n(t),
the direction of eI(t) would need to be defined by a vector of at least
two elements to be able to distinguish between these example
paths.

To calculate Fnp of a more general 6D load path, Bishop [9]
introduced a 6 � 6 inertia tensor termed the Rectangular
Moment Of Inertia (RMOI) of the stress path, which can be
expressed using Voigt-Mandel’s stress representation

�r � rx ry rz sxy

ffiffiffi
2
p

sxz

ffiffiffi
2
p

syz

ffiffiffi
2
ph iT

by

Ir �
1
pr
�
I
ð�r� �rmÞ � ð�r� �rmÞT � jd�rj ð6Þ

where the mean component �rm and accumulated stress pr are also
integrated along the stress path, calculated from



Fig. 2. An apparently 90� out-of-phase tension–torsion history can be proportional
if subjected to a biaxial state ry = rx.

Fig. 3. History path, assumed as a homogeneous wire with unit mass.
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�rm �
1
pr
�
I

�r � jd�rj and pr �
I
jd�rj ð7Þ

In the above equations, jd�rj stands for the Euclidean norm of
the stress increment d�r, and the superscript T means transpose
of a vector.

The RMOI stress tensor measures the distribution of the stress
path, relative to its mean, about the coordinate planes. Bishop pro-
posed that Fnp can be estimated from the two largest eigenvectors
kr1 and kr2 of Ir (kr1 P kr2) through

Fnp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr2=kr1

p
ð8Þ

Note that the normalization term 1/pr was not included in
Bishop’s original definition of Ir, however it has been introduced
here to simplify the comparison between the MOI and Bishop’s
methods.

Despite being more general than Itoh’s method, Bishop’s RMOI
approach has several issues: (i) it is formulated in a stress space,
instead of a more appropriate plastic strain space to deal with
the path from Fig. 1(d), as discussed before; (ii) it uses a 6D formu-
lation instead of a 5D deviatoric one, therefore it implicitly as-
sumes that the hydrostatic component may influence Fnp, which
is non-sense for materials with pressure-insensitive yield functions
such as von Mises’; (iii) it calculates the moments of inertia relative
to the mean component of the load path, which would wrongfully
predict Fnp = 0 for the path from Fig. 1(c), instead of an Fnp > 0 that
would be obtained from moments relative to the origin of the coor-
dinate axes; and (iv) it wrongfully predicts Fnp = 1 for tension–tor-
sion stress paths that describe a circle in a r � s

p
2 diagram, and

not for the well-known 90� out-of-phase paths that describe a cir-
cle in the r � s

p
3 von Mises diagram.

In summary, an accurate Fnp estimate should be: (i) formulated
in the plastic strain space; (ii) independent of mean components of
stresses and strains; and (iii) independent of hydrostatic compo-
nents. The issue with hydrostatic components can be seen in the
load path from Fig. 2, which shows a 90� out-of-phase traction-tor-
sion stress history r � s

p
3 in a biaxial state ry = rx. This history

describes circles in both rx � sxy
p

3 and ry � sxy
p

3 diagrams, sug-
gesting a highly non-proportional history. However, such a history
would be proportional since the principal stress directions
hp = ±45� are constant, because ry = rx implies that
tan hp ¼ gxy=ðrx � ryÞ ! �1, see Fig. 2. Thus, the non-proportion-
ality of the loading can only be ascertained when the history is
represented in a diagram based on a sub-space of the deviatoric
stresses and strains, e.g. (rx � ry) � sxy

p
3 for stresses or (ex � ey) -

� cxy/
p

3 for strains. These diagrams are not influenced by the
hydrostatic components of the load path, since (rx � ry) � (Sx �
Sy) and (ex � ey) � (ex � ey), where S and e stand for deviatoric
stresses and strains.

Nevertheless, most Fnp estimates are based on diagrams involv-
ing a single normal component rx or ex and a shear component sxy
or cxy. Usually, the contribution of ry or ey, the normal history per-
pendicular to the considered x direction, is overlooked in the calcu-
lation of Fnp. This can lead to very large errors.

To compensate for the flaws in Itoh’s, Bishop’s and other
estimates in such cases, the Moment Of Inertia (MOI) method, orig-
inally proposed in [4] to predict equivalent stress and strain ranges,
is here extended to estimate Fnp in general 6D NP histories. The
MOI method is discussed next.

3. The Moment Of Inertia (MOI) method

3.1. Calculation of alternate and mean components

The Moment Of Inertia (MOI) method has been proposed in [4]
to calculate alternate and mean components of complex NP load
histories. To accomplish that, the history must first be represented
in a two-dimensional (2D) Euclidean sub-space of the transformed
5D deviatoric stress-space E5r (for stress histories) or strain-space
E5e (for strain histories). These 5D deviatoric spaces represent the
stress and strain states using the vectors �S0 and �e0, defined as
�S0 � ½ S1 S2 S3 S4 S5 �T ð9Þ

�e0 � ½ e1 e2 e3 e4 e5 �T ð10Þ

where

S1 �rx�
ryþrz
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2

ffiffiffi
3
p
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3
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3
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3
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ð11Þ
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eyþez

2
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2

ffiffiffi
3
p

; e3�
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2
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p

; e4�
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2
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; e5�
cyz

2

ffiffiffi
3
p

ð12Þ

Note that the 5D stress-space used in the MOI method is a
scaled version of the Euclidean space proposed by Papadopoulos
et al. in [10].

The MOI method assumes that the 2D load path, represented by
a series of points (X, Y) that describe the stress or strain variations
along it, is analogous to a homogeneous wire with unit mass. Note
that X and Y can have stress or strain units, but they are completely
unrelated to the directions x and y usually associated with the
material surface. The mean component of the path is assumed, in
the MOI method, to be located at the center of gravity of this hypo-
thetical homogeneous wire shaped as the load history path. Such
center of gravity is located at the perimeter centroid (Xc, Yc) of
the path, calculated from contour integrals along it

Xc ¼
1

pXY
�
I

X � dpXY ; Yc ¼
1

pXY
�
I

Y � dpXY ; pXY ¼
I

dpXY ð13Þ

where dpXY is the length of an infinitesimal arc of the path and pXY is
the path perimeter, see Fig. 3.

Note that this perimeter centroid (PC) is in general different
from the area centroid (AC), which is the center of gravity of a uni-
form density sheet bounded by the shape of the closed path D. The
reason to choose the perimeter centroid instead of the area cen-
troid to locate the mean component can be readily seen in the
example in Fig. 4. In this example, the right portion of the history



Fig. 4. The area centroid (AC) does not reflect well the mean component of the path
D, while the perimeter centroid (PC) is a good measure of such mean.

Fig. 5. Plastic strain path in the e1p � e3p = 1.5 � (exp � cxyp/
p

3) diagram for a
tension–torsion history.
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has almost zero area, therefore it allows the area centroid to be lo-
cated approximately at the origin of the diagram, which is not
physically reasonable for such an asymmetrical path. The perime-
ter centroid, on the other hand, gives a much more reasonable esti-
mate of the mean component of such stress or strain paths.

As described in [4], the MOI method calculates the equivalent
stress or strain ranges of a loading path from the mass Moments
Of Inertia (MOI) of its analogous homogeneous wire, calculated
with respect to its perimeter centroid. These MOI at the centroid
are obtained from the parallel axis theorem applied to the MOI cal-
culated at the origin O of the diagram, given by the contour inte-
grals along the path

IO
XX ¼

1
pXY
�
I

Y2 � dpXY ; IO
YY ¼

1
pXY
�
I

X2 � dpXY ;

IO
XY ¼ IO

YX ¼ �
1

pXY
�
I

X � Y � dpXY ð14Þ

3.2. 5D Deviatoric plastic strain space

In this work, it is proposed that the above equations from the
MOI method can be applied to calculate as well the non-propor-
tionality factor Fnp of a generic multiaxial load path. The presented
5D deviatoric spaces are appropriate to define an integral equation
to estimate Fnp because, contrary to Bishop’s method [9], they are
independent of the hydrostatic components. However, instead of
using the 5D deviatoric stress or strain spaces E5r or E5e, the devi-
atoric plastic strain space E5p is used to represent the load path, de-
fined as

�e0p � ½ e1p e2p e3p e4p e5p �T ð15Þ
where the subscript p indicates plastic component and

e1p � exp �
eyp
þ ezp

2
; e2p �

eyp
� ezp

2

ffiffiffi
3
p

;

e3p �
cxyp

2

ffiffiffi
3
p

; e4p �
cxzp

2

ffiffiffi
3
p

; e5p �
cyzp

2

ffiffiffi
3
p

ð16Þ

Note that this 5D representation of plastic strains is the same as
the one proposed by Tanaka [6] multiplied by a 1.5 scaling factor,
since the identity exp + eyp + ezp = 0 implies that eyp – ezp = exp + 2eyp.

There are five motivations to use the proposed 5D projection �e0p
of the plastic strain space to calculate Fnp: (i) it is a non-redundant
representation of the plastic strains, since the linear dependence
exp + eyp + ezp = 0 has been removed when projecting the 6D strains
onto this 5D sub-space; (ii) similarly to the projections �S0 and �e0, �e0p
is independent of hydrostatic components, since it is a 5D projec-
tion of the deviatoric space as well; (iii) its scaled down version
�e0p=1:5 has been shown by Tanaka [6] to be appropriate to evaluate
the non-proportional hardening evolution in incremental plasticity
calculations; (iv) the Euclidean norm j�e0pj is equal to the von Mises
equivalent plastic strain, without the need for any scaling factors;
and (v) the direction of such 5D strain vectors is related with the
principal direction of the loading. This last statement can be ob-
served, for instance, in the calculation of the principal direction an-
gle hp with respect to the y axis in the y–z plane

tan 2hp ¼
cyz

ey � ez
¼ e5

e2
ffi e5p

e2p
ð17Þ
where the approximation e5/e2 ffi e5p/e2p is valid for large plastic
strains, which result in �e0 ffi �e0p. Therefore, the angle of the strain vec-
tor �e0 in the e2 � e5 diagram is equal to twice the principal direction
hp in the y–z plane, making the 5D deviatoric strain vector �e0 (and
consequently �e0p, during plastic straining that causes NP hardening)
a good descriptor of the changes in the principal direction. The same
arguments can be applied to the principal directions in the x–y and
x–z planes, after appropriate coordinate rotations of the vectors �e0

and �e0p.
Thus, to calculate the directions suffering larger plastic strain

magnitudes, the plastic strain path in its E5p space can be imagined
as a homogeneous wire with unit mass, as it was assumed before
for the E5r and E5e stress and strain paths in the original MOI meth-
od to calculate the equivalent ranges and mean components. This
is physically sound, since the moments of inertia of such unit mass
wire with respect to the origin are related to how much the path
stretches in each considered direction, and therefore can be corre-
lated with how much accumulated plastic straining there is in such
direction. The proposed MOI estimates for Fnp are detailed next.

3.3. Calculation of Fnp for 2D load histories

Before generalizing the procedure to a generic 6D multiaxial
loading, let’s formulate the MOI method to calculate the non-pro-
portionality factor Fnp of a simple elastoplastic tension–torsion
path, which has with non-zero plastic strain components exp, cxyp

and eyp = ezp = �0.5�exp, resulting in

e1p � exp �
eyp
þ ezp

2
¼ 3

2
exp ; e2p �

eyp
� ezp

2

ffiffiffi
3
p
¼ 0;

e3p ¼
cxyp

2

ffiffiffi
3
p

; e4p ¼ 0; e5p ¼ 0 ð18Þ

Since only e1p and e3p are different than zero, the plastic strain
path of such tension–torsion history can be represented in the
2D diagram e1p � e3p = 1.5 � (exp � cxyp/

p
3), see Fig. 5.

The Fnp estimate for 2D paths is simply the ratio between the
two radii of gyration of the plastic strain path about its principal
axes, which is a measure of the aspect ratio of the path and, there-
fore, of its non-proportionality. The radius of gyration about a gi-
ven axis can be calculated as the root mean square of the
distance between the axis and each point of the path. Since the
plastic strain path is assumed to be a wire with unit mass, it fol-
lows that the radius of gyration is the square root of the moment
of inertia about the desired axis. Therefore, Fnp is here estimated
as the square root of the ratio between the principal axial moments
of inertia of the path.

The moments of inertia about the axes X � e1p and Y � e3p are
calculated from Eq. (14), giving

IO
11 ¼

1
p
�
I

e2
3p � dp; IO

33 ¼
1
p
�
I

e2
1p � dp;

IO
13 ¼ IO

31 ¼ �
1
p
�
I

e1p � e3p � dp ð19Þ

where dp is the equivalent plastic strain increment and p is the
accumulated plastic strain, defined as
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dp � 2
3
� jd�e0pj and p �

I
dp ¼ 2

3
�
I
jd�e0pj ¼

2
3
� ðperimeterÞ ð20Þ

Note from Eq. (20) that the actual perimeter of the plastic strain
path in the e1p � e3p diagram is equal to 1.5 � p, consequently the
length jd�e0pj of an infinitesimal arc of the path is 1.5 � dp. The value
of the MOI is not changed by the introduction of this scaling factor
of 1.5, since it is cancelled in the dp/p ratio; it has been introduced
simply to adopt in the formulation the well-known incremental
plasticity parameters dp and p instead of jd�e0pj and the path perim-
eter. Defining the 2 � 2 Axial MOI tensor of the plastic strain path
with respect to the origin O as

IO ¼
IO
11 IO

13

IO
31 IO

33

" #
¼ 1

p
�
I e2

3p �e1p � e3p

�e1p � e3p e2
1p

" #
� dp ð21Þ

then its eigenvalues k	1 and k	2 (k	1 
 k	2) are the moments of inertia
about its principal axes, whose directions are parallel to the corre-
sponding eigenvectors, calculated by

k	1;2 ¼
IO
11 þ IO

33

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IO
11 � IO

33

2

 !2

þ ðIO
13Þ

2

vuut ) Fnp ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k	1=k

	
2

q
ð22Þ

Let’s verify the above estimate for a few basic elastoplastic his-
tories, studying the resulting plastic strain paths. A proportional
history always results in Fnp = 0, as expected, since the resulting
plastic strain path is a straight segment passing through the origin
O, which has a principal moment of inertia k	1 ¼ 0 about its own
straining direction. A 90� out-of-phase tension–torsion history,
on the other hand, always results in Fnp = 1, since by symmetry
the plastic strain path along the e1p � e3p plane describes a circular
ring, giving k	1 ¼ k	2 Finally, a plastic strain path describing an ellip-
sis with semi-axes a and b (a P b) gives

Fnp ¼
b
a
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR p=2
0 sin2 h �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 hþ b

a

� �2
cos2 h

q
� dhR p=2

0 sin2 h �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hþ b

a

� �2
sin2 h

q
� dh

vuuut
ffi b

a
ð6:4% RMS errorÞ ð23Þ

which agrees within 6.4% with the commonly adopted approx-
imation Fnp ffi b/a.

3.4. Calculation of Fnp for general load histories

The MOI method to estimate Fnp is now generalized for a 6D
multiaxial history containing all 3 normal and 3 shear components.
Once the plastic strain path is obtained, e.g. from incremental plas-
ticity calculations, it must be represented in the five-dimensional
E5p space. Note, however, that the Axial MOI (AMOI) used in Sec-
tion 3.3, which is the moment of inertia of the path about a given
axis, is a measure of how much the path stretches in every other
direction perpendicular to such axis. In order to calculate how
much the path stretches along each individual direction, the Rect-
angular MOI (RMOI) tensor IO

r of the plastic strain path with respect
to the origin O is used instead, which gives the moments of inertia
about the planes (or hyperplanes) perpendicular to each consid-
ered direction:

IO
r ¼

1
p
�
I

�e0p ��e0Tp �dp¼1
p
�
I

e2
1p e1p �e2p e1p �e3p e1p �e4p e1p �e5p

e2p �e1p e2
2p e2p �e3p e2p �e4p e2p �e5p

e3p �e1p e3p �e2p e2
3p e3p �e4p e3p �e5p

e4p �e1p e4p �e2p e4p �e3p e2
4p e4p �e5p

e5p �e1p e5p �e2p e5p �e3p e5p �e4p e2
5p

2
66666664

3
77777775
�dp

ð24Þ
The eigenvalues k1, k2, . . ., k5 (k1 P k2 P . . . P k5) of IO
r are a

measure of the accumulated plastic strain along each principal
direction defined by the associated eigenvectors. The Fnp estimate
is here defined as the as the square root of the ratio between the
two largest eigenvalues of IO

r , i.e.

Fnp ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k2=k1

p
ð25Þ

The RMOI and AMOI can be correlated with the help of the Polar
Moment Of Inertia (PMOI) IO

p of the plastic strain path about the
origin O, which is a scalar that can be obtained from the trace
trðIO

r Þ of the RMOI tensor

IO
p ¼ trðIO

r Þ ¼
1
p
�
I

e2
1p þ e2

2p þ e2
3p þ e2

4p þ e2
5p

� �
� dp

¼ 1
p
�
I

�eT
p � �ep � dp ð26Þ

From Eqs. (24) and (25) it can be shown that the AMOI tensor IO

can be obtained from the PMOI IO
p and RMOI IO

r through

IO ¼ IO
p � I5�5 � IO

r ¼
1
p
�
I

�eT
p � �ep � I5�5 � �ep � �eT

p

� �
� dp ð27Þ

where I5�5 is the 5 � 5 identity matrix. Since the trace of IO
r is always

equal to the sum of its eigenvalues, it follows that
IO
p ¼ k1 þ k2 þ k3 þ k4 þ k5, and therefore the principal moments of

inertia k	1; k
	
2; . . . ; k	5 of the path (the eigenvalues of IO, with

k	1 
 k	2 
 . . . 
 k	5) are a function of the eigenvalues of IO
r , namely

k	i ¼ IO
p � ki ¼

X
j–i

kj; for i ¼ 1;2; . . . ;5 ð28Þ

Note that IO and IO
r also share the same eigenvectors. It follows

that Fnp can also be estimated from the PMOI and the two lowest
principal moments of inertia k	1 and k	2 of the path, since

Fnp ¼

ffiffiffiffiffi
k2

k1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IO
p � k	2

IO
p � k	1

vuut ð29Þ

For a 2D (instead of 5D) plastic strain path, where IO
p ¼ k1 þ k2,

the principal moments of inertia are k	1 ¼ IO
p � k1 ¼ k2 and

k	2 ¼ IO
p � k2 ¼ k1, giving Fnp ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k2=k1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k	1=k

	
2

p
, proving the equiv-

alence between Eqs. (25) and (22), even though the former is based
on the RMOI (also known as the Planar MOI) and the latter on the
AMOI.

Even though both the MOI and Bishop’s methods estimate Fnp

using similar formulas, shown in Eqs. (25) and (8), their results
are quite different, since the former uses the principal RMOI of
deviatoric plastic strain paths with respect to the origin O, while
the latter uses the principal RMOI of the stress paths with respect
to their mean.

3.5. Numerical calculation of Fnp

To implement the MOI method in an incremental plasticity
computer code, it is necessary to numerically calculate the integral
in Eq. (24) to obtain the RMOI tensor IO

r and then Fnp. If �e0p is the
plastic strain vector (in the E5p space) at each calculation step
and D�e0p is the associated finite plastic strain increment (calculated
e.g. from a plastic flow rule), then the RMOI integral can be esti-
mated by a summation based on Simpson’s rule [15]

IO
r ffi

1
6p
�
X

�e0p � �e0Tp þ ð�e0p þ D�e0pÞ � ð�e0p þ D�e0pÞ
T

h
þ4 � ð�e0p þ D�e0p=2Þ � ð�e0p þ D�e0p=2ÞT

i
� Dp ð30Þ

where
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Fig. 6. Strain paths e� cxy
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used in the experimental validation of the Fnp

predictions.
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Fig. 8. Measured and predicted Fnp from the MOI, Itoh’s and Bishop’s methods, for a
304 stainless steel at strain range levels near 0.8%.

Table 1
Predicted Fnp from the MOI, Itoh’s and Bishop’s methods, compared with measured
values for a 304 stainless steel at normal strain range levels De � 0:8%.

Measured MOI Itoh et al. Bishop

Case 0 0.00 0.00 0.00 0.00
Case 1 0.59 0.70 0.34 0.74
Case 2 0.62 0.79 0.34 0.83
Case 3 0.87 0.77 0.39 0.75
Case 4 0.74 0.91 0.39 0.90
Case 5 0.00 0.00 0.00 0.00
Case 6 0.09 0.06 0.10 0.28
Case 7 0.19 0.17 0.20 0.41
Case 8 0.73 0.76 0.77 0.61
Case 9 0.67 0.79 0.77 0.64
Case 10 0.87 0.94 0.77 0.85
Case 11 0.42 0.39 0.46 0.78
Case 12 0.76 0.90 0.77 0.88
Case 13 0.91 0.77 0.77 0.80
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Dp � 2
3
� jD�e0pj and p ¼

X
Dp ð31Þ

Note that the value of IO
r can be computed in real time at each

calculation step to obtain, from Eq. (25), the evolution of the target
value of Fnp with the load path. The transient evolution of Fnp can
also be calibrated using the NP hardening rate bnp, retarding the
transition between Fnp = 0 and the current target value
Fnp ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k2=k1

p
through the differential equation

dFnp ¼ bnp �
ffiffiffiffiffiffiffiffiffiffiffiffi
k2=k1

p
� Fnp

� �
� dp ð32Þ

Assuming a linear relation between Fnp and Ramberg–Osgood’s
hardening coefficient, the constant bnp used in the evolution of Fnp

can be calibrated using the same value as the hardening rate from
Tanaka’s cyclic plasticity model [16].
4. Comparisons among Fnp predictions

The MOI, Itoh’s and Bishop’s methods’ predictions of the non-
proportionality factor Fnp are now compared to experimental mea-
surements from Itoh et al. [8,11] in a 304 stainless steel with
Young’s modulus E = 200 GPa, shear modulus G = 82 MPa and addi-
tional hardening coefficient anp = 0.9. Fourteen periodic histories
are studied, represented by the strain paths e� cxy=

ffiffiffi
3
p

shown in
Fig. 6 for Cases 0 through 13. Note that most loadings from Fig. 6
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Fig. 9. Experimental values and predictions of the stress paths r � s
p

3 using the MOI method applied to Jiang’s incremental plasticity model for Cases 1, 4, 7, 8, 10 and 13. The
thicker solid lines in Cases 8 and 10 represent wrong predictions that would be obtained if the effect of Fnp on the additional hardening had been neglected.
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consider one cycle per block, except for Cases 1 through 4 and Case
13, which consider two cycles per block. The number of cycles in
each block can be deterministically obtained using the Modified
Wang Brown rainflow algorithm, described in [3]. The normal
strain range De of all studied experimental data is fixed near
0.8%, to avoid issues with the strain amplitude dependence of anp.

Fig. 7 shows the curve fitting of the Ramberg–Osgood equation
to the uniaxial hysteresis loops from Case 0 with De � 0:8%,
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resulting in a uniaxial cyclic hardening coefficient k0 = 670 MPa and
exponent n0 = 0.125. Note that the curve fitting used by Itoh et al.
[8,11], also shown in the figure, does not reproduce well the shape
of the hysteresis loops measured for De � 0:8%, most likely be-
cause it had been calibrated from uniaxial data with De � 1:5%

[11].
To evaluate the Fnp predictions, an incremental plasticity com-

puter code is implemented using Jiang’s non-linear kinematic
model [12]. To improve the calculation accuracy, the backstress
is divided into 50 additive components, following Chaboche’s idea
[13], with stress increments at each integration step limited to only
2 MPa. Jiang’s material parameters are calibrated from the uniaxial
data using the procedure described in [14], neglecting transient
ratcheting effects. The computer code accuracy is verified using
the same model in both stress and strain control, as recommended
in [1]. That is, the stress history is calculated in the code from a
given strain history, and then the computed stresses are used as in-
put to the same code to predict the original strain history, with
residual errors smaller than 0.1% for the adopted numerical inte-
gration parameters.

For each strain-controlled loading case, the incremental plastic-
ity code is iteratively executed for several candidate values of Fnp,
until the root mean square (RMS) error between the calculated
and the measured strain paths in the r � s

p
3 diagram is mini-

mized. The value of Fnp that minimizes the RMS error for each of
the 14 paths is assumed to be the experimental non-proportional-
ity factor, which is compared in Fig. 8 with the MOI, Itoh’s and
Bishop’s predictions. As shown in Table 1, the MOI method predicts
in average better values for Fnp than Itoh’s and Bishop’s method.
Itoh’s method highly underestimates Fnp for star or cross-shaped
histories such as the ones from Cases 1 through 4. Bishop’s method,
on the other hand, overestimates roughly by a factor of 2 or more
the non-proportionality factors of loading histories with
0 < Fnp < 0.5 (Cases 6, 7 and 11), for the same reason discussed in
the example from Fig. 1(d).

Fig. 9 shows experimental stress paths r � s
p

3 and the incre-
mental plasticity predictions using Jiang’s model and the MOI
method to estimate Fnp. Note that the solid curves are predictions
based solely on uniaxial values, on anp and on MOI’s Fnp estimates,
they are not curve fittings. It can be seen that both the shape and
the amplitudes of the stress paths are reasonably predicted using
the Fnp estimates from the MOI method. The additional hardening
effect is very significant in all measured non-proportional paths, as
it can be seen in Cases 8 and 10, which also show the resulting non-
conservative predictions if the effect of Fnp had been neglected,
which would severely underestimate both normal and shear
stresses.
5. Conclusions

The MOI method is an alternative to convex enclosure methods
to obtain equivalent amplitude or range and mean components of
generic NP multiaxial histories, in addition to efficiently predicting
the non-proportionality factor Fnp, without the need for adjustable
parameters. Convex enclosure methods do not represent well Fnp

or the mean component of a path, in special if it has a very odd
shape, as shown in Fig. 1. The MOI method, on the other hand, ac-
counts for the contribution of every single segment of the path,
dealing with arbitrarily shaped histories without losing informa-
tion about their shape. Therefore, the MOI method can be success-
fully used even in highly non-convex stress or strain NP history
paths such as cross or star-shaped paths. It is relatively simple,
intuitive, and easy to implement and to compute, therefore it
should be considered as an alternative engineering tool to deal
with NP histories. Coupled with an efficient multiaxial rainflow
algorithm, it is able to deal with very long variable amplitude
histories.

The MOI method predicts the out-of-phase extent of a loading
history based on the eigenvalues ki (i = 1, . . ., 5) of the Rectangular
Moment Of Inertia (RMOI) tensor of the plastic strain path. This
measure of Fnp is independent of the particular choice of coordinate
system, being invariant under coordinate transformations as re-
quired. The eigenvectors of the RMOI represent the principal axes
of the tensor path with respect to the origin, which may be used
as a ‘reference frame’ for defining the desired non-proportional
and out-of-phase measure of the plastic strain path. Even though
the proposed Fnp estimate is only based on the two largest eigen-
values k1 and k2, improved equations might make use of all 5
eigenvalues to account for the interactions among all principal
straining directions.

Experimental results demonstrated the effectiveness of the MOI
method for all fourteen studied cases when compared to Itoh’s and
Bishop’s Fnp estimates. Itoh’s method works well for simple 2D his-
tories (e.g. tension–torsion), however it highly underestimates the
Fnp of cross or star-shaped load paths, while overestimating the Fnp

of paths similar to the one from Fig. 1(d). Also, its definition in the
time domain is not appropriate, since transient elastoplasticity ef-
fects depend on the accumulated plastic strain, independently of
time. Unless significant viscous effects are present, Itoh’s integral
must assume a constant plastic strain rate to eliminate its time
dependence. Also, as discussed in Section 2, Itoh’s method should
not be applied to more general 3D to 6D histories, since it is based
on a scalar measure, the angle n(t), which is not enough to repre-
sent all possible variations of the principal direction (which are
well described e.g. by the 5 pairs of eigenvalues and eigenvectors
of the RMOI).

Bishop’s approach also results in poor predictions, in special for
histories with 0 < Fnp < 0.5. Despite using the promising concept of
the RMOI, Bishop’s estimate is formulated in a stress space (instead
of a plastic strain space), it implicitly assumes a hydrostatic depen-
dence of Fnp, and it calculates the moments of inertia relative to the
mean component of the load path instead of the origin, which
would wrongfully predict Fnp = 0 for the path from Fig. 1(c).
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