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Non-proportional (NP) hardening can have a significant effect on multiaxial fatigue lives due to the
increase in mean and peak stresses it can cause when compared to proportional loads of similar range.
Its effect depends both on the material and on the load history path, quantified respectively by the addi-
tional NP hardening coefficient aNP and the NP factor FNP. However, since FNP depends on the load path, it
is not easy to evaluate under complex multiaxial loading conditions. So, several estimates for the
steady-state value of FNP have been proposed to deal with such cases, based on enclosing ellipses or on
integrals calculated along the stress, strain, or plastic strain path. Tanaka’s incremental plasticity model,
on the other hand, is able to predict the NP hardening evolution as a function of the accumulated plastic
strain p along any load history, based on the concept of a polarization tensor [PT] that can be correlated to
an internal dislocation structure. In this work, it is shown that the eigenvectors of [PT] represent principal
directions along which dislocation structures may form, whose intensity is quantified by the respective
eigenvalues. Two new integral estimates for the steady-state FNP of periodic load histories are proposed,
one that exactly reproduces the incremental plasticity predictions from Tanaka’s model, and a simpler
version calculated solely as a function of the eigenvalues of [PT]. Both can be readily used in fatigue design
to correctly account for the additional mean or peak stress effects induced by NP periodic histories. For
general non-periodic multiaxial histories, it is also shown that Tanaka’s model can be expressed as an
evolution equation for FNP(p). Tension–torsion experiments with 316L steel tubular specimens under
especially selected discriminating square NP strain paths are conducted to validate the proposed models.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Some materials can strain-harden much more than it would be
expected from the uniaxial cyclic re curve when subjected
non-proportional (NP) multiaxial cyclic loads. This phenomenon,
called NP hardening, cross-hardening, or additional (NP) strain
hardening, depends on the load history, through the NP factor
FNP, where 0 6 FNP 6 1, and on the material, through the additional
hardening coefficient aNP (typically 0 6 aNP 6 1). NP hardening is
usually modeled using the exponent hc from the uniaxial cyclic
Ramberg–Osgood equation, see Fig. 1(left), assuming hc does not
vary while the hardening coefficient is gradually increased from
Hc to the NP hardening coefficient under NP multiaxial loads
HNP ¼ Hc � ð1þ aNP � FNPÞ ð1Þ

Defining SYNP as the stabilized NP yield strength associated with
a 0.2% plastic strain amplitude, the same value adopted in the
monotonic SY and cyclic SYc yield strength definitions, it follows
that

SYNP ¼ SYc � ð1þ aNP � FNPÞ ð2Þ

since the cyclic and NP hardening exponents are assumed to be
equal.

Note that the NP hardening effect can multiply the uniaxial cyc-
lic coefficient Hc, and therefore the cyclic yield strength SYc, by a
factor as high as (1 + 1 � 1) = 2, as shown in Fig. 1(right) for a 304
austenitic stainless steel [1]. This figure compares elastoplastic
hysteresis loops produced by a NP out-of-phase tension–torsion
history and a proportional history, both induced by the same nor-
mal strain amplitude De/2 ffi 0.4%. In other words, in the NP history,
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Fig. 1. Effect of cyclic NP loadings on the NP hardening (left) and proportional and NP loops caused by the same range De in AISI 304 steel (right) [1].
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the yield surface radius gradually increases from an isotropic
hardening value in-between SY and SYc to its NP-hardened yield
strength SYNP.

When NP hardening is significant, NP multiaxial load histories
can produce fatigue lives that are much shorter than the ones
obtained under uniaxial or proportional multiaxial load histories
with the same strain range De, since NP hardening increases the
corresponding Dr range. Therefore, calculations based on
strain-controlled NP histories, as found in eN specimen tests or
around sharp notch tips, must account for NP hardening effects
to avoid non-conservative life predictions. Conversely, fatigue lives
under stress-controlled histories, as found in SN specimen tests,
around mild notch tips or in un-notched components that work
under imposed loads, not displacements, can be much higher
under NP multiaxial loads than under uniaxial or proportional
multiaxial loads with the same range Dr, due to the lower strain
range De necessary to achieve this Dr because of the NP hardening
effect.

Indeed, the fatigue life associated with the strain-controlled NP
loading from Fig. 1(right) can be orders of magnitude shorter than
under proportional loading, even though both have the same nor-
mal strain amplitude De/2 ffi 0.4%. This large difference is caused by
the maximum normal stress in the NP history, which is about twice
the value from the proportional history, further opening the initi-
ating microcracks and thus lowering the fatigue crack initiation
life.

However, Coffin-Manson’s strain-life equation or its Morrow’s
variations that include mean stresses rm would not be able to pre-
dict this difference, even if extended from an uniaxial to a multiax-
ial critical-plane approach formulation, because in both hysteresis
loops from Fig. 1(right) the mean stress is null, rm = 0. On the other
hand, the multiaxial critical-plane version of Smith–Watson–Top
per’s (SWT) model, also called SWT-Bannantine [2], would account
for this NP hardening effect on the fatigue life, because its damage
parameter depends on both De and the maximum rmax, not on rm.
Therefore, among these three traditional models only SWT would
predict, as expected, a shorter fatigue crack initiation life in the
presence of higher peak stresses rmax induced by NP hardening.
This is not a surprise, since physically speaking rmax is a fatigue
driving force whereas rm is not. This fact implies that the use of
traditional eN equations, which were developed to model uniaxial
fatigue problems, can be non-conservative for NP strain-controlled
loading histories even when extended to multiaxial conditions.
Obviously, such non-conservative errors are inadmissible both for
mechanical design and for structural integrity evaluation purposes,
meaning that they are simply unacceptable for practical
applications, the really important engineering reason for spending
time studying such problems.

As mentioned above, NP hardening is not only
material-dependent, through aNP, but also load-path dependent,
through the NP factor FNP. Uniaxial or proportional multiaxial load
histories do not lead to NP hardening, resulting in FNP = 0. On the
other hand, the largest NP hardening effect occurs when FNP = 1,
e.g. under a properly scaled 90� out-of-phase tension–torsion load-
ing that generates a circle in the von Mises stress r � s

p
3 or strain

e � c/
p

3 diagrams. For a general tension–torsion history, FNP is
usually estimated from the aspect ratio of an ellipse that encloses
the stress or strain paths in their von Mises diagrams. There are
other FNP estimates, e.g. those proposed by Itoh et al. [3] and Bishop
[4]. These FNP estimations were compared in [5], where an alterna-
tive easier to use yet more powerful FNP estimation model was
introduced, based on a simple Moment Of Inertia (MOI) integral
equation of the plastic strain path represented in a 5D deviatoric
space E5p:
~e0pl � ½ e1pl e2pl e3pl e4pl e5pl �T ; e1pl � expl � ðeypl þ ezplÞ=2;
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ffiffi
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ffiffi
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(

ð3Þ
where expl, eypl, ezpl, cxypl, cxzpl and cyzpl are the plastic components of
the normal and shear strains.

Note that this 5D deviatoric space is more appropriate to define
an integral equation to estimate FNP because, contrary to the stress
space used in Bishop’s method [4], it is intrinsically independent of
the hydrostatic stress component, which does not affect the plastic
behavior of most alloys used for structural engineering applica-
tions. Moreover, note as well that this ~e0pl vector is equal to the
5D representation of plastic strains proposed by Tanaka [6] multi-
plied by 3/2:
~e0pl ¼
3
2
� expl

explþ2eyplffiffi
3
p

cxyplffiffi
3
p

cxzplffiffi
3
p

cyzplffiffi
3
p

h iT
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Tanaka’s 5D deviatoric space

ð4Þ
since the identity expl + eypl + ezpl = 0 implies that
eypl � ezpl = expl + 2eypl.

In fact, there are at least six motivations to prefer the 5D projec-
tion~e0pl of the plastic strain space to calculate FNP, instead of a stress
space, total strain space, or even the 6D plastic strain space:
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(i) this projection is a non-redundant representation of the plas-
tic strains, since the linear dependency expl + eypl + ezpl = 0 is
automatically removed when projecting the 6D strains onto
this 5D deviatoric sub-space E5p;

(ii) for either free-surface conditions, un-notched tension–
torsion, or uniaxial load histories, respectively 3D, 2D, or
1D sub-spaces of this 5D representation could be used,
significantly decreasing its computational cost. Voigt-
Mandel’s 6D deviatoric representation, on the other hand,
would need to use a 3D formulation even under uniaxial
conditions in x, since the non-zero eypl and ezpl (due to plastic
Poisson effects) and expl would be present in all three normal
deviatoric components. On the other hand, a 1D representa-
tion from e1pl � expl � ðeypl þ ezplÞ=2 would be enough in the

uniaxial case, because e2pl � ðeypl � ezplÞ
ffiffiffi
3
p

=2 ¼ 0 (since
eypl ¼ ezpl ¼ ��m � eypl, where �m is the effective Poisson ratio, a
weighted mean of the elastic m and plastic 0.5 Poisson ratios)
and all shear e3pl � cxypl

ffiffiffi
3
p

=2, e4pl � cxzpl

ffiffiffi
3
p

=2 and

e5pl � cyzpl

ffiffiffi
3
p

=2 would be zero as well;
(iii) similarly to the ~e0 projection, ~e0pl is also independent of the

hydrostatic strain eh, since it is a 5D projection of a
deviatoric space as well, compatible with the expected
independence between FNP and eh (since FNP depends only
on plastic strains);

(iv) the scaled down version ð2=3Þ �~e0pl of this projection is iden-
tical to Tanaka’s 5D plastic strain vector defined in [6], which
has been shown to be appropriate to evaluate the NP hard-
ening evolution in incremental plasticity calculations;

(v) the Euclidean norm ð2=3Þ � j~e0plj is equal to the von Mises
plastic equivalent strain, which provides a convenient met-
ric for the deviatoric plastic strain space associated with this
representation; and

(vi) the direction of these 5D strain vectors is related with the
principal direction of the loading. This last statement can
be observed, for instance, in the calculation of the principal
direction angle hp with respect to the y axis in the y–z plane

tan 2hp ¼ cyz=ðey � ezÞ ¼ e5=e2 ffi e5pl
=e2pl

ð5Þ

where the approximation e5/e2 ffi e5pl/e2pl is valid for large plastic
strains, resulting in~e0 ffi~e0pl.

Several incremental plasticity equations make use of the
Euclidean norm of the increments of the plastic strain vector,
which define infinitesimal variations of ~e0pl. One way to
account for this norm is through the equivalent plastic strain
increment dp, a positive scalar quantity that can be defined as an
infinitesimal absolute variation of the plastic von Mises strain
epl;Mises ¼ j~e0plj=ð1þ 0:5Þ, assuming as usual that the plastic strains
conserve volume, thus that the plastic Poisson ratio is 0.5. The
value of dp can be defined in the 5D plastic strain space E5p from

epl;Mises ¼
2
3
� ~e0pl

��� ���) dp ¼ 2
3
� d~e0pl

��� ��� ð6Þ

The integral of these positive infinitesimal increments dp is
defined as the accumulated plastic strain p, which in integral form
is expressed as

p ¼
Z

dp ¼ 2
3
�
Z

d~e0pl

��� ��� ð7Þ

Note that epl;Mises and p are very different concepts even though
they are both intrinsically positive quantities, since the von Mises
plastic strain epl;Mises can oscillate during a load cycle, while the
accumulated plastic strain p increases monotonically in any
deformation process.
In the following sections, Tanaka’s NP hardening model is
applied to the E5p space to predict the transient evolution of NP
hardening, which can be very much important for improving the
accuracy of practical multiaxial fatigue life calculations, in
particular if this transient period is associated with some ratchet-
ing or mean stress relaxation. From Tanaka’s model, an evolution
equation for FNP is developed, from which new steady-state FNP

estimate equations are derived. These estimates are then experi-
mentally verified from tension–torsion experiments in tubular
316L specimens under NP histories describing square paths in a
normal-shear stress diagram, which are particularly sensitive to
FNP transients.

2. Tanaka’s NP hardening model

Estimates for the steady-state value of FNP have been proposed
in [3–5,7]. These estimates are especially useful for periodic NP
multiaxial load histories that consist of a few cycles per period,
where FNP reaches an approximately constant stabilized value.
However, general NP multiaxial load histories have a NP factor
FNP(p) that depends on the accumulated plastic strain p and on
the previous plastic history, which continually evolves and changes
the hardening behavior of materials that have an additional
hardening coefficient aNP > 0.

It is well known that NP hardening has been related to stacking
faults, which are local regions of incorrect stacking of crystal
planes [1]. Fig. 2 shows stacking fault examples for HCP (Hexagonal
Close-Packed) and for FCC (Face Centered Cubic) lattices. HCP lat-
tices superimpose the various atomic planes following a twofold
sequence type ab-ab-ab-ab-ab. The stacking fault in the HCP lat-
tice from Fig. 2(top) is caused by the plane arranged in the c con-
figuration, causing an interruption of the stacking sequence of the

crystal structure, which becomes ab-ab-abc-ab-ab. FCC lattices, on
the other hand, which usually follow a sequence abc-abc-abc-abc,
may present stacking faults from the local absence of this c

configuration, as shown in the sequence abc-abc-ab-abc in
Fig. 2(bottom). These faults cause the HCP lattice to become locally

FCC in the abc plane sequence, while the FCC lattice locally

becomes HCP in the ab region. These planar defects cause lattice
incompatibilities that prevent or impair dislocations from switch-
ing gliding planes. Moreover, each of these crystallization faults
requires a Stacking Fault Energy (SFE) to be generated, measured
per unit area in J/m2. Materials with low SFE very easily develop
large stacking faults. For instance, the FCC lattice of 316 austenitic
stainless steels requires only about 25 mJ per m2 to generate them.
Screw dislocations associated with plastic straining cannot
cross-slip across such large stacking faults, even under high stres-
ses, due to lattice incompatibility. So, the slip bands generated by
proportional loadings remain planar, limiting the material ductil-
ity. However, in the presence of NP loads, the changes in principal
direction allow the activation of cross-slip bands in all directions.
An increase in the hardening effect with respect to proportional
loadings is thus expected, caused by the change in direction of
the maximum shear planes, resulting in an additional hardening
coefficient aNP� 0.

On the other hand, stacking faults are rarely seen in materials
with high SFE, such as in most aluminum alloys, which typically
require more than 200 mJ per m2 to induce them. Without the
obstruction caused by stacking faults, the screw dislocations may
cross-slip even under proportional loadings, giving the material
an extra ductility since the many slip systems are able to well
distribute the deformation in all possible directions in 3D. Slips
of dislocations are wavy, changing their glide planes easily, even
for uniaxial histories. Hence, since cross-slip bands already happen
naturally even under proportional loadings, NP histories do not
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Fig. 2. HCP and FCC lattices with stacking faults.
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cause any significant increase in hardening, resulting in aNP ffi 0. In
summary, the additional hardening coefficient aNP is a parameter
that reflects the material sensitivity to the non-proportionality of
the loads. Values of aNP are usually high in austenitic stainless
steels at room temperature (aNP ffi 1 for 316 stainless steel) and
very low in aluminum alloys (aNP ffi 0 for Al 7075).

In materials with a high aNP, a sequence of NP multiaxial load-
ing cycles causes an additional hardening effect that increases as a
function of p and of the non-proportionality of the load, until
reaching a steady-state level also known as the target value of
FNP(p). Conversely, a long series of proportional loads may cause
a ‘‘proportional softening’’ effect that reverts a previous NP harden-
ing process. Incremental plasticity models must account for this
transient NP hardening and proportional softening to correctly
predict fatigue lives, because these transients can have a significant
effect on the resulting strain or stress amplitudes, respectively
under stress or strain-controlled conditions in low-cycle fatigue,
and a very large effect on ratcheting and on mean stress relaxation
problems.

The transient NP hardening model proposed by Tanaka [6] is
probably the most widely adopted in modern incremental plastic-
ity calculations. Tanaka defined a polarization tensor [PT] that can
store information on the directionality of the accumulated plastic
strains induced by the loading history, which can be proportional
or NP. This macroscopic structural tensor is an internal state vari-
able that is able to describe the loading-path-shape dependence of
the NP hardening process through the mathematical representa-
tion of an internal dislocation structure. The directions stored in
this tensor are the ones described by 5D normal unit vectors ~n0,
which are defined as the direction of the current infinitesimal
plastic strain increment d~e0pl in the 5D E5p plastic strain space.
According to the normality rule [8], these unit vectors are perpen-
dicular to the E5p representation of the yield surface during plastic
straining.

2.1. Tanaka’s polarization tensor

Tanaka’s polarization tensor [PT] in its general case can be
represented as a 5 � 5 matrix. This tensor, which is initially equal
to zero, is calculated at each plastic strain increment from the
differential equation

½dPT � ¼ ð~n0 �~n0T � ½PT �Þ � hrT � dp ð8Þ
where hrT is a rate that dictates how fast [PT] evolves as a function of
the equivalent plastic strain increment dp. The quantity~n0 �~n0T is the
outer product of~n0, a matrix operator that projects any vector ~v onto
~n0, since ~n0 � ð~n0T �~vÞ ¼ ð~n0 �~n0TÞ �~v . The outer product always results
in a singular symmetrical 5 � 5 matrix with five mutually perpen-
dicular eigenvectors, one of them equal to ~n0 and associated with
a unit eigenvalue k1 = 1, and all other four associated with null
eigenvalues k2 = k3 = k4 = k5 = 0. This matrix is also referred to as
the tensor product ~n0 	~n0. Since the evolution equation of [PT] only
involves symmetrical matrices, it follows that [PT] itself is
symmetric.

The 5 � 5 version of the polarization tensor [PT] = [PTij]
(i, j = 1, . . . , 5) is needed in load histories involving all six plastic
strain components. In load histories under free-surface conditions,
the normal vector ~n0 can be represented in the 3D diagram
e1pl � e2pl � e3pl from a sub-space ~e3Dpl

, reducing [PT] to the 3 � 3
representation

½PT � ¼
PT11 PT12 PT13

PT21 PT22 PT23

PT31 PT32 PT33

2
64

3
75; with ~e3Dpl

� 3
2
� expl

eypl
�ezplffiffi
3
p

cxyplffiffi
3
p

h iT

ð9Þ

Moreover, [PT] can be further simplified to a 2 � 2 representa-
tion for tension–torsion histories, where ~n0 is represented in the
2D diagram e1pl � e3pl from the sub-space~e2Dpl

, resulting in

½PT � ¼
PT11 PT13

PT31 PT33

� �
; and ~e2Dpl

� ½ e1pl
e3pl �

T ¼ 3
2
� expl

cxyplffiffi
3
p

h iT

ð10Þ

This dimensional reduction down to 2 � 2 is only possible
because of the properties of the adopted 5D plastic strain space
E5p, which was one of the six motivations listed in the last section
to adopt it.

The polarization tensor can be used to model the
cross-hardening effect, see Fig. 3, which shows the transient
behavior H(p)/Hc of the Ramberg–Osgood hardening coeffi-
cient H(p) for materials with aNP > 0, where Hc is the
cyclically-stabilized uniaxial hardening coefficient. In this exam-
ple, a virgin specimen is initially cycled in tension–compression,
until the accumulated plastic strain reaches some value p = pa.
During this process, isotropic hardening causes the hardening



Fig. 3. Variation of the hardening coefficient H(p) due to cross-hardening effects in
materials with additional hardening coefficient aNP > 0, adapted from [6].
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coefficient to gradually change from its monotonic value Hmt to the
cyclically-stabilized one Hc. For simplicity, in this initial example it
is assumed that both monotonic and cyclic exponents are not too
different, represented by the cyclic value hc. A uniaxial dislocation
structure is then gradually generated in the direction of these
tension–compression cycles, represented in [PT] by

½PT � ¼
PT11 PT13

PT31 PT33

� �
¼

1� expð�hrT � pÞ 0
0 0

� �
; for 0 6 p 6 pa

ð11Þ

where exp(x) is the exponential function ex, with e ffi 2.71828. This
uniaxial dislocation structure is fully formed when the first element
of [PT] converges to its target value PT11 = 1, see Fig. 3, resulting in a
unit eigenvalue associated with an eigenvector in the normal direc-
tion e1pl.

Then, if the tension–compression cycles are replaced by cyclic
torsion, this change causes a sudden increase in the transient hard-
ening coefficient from the uniaxial Hc to the NP value HNP (if the
material has aNP > 0). This sudden strain-hardening is explained
by the cross-hardening effect caused by the uniaxial dislocation
structure formed in the preceding tension–compression cycles,
represented by PT11 = 1, which resists much more to the mis-
matched torsional loads than to previous tensile loads. But the tor-
sional cycles gradually destroy this uniaxial tension–compression
dislocation structure, making PT11 tend toward zero, as seen in
Fig. 3 for the interval pa 6 p 6 pb, which allows the material to
soften again from HNP to Hc. Meanwhile, a new dislocation struc-
ture is gradually generated in the torsional direction through
PT33, leading to the [PT] solution

½PT � ffi
exp½�hrT � ðp�paÞ� 0
0 1�exp½�hrT � ðp�paÞ�

� �
; for pa6 p6 pb

ð12Þ

The torsional dislocation structure is fully formed when PT33

converges to its target value PT33 = 1 near p = pb, see Fig. 3, resulting
in a unit eigenvalue for [PT] associated with an eigenvector in the
torsional direction e3pl.

If the torsional cycles are then replaced again with cyclic
tension–compression for p P pb, another sudden increase in the
hardening coefficient from Hc to HNP is observed, as also seen in
Fig. 3. Now, the tension–compression cycles are resisted by the
mismatched torsional dislocation structure formed in the preced-
ing torsional cycles, represented by PT33 = 1, causing a sudden
strain-hardening effect. But this torsional dislocation structure is
gradually destroyed as PT33 tends toward zero, allowing the
material to soften again from HNP to Hc. Meanwhile, PT11 starts
increasing again toward PT11 = 1, while the unit eigenvalue of [PT]
becomes associated with the tensile direction e1pl, and the process
continues. It can be concluded from this simple example that the
eigenvectors of [PT] represent principal directions along which dis-
location structures may form, whose intensity is quantified by the
respective eigenvalues, ranging from 0 (no dislocation structures in
the considered direction) to 1 (all dislocation structures in this
direction).

For general NP multiaxial histories, after several plastic strain
increments, Tanaka’s polarization tensor [PT] results in a 5 � 5
matrix whose eigenvalues kT1 P kT2 P � � �P kT5 > 0 are propor-
tional to the accumulated plastic strains in the direction of each
unit eigenvector ~vT1;~vT2; . . . ;~vT5. So, proportional load histories
always result in a polarization tensor [PT] with only one non-zero
eigenvalue, corresponding to the eigenvector parallel to the
constant plastic straining direction associated with proportional
loading conditions. The other four eigenvalues would either be
equal to zero or very close to zero for quasi-proportional histories.

On the other hand, highly NP load histories have at least two
dominant (high) eigenvalues kT1 and kT2. These eigenvalues should
be equal (kT1 = kT2) in the 90� out-of-phase tension–torsion
case with equal normal and effective shear amplitudes,
i.e. Drx/2 = (Dsxy/2)�p3. In this case, the plastic straining direction
is constantly changed as the load path describes a circle in the
e1pl � e3pl diagram, keeping the cross-hardening effect alive while
the transient Ramberg–Osgood coefficient is evolving to reach a
target NP value HNP without posterior hardening or softening.

In summary, the eigenvectors and eigenvalues of the target val-
ues of the evolution of [PT] mathematically represent the stabilized
internal dislocation structure formed by the loading process. These
eigenvalues are also useful to detect reduced dimensionality of
such structures, ranging from 1D for proportional histories (with
only one non-zero eigenvalue) to 5D if all eigenvalues are
significantly higher than zero.

2.2. Non-proportionality parameter

Tanaka’s original model [6] indirectly made use of the
eigenvalues of [PT] to estimate FNP, through a non-proportionality
parameter AT given by

AT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j½PT � �~n0j2

trð½PT �T � ½PT �Þ

s
ð13Þ

where tr(X) is the trace function that returns the sum of the
elements on the main diagonal of a matrix [X]. This AT is in fact a
function of the eigenvalues of [PT], as it will be proven next.

Let’s first study the physical meaning of AT. Since kT1, kT2, . . . , kT5

are the eigenvalues whereas ~vT1;~vT2; . . . ;~vT5 the unit eigenvectors
of [PT], then ½PT � �~vTi ¼ kTi �~vTi with j~v ij ¼ 1 for all i = 1, 2, . . . , 5. In
addition, these unit eigenvectors also constitute an orthonormal
system, being mutually perpendicular due to the fact that [PT] is
symmetric. So, these orthonormal eigenvectors form a base in
the 5D plastic space E5p, allowing the projection ½PT � �~n0 to be
rewritten as

½PT � �~n0 ¼ ½PT � �
X5

i¼1

~vT
Ti �~n0

� �
�~vTi ¼

X5

i¼1

~vT
Ti �~n0

� �
� ð½PT � �~vTiÞ

¼
X5

i¼1

~vT
Ti �~n0

� �
� kTi~vTi ð14Þ

and thus its squared norm j½PT � �~n0j2 becomes

j½PT � �~n0j2 ¼ ð½PT � �~n0Þ
T � ð½PT � �~n0Þ ¼

X5

i¼1

k2
Tið~vT

Ti �~n0Þ
2 �~vT

Ti �~vTi|fflfflfflffl{zfflfflfflffl}
1

¼
X5

i¼1

ðkTi~vT
Ti �~n0Þ

2 ð15Þ
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Since the trace of any matrix product [X]T[X] is always equal to
the sum of the squares of the eigenvalues of the original matrix [X],
it follows that

tr ½PT �T � ½PT �
	 


¼ k2
T1 þ k2

T2 þ k2
T3 þ k2

T4 þ k2
T5 ð16Þ

Inserting Eqs. (15) and (16) into (13), Tanaka’s NP parameter AT

becomes

AT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

kT1~vT
T1
~n0

� �2 þ kT2~vT
T2
~n0

� �2 þ kT3~vT
T3
~n0

� �2 þ ðkT4~vT
T4
~n0
�2 þ kT5~vT

T5~n0
� �2

k2
T1 þ k2

T2 þ k2
T3 þ k2

T4 þ k2
T5

vuut
ð17Þ

So, Tanaka’s NP AT parameter can be interpreted as the
root-mean-square (RMS) average of the projections ~vT

Ti �~n0 of the
plastic flow direction ~n0 onto the eigenvectors ~vTi of [PT], weighted
by the square of the associated eigenvalues kTi (i = 1, 2, . . . , 5). Since

these squared unit vector projections ð~vT
Ti �~n0Þ

2 are always between

0 and 1, because ð~vT
Ti �~n0Þ

2
6 j~vTij2 ¼ 1, it follows that 0 6 AT 6 1.

Consider for instance a proportional load history where kT1 is
the only non-zero eigenvalue. So, any plastic flow in the dominant
direction ~n0 ¼ ~vT1 of the proportional load history will result in

AT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

T1=k
2
T1

q
¼ 0. On the other hand, a subsequent plastic

flow in a direction ~n0 perpendicular to this proportional direction
(i.e. ~n0 ? ~vT1) will instantaneously change the AT parameter to
AT ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1� 0
p

¼ 1. This means that AT is a varying parameter, usually
oscillatory, that measures the trend of the plastic flow to induce NP
hardening. This sudden increase from AT = 0 to AT = 1 is able to
model the sudden cross-hardening effects from the example
shown in Fig. 3.

Even though 0 6 AT 6 1, the average value of this oscillatory AT

along a given periodic loading path always lies between 0 and
1=

ffiffiffi
2
p

. The latter extreme value corresponds to a 90� out-of-phase
loading, e.g. a tension–torsion circular load history on the
~vT1 �~vT2 plane, which leads to kT1 = kT2 – 0 and kT3 = kT4 = kT5 = 0,
resulting in

AT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

kT1~vT
T1
~n0

� �2 þ kT2~vT
T2
~n0

� �2

k2
T1 þ k2

T2

vuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

T1

2k2
T1

~vT
T1 �~n0

� �2 þ ~vT
T2 �~n0

� �2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

2
64

3
75

vuuuut ¼ 1ffiffiffi
2
p ð18Þ

because the plastic increment direction ~n0 belongs to the ~vT1 �~vT2

plane, which implies that the sum of the squares of its projections
~vT

T1 �~n0 and ~vT
T2 �~n0 onto the orthonormal directions ~vT1 and ~vT2

results in j~n0j2, which is equal to 1 because ~n0 is a unit vector.
Fig. 4. Evolution of [PT], AT and FNP(p) for a 90� out-of-phase tension–torsion
loading.
3. Transient NP hardening

The NP factor FNP is usually adopted to quantify the
non-proportionality of periodic multiaxial load histories from its
steady-state value, but the transient value FNP(p) of the NP factor
must be considered to study its evolution. For a virgin material,
it evolves from its initial condition FNP(0) = 0, and for periodic his-
tories where each period consists of few cycles, it is expected that
FNP(p) converges to the steady-state FNP after a sufficiently large
accumulated plastic strain p. Otherwise, for general non-periodic
multiaxial histories, FNP(p) might evolve without converging to a
specific value.

The NP evolution of FNP(p) can be derived from the evolution of
the yield surface radius S (when represented in a 5D deviatoric
space based on a von Mises metric, as described in [9,10]) from a
cyclically-stabilized yield strength S = SYc to a target value

S ¼ SYt ¼ SYc � ½1þ aNP � ðFNPt þ FNPmrÞ� ð19Þ

using a transient equation very similar to the one adopted in the
Voce rule,

dS ¼ ðSYt � SÞ � hrNP � dp ð20Þ

where FNPt is a target value of the NP factor (which can vary at every
load cycle, especially for non-periodic histories), FNPmr is a memory
factor that stores the permanent NP hardening caused by the previ-
ous plastic history, and hrNP is the NP hardening rate which dictates
how fast the yield surface radius S changes from its current value to
the target SYt. For simplicity, in this work the memory factor FNPmr is
assumed equal to zero, although its value could be calibrated from a
90� out-of-phase tension–torsion loading until stabilization in
FNP(p) = 1, followed by uniaxial tension–compression cycles that
could lower FNP(p) to a non-zero memory factor FNPmr.

Before presenting more detailed equations for describing the
target FNPt, let’s assume that the solution of the above evolution
equation has the form

S ¼ SYc � ½1þ aNP � FNPðpÞ� ð21Þ

If Eqs. (19) and (21) are inserted into Eq. (20), then

dS ¼ SYc � aNP � dFNPðpÞ
¼ ½SYc � aNPðFNPt þ FNPmrÞ � SYc � aNP � FNPðpÞ� � hrNP � dp ð22Þ

which, after canceling out the SYc�aNP term, results in an evolution
equation for the transient NP factor FNP(p), given by
dFNPðpÞ ¼ ½FNPt � FNPðpÞ� � hrNP � dp, where dFNP(p) is an infinitesimal
variation of FNP(p). This FNP(p) evolution equation is much more
convenient than the traditional approach of evolving the radii of
the yield surface and all hardening surfaces from a multi-surface
or a non-linear kinematic hardening model, which would be more
computationally intensive, especially in a global Finite Element
formulation. Indeed, in this proposed approach the yield and all
hardening surfaces are then automatically expanded (or contracted)
from the current FNP(p) value.

The simplest and most commonly adopted version of Tanaka’s
evolution equation assumes a target value FNPt = AT

p
2 and a zero

memory factor FNPmr = 0, from which an FNP(p) evolution equation
is derived

dFNPðpÞ ¼ AT

ffiffiffi
2
p
� FNPðpÞ

h i
� hrNP � dp ð23Þ

Note that, for a constant target FNPt, a constant steady-state
value FNP(p) = FNPt = AT

p
2 is asymptotically reached as the

increments dFNP(p) tend toward zero. Fig. 4 shows the evolution
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of FNP(p), AT and the diagonal elements PT11 and PT33 of Tanaka’s
polarization tensor [PT], for a 90� out-of-phase tension–torsion
loading applied to a virgin component, assuming material rates
hrNP = 10 and hrT = 4. Tension–compression loads induce the tensile
element PT11 to increase and the torsional element PT33 to decrease,
while cyclic torsion has the opposite effect. Therefore, the
out-of-phase combination of cyclic tension and torsion loads makes
both PT11 and PT33 and therefore AT oscillate with the same frequency
of the applied load history, see Fig. 4. If the normal and effective shear
stress amplitudes are equal, i.e. if Drx/2 = (Dsxy/2)�p3, then both PT11

and PT33 converge to the same value 0.5, while AT converges to
AT = 1/

p
2, as demonstrated in Eq. (18). Clearly, this is the reason

why Tanaka introduced the
p

2 factor in its target FNPt, to guarantee
that this 90� out-of-phase loading results in a NP factor FNP(p) tend-
ing toward the target value AT

p
2 = 1, as desired.

The accumulated plastic strain p needed to settle the values of
both [PT] and AT in periodic load histories is related to the material
hardening rate hrT. Since their evolution is exponential, it can be
estimated that their values should have converged within
1 � exp(�4) ffi 98.2% when hrT �p = 4. For the hrT = 4 used in this
example, the settling of PT11, PT33 and AT occurs near
p = 4/hrT = 1 = 100%, as verified in Fig. 4, even though both PT11

and PT33 remain oscillatory along each cycle under such a NP mul-
tiaxial loading history. Note that the NP parameter AT reached an
average value near its target 1/

p
2 much before its settling at

p = 1 = 100%, which allowed FNP(p) to evolve faster than expected,
independently of hrT. Since the adopted NP hardening rate in that
example was hrNP = 10, FNP(p) settled near p = 4/hrNP = 0.4 = 40%,
see Fig. 4.

However, in general, the settling of the non-proportional factor
FNP(p) is influenced both by Tanaka’s hrT and by the
non-proportional hrNP hardening rates. Fig. 4 shows the evolution
of FNP(p), AT, PT11 and PT33 under cyclic torsion, applied for p P pa

just after uniaxial tension–compression cycles applied in the inter-
val 0 6 p 6 pa. As in Fig. 3, the normal and effective shear stress
amplitudes are equal, i.e. Drx/2 = (Dsxy/2)�p3. The adopted hard-
ening rate hrT = 4 results in a 98.2% settling of PT11, PT33 and AT near
p = 4/hrT = 1 = 100%, as expected. As seen in Fig. 5, the relatively
slow evolution of AT to reach its zero target value delays the set-
tling of FNP(p) to an accumulated plastic strain much larger than
the p = 0.4 = 40% from Fig. 4, even using the same hrNP = 2.5�hrT = 10
from the 90� out-of-phase tension–torsion example shown in
Fig. 4. In practice, FNP(p) settles (within 98.2%) in periodic histories
at accumulated plastic strain values p between (4/hrNP) and
(4/hrNP + 4/hrT).

Note in Fig. 5 that the peak value reached by FNP(p) also depends
on the rates hrT and hrNP. Low ratios such as hrNP/hrT
 1 may
underestimate NP hardening effects, resulting in FNP(p) peaks
much smaller than the target value AT

p
2. Moreover, such rates
p−pa

PT11
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Fig. 5. Evolution of [PT], AT and FNP(p) for a cyclic torsion history applied just after
uniaxial tension–compression cycles.
hrNP/hrT
 1 would imply that the NP hardening effect (whose rate
is mainly controlled by hrNP) would only be significant much after
the stabilization of the dislocation structures (at a rate controlled
by hrT), not a physically sound hypothesis, since any change in
the dislocation structure has an immediate effect on NP hardening
behavior. On the other hand, high ratios hrNP/hrT > 2.5 could result
in peak values of FNP(p) P 1, violating its definition 0 6 FNP(p) 6 1.
Therefore, it is recommended to fit or calibrate hrT and hrNP obey-
ing the restriction hrT 6 hrNP 6 2.5�hrT.

Note as well that, except for a few very simple plastic strain
paths, Eq. (23) does not have an analytical solution, since the target
value AT

p
2 usually changes at every strain increment following

highly non-linear equations that depend on the load path shape.
Therefore, maybe except for very simple periodic NP multiaxial
load histories, the evolution of FNP(p) can only be calculated
through an incremental plasticity algorithm.

Finally, isotropic and NP hardening can be combined using
Voce’s rule and Eq. (21) into the same model, if their effects are
assumed mutually independent, giving the yield surface radius
evolution equation

S ¼ SYc � ½1þ aNP � FNPðpÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NP evolution

þðSY � SYcÞ � e�hrc �p|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
isotropic evolution

ð24Þ

where hrc is a uniaxial strain hardening rate that calibrates the
monotonic-to-cyclic hardening transient under uniaxial tension–
compression. If the monotonic stress–strain curve is calibrated from
Ramberg–Osgood’s equation forcing its exponent to be equal to the
cyclic exponent hc, to generate a modified monotonic hardening

coefficient Hmt, then it is possible to cancel out the 0:002hc term

from the equations SY ¼ H � 0:002hc and SYc ¼ Hc � 0:002hc , resulting
in the evolution of the transient Ramberg–Osgood NP hardening
coefficient

HðpÞ ¼ Hc � ½1þ aNP � FNPðpÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NP evolution

þðHmt � HcÞ � e�hrc �p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
isotropic evolution

ð25Þ
4. Estimates of FNP for periodic NP multiaxial load histories

In periodic NP multiaxial histories where each period consists of
very few cycles, preventing Tanaka’s tensor [PT] from varying sig-
nificantly in-between periods, it is expected that [PT] and FNP(p)
converge to approximately constant steady-state values. In this
case, integral-based estimates [3,4] or the MOI method [5] could
be used to calculate this constant steady-state FNP. In the following
sections, two new estimates for the steady-state FNP are proposed,
based on Tanaka’s transient model.

4.1. Tanaka’s NP parameter steady-state estimate

The FNP(p) transient NP hardening equations proposed here,
based on Tanaka’s model, can also be used to calculate the
steady-state FNP of such periodic histories. Integrating Eq. (8) along
one of the loading periods and assuming a constant [PT] with a neg-
ligible variation D[PT] after stabilization, it follows thatZ

~n0 �~n0T � ½PT �
� �

� hrT � dp ¼
Z

d½PT � ¼ D½PT � ffi 0) ½PT �

ffi hrT �
R
~n0 �~n0T � dp

hrT �
R

dp
ð26Þ

Tanaka’s tensor [PT] can be assumed approximately constant as
long as hrT�p
 1, where p is the accumulated plastic strain inte-
grated along one loading period, resulting in
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½PT � ffi ð1=pÞ �
Z
~n0 �~n0T � dp; where p ¼

Z
dp ð27Þ

which is independent of the hardening rate hrT. Tanaka’s tensor [PT]
can then be interpreted as an integral of the directionality matrices
~n0 �~n0T of the plastic strain directions ~n0 weighted by the associated
equivalent plastic strain increments dp.

Following the same reasoning, Eq. (23) can be integrated along a
full load period assuming a constant FNP(p) ffi FNP with a negligible
variation DFNP after stabilization, as long as hrNP�p
 1, resulting in
a steady-state estimate for FNP independent of hrNP:Z

AT

ffiffiffi
2
p
� FNP

	 

� hrNP � dp ¼

Z
dFNP ¼ DFNP ffi 0) FNP

ffi ð1=pÞ �
Z

AT

ffiffiffi
2
p
� dp ð28Þ

In a discrete formulation, where the history path is simulated or
measured at small finite accumulated plastic strain increments Dp
instead of continuously following infinitesimal increments dp, gen-
erating thus a polygonal plastic strain path, the steady-state value
FNP can be calculated from the NP Parameter Steady-State (SS)
estimate

FNP ffi
1
p
�
X

AT

ffiffiffi
2
p
� Dp ð29Þ

where the total accumulated plastic strain p ¼
P

Dp, Tanaka’s ten-
sor ½PT � ffi 1

p �
P
~n0 �~n0T � Dp, and Tanaka’s NP parameter AT is given by

Eq. (13).

4.2. Rectangular plastic strain path example

Let’s apply the above estimate to obtain the steady-state FNP of a
plastic strain history that describes a rectangle centered at the ori-
gin of the e1pl � e3pl plastic strain diagram, with sides 2a and 2b
(with a P b), caused by a rx � sxy tension–torsion history.

The e1pl � e3pl diagram is equivalent to the von Mises plastic
strain diagram expl � cxypl/

p
3 scaled up by a factor (3/2),

since e1pl � (3/2)�expl and e3pl � cxypl�
p

3/2 = (3/2)�(cxypl/
p

3).
However, this expl � cxypl/

p
3 diagram would not be convenient to

represent the plastic strain history in this case, because the
description of the actual path would require the 4D
diagram expl � eypl � ezpl � cxypl/

p
3, since the stress condition

ry = rz = 0 results in non-zero plastic strain components
eypl
¼ ezpl

¼ �0:5 � expl
– 0. The e1pl � e3pl 2D diagram, on the other

hand, completely describes this plastic strain path because in
this tension–torsion case e2p � (eypl � ezpl)�

p
3/2 = 0, while the

remaining components of the 5D plastic strain space E5p become
e4pl = e5pl = 0 due to cxzpl = cyzpl = 0.

Hence, the equivalent plastic strain increments
dp ¼ ð2=3Þ � jd~e0plj can be fully calculated in this reduced-order

e1pl � e3pl diagram using d~e0pl ¼ ½ e1pl e3pl �T , resulting in an
accumulated plastic strain per period equal to p = (2/3)�(4a + 4b),
where 4a + 4b is the rectangle perimeter. Assuming a 2D
formulation of the plastic strains, each of the two horizontal
segments of this load path has a constant outer product ~n0 �~n0T

obtained from ~n0 ¼ ½�1 0 �T integrated along the equivalent
plastic strain variation Dph = (2/3)�(2a) = 4a/3, while each of the

two vertical segments has ~n0 �~n0T with ~n0 ¼ ½0 �1 �T integrated
along Dpv = (2/3)�(2b) = 4b/3, resulting in

½PT � ffi
1
p
�
Z
~n0 �~n0T � dp ¼ 2

p
�

1 0
0 0

� �
� 4a

3
þ 2

p
�

0 0
0 1

� �
� 4b

3

¼
a=ðaþ bÞ 0
0 b=ðaþ bÞ

� �
ð30Þ
The NP parameter AT cannot be assumed constant since it can
abruptly change during a load period. It must be calculated from
Eq. (13) for each path segment. Since [PT] is diagonal, its eigenval-
ues are the diagonal elements kT1 = a/(a + b) and kT2 = b/(a + b). The

trace of [PT]T�[PT] is then equal to k2
T1 þ k2

T2 ¼ ða2 þ b2Þ=ðaþ bÞ2. For

the two horizontal segments with ~n0 ¼ ½�10�T ,

j½PT � �~n0j2 ¼ a2=ðaþ bÞ2 ) AT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2=ða2 þ b2Þ

q
¼ b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
ð31Þ

while for the two vertical segments with ~n0 ¼ ½0 �1 �T ,

j½PT � �~n0j2 ¼ b2
=ðaþ bÞ2 ) AT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

=ða2 þ b2Þ
q

¼ a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
ð32Þ

resulting in the estimate

FNP ffi
1
p
�
Z

AT

ffiffiffi
2
p
� dp ¼ 2

p
� b

ffiffiffi
2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p � 4a

3
þ a

ffiffiffi
2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p � 4b

3

" #

¼ b
a
� 2

ffiffiffi
2
p

ð1þ b=aÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðb=aÞ2

q ð33Þ

Note that this estimate results in the limit cases FNP = 0 for
b/a = 0, as expected from a proportional multiaxial history, and
FNP = 1 for b/a = 1. The FNP estimate for the same rectangular plastic
strain path obtained in the MOI method studied in [5] is different
from the above, but it also results in the same limit cases.

4.3. Eigenvalue steady-state estimate

The previous example suggests that, for 2D histories involving
only two stress or strain components, the degree of
non-proportionality can be estimated from the ratio kT2/kT1

between the second largest eigenvalue kT2 of [PT] and the largest
kT1, since FNP was indeed calculated as a function of kT2/kT1 = b/a.
From this observation, it becomes evident that there are several
similarities between Tanaka’s polarization tensor [PT] and the
Rectangular Moment Of Inertia (RMOI) tensor IO

r from the MOI
method [5]: (i) both are 5 � 5 tensors defined in the same E5p

space, with the possibility to represent them under free-surface
conditions as 3 � 3 or 2 � 2 tensors in reduced-order spaces;
(ii) their eigenvectors represent principal directions of plastic
straining for the considered ~e0pl path; (iii) their eigenvalues are a
measure of the accumulated plastic strain in the direction of the
associated eigenvectors; and (iv) in 2D histories, the NP factor
FNP can be estimated from the ratio between their two eigenvalues.
However, despite their similarities, [PT] and IO

r have different
formulations, thus have different eigenvalues and eigenvectors.

If extrapolated to general 6D histories represented in the 5D E5p

plastic space, the above analogy with the MOI method suggests
that the steady-state NP factor could be estimated from the ratio
kT2/kT1 (kT2 6 kT1) between the two largest eigenvalues of [PT],
through

FNP ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT2=kT1

p
ðTanaka’s Eigenvalue SS estimateÞ ð34Þ

which is called here Tanaka’s Eigenvalue Steady-State (SS) estimate
for FNP. Since this equation neglects any transient effects on the
value of FNP, it should only be applied to relatively simple load
histories where [PT] stabilizes to an almost constant tensor, as in
most 2D periodic NP histories consisting of few multiaxial cycles
per period.

However, for complex multiaxial NP load histories involving
significant plastic straining in all six strain components, perhaps



154 M.A. Meggiolaro et al. / International Journal of Fatigue 82 (2016) 146–157
FNP might also be influenced by the three lower remaining eigen-
values kT3, kT4 and kT5, provided that they are significantly higher
than zero. On the other hand, if plastic straining along the eigen-
vectors~vT1 and~vT2 associated with kT1 and kT2 is enough to activate
cross-slip in all possible directions of the material microstructure,
then the effects of the three remaining eigenvalues on FNP might be
negligible.

In summary, the two FNP estimates presented in Sections 4.1
and 4.3 for periodic multiaxial NP load histories estimate the
steady-state value of Tanaka’s tensor [PT] from Eq. (27). The first
estimate, shown in Eq. (28), requires the calculation of an addi-
tional integral involving the AT parameter, or a summation in the
discrete version from Eq. (29), while the second estimate from
Eq. (34) is simply based on an eigenvalue ratio. The main
advantages of these estimates are their integral formulation, which
does not require the transient solution of Tanaka’s evolution equa-
tion in an incremental plasticity formulation, and their indepen-
dence of the hrT and hrNP hardening rates, which would not need
to be calibrated if only the steady-state FNP and the associated
Ramberg–Osgood NP hardening coefficient HNP = Hc�(1 + aNP�FNP)
are desired.

In fact, for balanced periodic multiaxial NP histories where
FNP(p) stabilizes to a constant value FNP without causing any ratch-
eting or mean stress relaxation effects, an incremental plasticity
algorithm could calculate the stress or strain paths assuming that
H(p) = HNP since the beginning of the load history (assuming
p = 0), without having to deal with transient isotropic and NP hard-
ening and thus a yield surface with changing radius. The resulting
stress–strain paths would be very similar to the stabilized ones
that would be calculated considering all the transient effects, but
at a much lower computational cost. This simplified approach is
similar to the one adopted in the eN method, where the
uniaxial cyclic curve is assumed stabilized with H(p) = Hc since
the beginning of the load history, neglecting the uniaxial
monotonic-to-cyclic transient.

The main advantage of this transient incremental plasticity
calculation using a steady-state value of FNP (assuming it indeed
stabilizes, a simplifying hypothesis applicable to many if not most
balanced periodic histories, those with rm = 0) is reduction in com-
putational cost, since Eqs. (8) and (13) won’t need to be recalcu-
lated at each incremental step. Without the need to store and
evolve Tanaka’s polarization tensor, which in the general case
requires a 5 � 5 matrix to be represented in the simulation soft-
ware along with its differential equations, computer time can be
typically reduced in about half. Moreover, if the transient response
of NP hardening can be ignored (e.g. in periodic histories without
significant overloads that could cause load interaction effects),
then this simplification does not result in any information loss,
since the calculated steady-state paths will end up essentially
the same as the computationally-costly ones obtained considering
the entire transient of Tanaka’s polarization tensor.

Note however that the transient response should be fully calcu-
lated for unbalanced loadings, where ratcheting or mean stress
relaxation can occur. In this case, neglecting hardening or softening
transients would compromise the accuracy of the stress or strain
path predictions.
5. Experimental validation

The presented NP hardening formulation has been imple-
mented in the ViDa 3D software to predict multiaxial elastoplastic
stress–strain relations (see [11] for a description of its 2D version
main features, which are retained and expanded in this much
improved version). Kinematic hardening can be considered using
multi-surface non-linear kinematic (NLK) models from Chaboche
et al. [12], Jiang–Sehitoglu [13,14], Ohno–Wang II [15], or Delobelle
et al. [16], implemented through a generalized surface translation
rule:

~v 0i ¼ ~n0 � Dri|fflfflffl{zfflfflffl}
Prager—Ziegler

�v�i �m�i � ci � di �~b0i|fflffl{zfflffl}
dynamic recovery

þð1� diÞ � ð~b0Ti �~n0Þ �~n0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
radial return

2
64

3
75
ð35Þ

where ~v 0i is the translation direction vector for each hardening

surface i, ~b0i is its backstress component, ~n0 is the current plastic
straining unit direction, Dri is the difference between the radii of
consecutive hardening surfaces, and the scalar functions vi

* and
mi

* are defined as

v�i �
j~b0ij
Dri

 !vi

and m�i �
~b0Ti �~n0=j~b0ij
h imi

; if ~b0Ti �~n0 P 0

0; if ~b0Ti �~n0 < 0

8<
: ð36Þ

where vi, mi, ci, and di are adjustable ratcheting parameters for each
surface. These versatile equations reproduce Chaboche’s model set-
ting vi = ci = di = 1 and mi = 0, Jiang–Sehitoglu’s for ci = di = 1, mi = 0
and adjustable 0 < vi <1, Ohno–Wang II for ci = di = mi = 1 and
adjustable 0 < vi <1, and Delobelle’s for vi = mi = 0 and adjustable
0 < ci < 1 and 0 < di < 1. The translation direction vectors ~v 0i from
each hardening surface are then used to calculate the corresponding
surface backstress increments

d~b0i ¼
pi �~v 0i � dp; if j~b0j < Dri

0; if j~b0j ¼ Dri

(
; i ¼ 1;2; . . . ;M ð37Þ

where pi are generalized plastic modulus coefficients calibrated for
each surface. NP hardening is considered in the simulation by con-
tinuously changing the generalized plastic modulus coefficients pi

of each hardening surface i from their initial values pi(0), through
the equation

piðpÞ ¼ pið0Þ � ½HðpÞ=Hc�1=hc ð38Þ

where the transient Ramberg–Osgood NP hardening coefficient H(p)
has been defined in Eq. (25).

The computer code accuracy should be verified using the same
model in both stress and strain control, as recommended in [1].
That is, the stress history should be calculated in the code from a
given strain history, and then the computed stresses should be
used as input to the same code to predict the original strain his-
tory. The residual numerical errors, which should be as small as
possible, are assumed as a suitable metric for the code quality.
The code accuracy has been verified for all adopted NLK models fol-
lowing this reasonable methodology, but this verification is consid-
ered beyond the scope of this paper and will not be further
discussed here. However, numerical simulation comparisons with
experimental data from Itoh et al. [17] show a better agreement
for Jiang–Sehitoglu’s model, among all the studied ones.

Tension–torsion experiments are then performed on tubular
annealed 316L stainless steel specimens in an MTS tension–torsion
testing machine, see Fig. 6. Engineering stresses and strains are
measured using a load/torque cell and a MTS axial/torsional exten-
someter. The cyclic properties of this steel are obtained from tradi-
tional uniaxial eN tests, resulting in a calibrated uniaxial cyclic
hardening coefficient Hc = 874 MPa and exponent hc = 0.123, with
Young’s modulus E = 193 GPa. To improve the calculation accuracy,
the backstress is divided into five additive components, following
Chaboche’s idea [12]. Therefore, the following simulations adopt
Jiang–Sehitoglu’s kinematic hardening model with five surfaces,
i.e. one yield plus four hardening surfaces (not to mention the rup-
ture surface, which does not translate and would constitute a sixth
surface).



Fig. 6. Tubular tension–torsion specimen mounted in an MTS tension–torsion
machine, showing the axial/torsional extensometer.
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Using the calibration procedure from [14], for a chosen set of
generalized plastic modulus coefficients pi = {6176, 786, 100,
12.7, 1.62} MPa for surfaces i = 1, 2, . . . , 5, respectively, the
resulting radii become ri ffi {231, 297, 382, 491, 632} MPa, with dif-
ferences Dri ffi {66, 85, 109, 141, 217} MPa between the radii of
consecutive surfaces, where the rupture surface (constant) radius
is r6 = 849 MPa. Uniaxial ratcheting experiments are used to
calibrate the parameters Xi = {1, 1, 2.9, 3, 4}. An additional
hardening coefficient aNP = 0.86 is calibrated from 90�
out-of-phase tension–torsion circular paths, assuming in this case
FNP = 1. NP hardening rates are also calibrated in the same way,
resulting in NP hardening rates hrNP = 1.3 and hrT = hrNP/2.

A thin wall of 1.5 mm is usually adopted in the tubular
specimen, to avoid having to deal with stress gradient effects
across the thickness. But, since some experiments involved large
compression strains, the minimum wall thickness was increased
from 1.5 to 2.0 mm to avoid buckling. On the critical section, the
tubular specimen has then external dext = 16 mm and internal
dint = 12 mm diameters.

Note that linear elastic (LE) stress analyses tend to overestimate
the elastoplastic stresses especially for specimens with thicker
walls, therefore ASTM E2207-08 recommends replacing the term
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(dext
4 � dint

4) = (dext
2 � dint

2)�(dext
2 + dint

2) from the denominator of
the LE expression for the engineering shear stress seng

xy (due to tor-
sion) with the higher (dext

2 � dint
2)�(dext

2 + dext dint) to decrease seng
xy .

The conversion from engineering (eng) to true strains is
obtained from

ex ¼ ln 1þ eeng
xð Þ

ey ¼ ln 1þ eeng
y

� �
ez ¼ ln 1þ eeng

zð Þ

8><
>: and

cxy ffi tan�1 ceng
xy

� �
cxz ffi tan�1 ceng

xzð Þ
cyz ffi tan�1 ceng

yz

� �
8><
>: ð39Þ

But the conversion from engineering to true stresses requires a
general multiaxial formulation that incorporates Poisson effects in
all directions, based on the equations

rx ¼ reng
x = 1þ eeng

y

� �
� 1þ eeng

zð Þ
� �

ry ¼ reng
y = 1þ eeng

xð Þ � 1þ eeng
zð Þ½ �

rz ¼ reng
z = 1þ eeng

xð Þ � 1þ eeng
y

� �� �
sxy ¼ seng

xy = 1þ eeng
y

� �
� 1þ eeng

zð Þ
� �

¼ syx ¼ seng
yx = 1þ eeng

xð Þ � 1þ eeng
zð Þ½ �

sxz ¼ seng
xz = 1þ eeng

y

� �
� 1þ eeng

zð Þ
� �

¼ szx ¼ seng
zx = 1þ eeng

xð Þ � 1þ eeng
y

� �� �
syz ¼ seng

yz = 1þ eeng
xð Þ � 1þ eeng

zð Þ½ � ¼ szy ¼ seng
zy = 1þ eeng

xð Þ � 1þ eeng
y

� �� �

8>>>>>>>>><
>>>>>>>>>:

ð40Þ

Note that the force Fyx that causes the engineering shear stress
seng

yx is in general different from the Fxy that causes seng
xy , because the

equilibrium of moments in a deformed element of lengths x and y
requires that the moment Fxy�(x/2) caused by Fxy with respect to the
element centroid has the same magnitude as the moment Fyx�(y/2)
caused by Fyx. But, even though in general seng

xy – seng
yx for engineer-

ing shear stresses, the tensor symmetry condition sxy = syx must be
satisfied for true shear stresses to guarantee static equilibrium.

Strain-controlled tension–torsion tests are then performed
adopting strain paths describing square paths in the ex � cxy/

p
3

diagram. Fig. 7(left) shows applied square strain paths with normal
amplitudes 0.2%, 0.4%, 0.6% and 0.8%. Fig. 7(right) shows the mea-
sured stress paths during the entire NP hardening transient for all
applied strain levels, and the corresponding predictions performed
using the presented formulation of Tanaka’s NP hardening model
together with Jiang–Sehitoglu’s kinematic hardening model,
resulting in a good agreement, within 78 MPa RMS (less than 10%
of the maximum stress levels). Fig. 8 shows the normal and shear
hysteresis loops associated with the paths from Fig. 7. Note that
Tanaka’s model predicts that FNP converges to 1.0 for square paths,
overestimating the normal and especially the shear stresses; these
experiments suggest FNP tending to a slightly lower value, near 0.9.
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Fig. 8. Normal and shear hysteresis loops from square strain histories, either
experimentally measured (light lines) or predicted using the simulator (dark lines).
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3 stress paths that would be predicted using the simulator
neglecting NP hardening effects (dark lines), and the actual experimentally
measured paths (light lines).
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As expected, the proposed NP parameter steady-state estimate
exactly coincided with the steady-state value of the transient
Tanaka model, obtained from the simulations. Due to the symme-
try of the considered square path, the proposed eigenvalue
steady-state estimate also coincided with Tanaka’s transient pre-
dictions after stabilization, however for asymmetric paths these
values could be somewhat different. Further investigation is
required to evaluate these probably small differences between
the two proposed steady-state estimates.

Finally, Fig. 9 shows the wrongfully predicted stress path if NP
hardening is ignored. Note the enormous influence of NP harden-
ing in the resulting stress ranges, which would be higher than
the wrong predictions by, in average, 5% for the 0.2% strain ampli-
tudes (where plastic strains are still small), by 45% for 0.4% ampli-
tudes, by 65% for 0.6%, and up to 75% (in average) for 0.8%.
Multiaxial fatigue calculations cannot ignore these significant
hardening effects: for instance, Smith–Watson–Topper’s damage
parameter would be underestimated by a factor of up to 1.85 in
some of the highest amplitude cycles, resulting in highly
non-conservative fatigue life predictions.
6. Conclusions

In this work, Tanaka’s incremental plasticity model was pre-
sented in a special 5D plastic strain space, from which an evolution
equation for the non-proportionality factor FNP was obtained, as a
function of the accumulated plastic strain p. It was shown that
the eigenvectors of Tanaka’s polarization tensor represent princi-
pal directions along which dislocation structures may form, while
the eigenvalues quantified them. Two new integral estimates for
the steady-state FNP of periodic load histories were proposed. The
presented equations were validated from non-proportional ten-
sion–torsion experiments with 316L steel tubular specimens.
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