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Ratcheting is an accumulation of plastic strain that can influence fatigue lives of structural components
due to the premature exhaustion of the material ductility, much earlier than predicted by traditional
fatigue crack initiation models. Ratcheting is usually associated with a significant mean stress component
in either uniaxial or multiaxial stress-controlled histories. The very same process can induce mean stress
relaxation in strain-controlled histories, affecting fatigue lives due to consequent mean or maximum
stress effects. Such processes are mainly caused by a local distortion of the yield surface, which would
require the use of complex yield functions other than von Mises’ to be properly described. The addition
of non-linear terms to the kinematic hardening rules compensates for this requirement, rendering it
possible to model ratcheting effects using the von Mises yield function without dealing with distortion.
In this two-part work, the formulation of the main non-linear kinematic (NLK) models is unified into a
generalized equation, represented using engineering notation in a reduced-order five-dimensional (5D)
space that may lower in half the associated computational cost. Part I introduces the proposed 5D stress
and strain spaces, which are a scaled version of Ilyushin’s 5D spaces. These 5D spaces are then applied to
the qualitative study of uniaxial ratcheting, multiaxial ratcheting, and mean stress relaxation. Part II of
this work derives all incremental plasticity equations from the NLK approach in the spaces proposed
in Part I, and discusses its advantages over the classical 6D formulation. These NLK models are then used
in Part II to quantitatively predict uniaxial ratcheting, multiaxial ratcheting, and mean stress relaxation,
validated from experiments with 316L steel cylindrical and tubular specimens.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Ratcheting, sometimes called cyclic creep, is the accumulation
of any plastic strain component with increasing number of cycles
[1]. Although this phenomenon is activated by cyclic plastic load-
ing, it leads to a steady straining in a certain direction that can
influence the fatigue life of structural components due to the pre-
mature exhaustion of the material ductility, much earlier than its
usual fatigue initiation life. It can happen independently of temper-
ature, even though temperature effects can influence ratcheting by
changing the yield strength and the hardening or softening behav-
ior of the material.

Ratcheting is usually associated with uniaxial or multiaxial load
histories containing mean stresses. Any loading history that trig-
gers the unsteady effects associated with ratcheting is called an
unbalanced history. Balanced histories, on the other hand, can also
present complex transient elastoplastic hysteresis loops due to
strain hardening or softening effects, however after them the
material behavior involves a closed elastoplastic loop, with no
net accumulation of plastic deformation.

In unbalanced histories, plastic strain accumulation can con-
tinue even after the strain hardening or softening transient, gener-
ating hysteresis loops that do not fully close. But ratcheting rates
might decay as a function of the accumulated plastic strain, until
reaching stabilized closed hysteresis loops, in a plastic shakedown
process. In some cases, it is possible that the steady-state is not
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only a closed loop but it is also perfectly elastic, in which case the
transient behavior is called elastic shakedown.

There are two main types of ratcheting: uniaxial and multiaxial.
The first is caused by an unbalanced uniaxial (or any other propor-
tional) history, while the latter requires unbalanced multiaxial
non-proportional (NP) conditions, both under stress control. If,
on the other hand, the load history is under strain control, then
the same microstructural mechanisms that cause uniaxial or mul-
tiaxial ratcheting are responsible for gradually reducing mean
stress components toward zero. This phenomenon, called mean
stress relaxation, can be interpreted as an inverse ratcheting prob-
lem, which might be present in both uniaxial and multiaxial
strain-controlled histories.

In Part I of this two-part work, reduced-order five-dimensional
(5D) stress and strain spaces are proposed, which significantly
decrease the computational cost in the incremental plasticity for-
mulations required to predict the material behavior subjected to
unbalanced histories. Its application to the qualitative description
of ratcheting and mean stress relaxation is discussed, while quan-
titative evaluations are the subject of Part II, which derives the NLK
incremental plasticity equations in the proposed 5D spaces. The
proposed 5D representation of stresses and strains is presented
next.
2. Five-dimensional stress and strain formulation

2.1. Voigt–Mandel’s notation

Stress and strain tensors can be represented as nine-
dimensional (9D) vectors [2], avoiding the need to work with ten-
sor operations. Even better representations were proposed by
Voigt and Mandel [3], taking advantage of shear symmetries to
express the stress or strains as six-dimensional (6D) vectors.
Denoting ri and si as the stress components and their deviatoric
parts, and analogously ei and ei for strains, then Voigt–Mandel’s
vector representation of the stresses, strains, deviatoric stresses,
and deviatoric strains, used in this work, become

~r ¼ ½rx ry rz sxy
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where sij and cij are shear strain components, and T stands for the
transpose of a vector. Voigt–Mandel’s 6D notation is extensively
used in solid mechanics to model stress–strain relations, particu-
larly to improve computational efficiency in numerical structural
mechanics software, since it only needs six scalar variables to rep-
resent each 3 � 3 tensor.

The
p
2 terms in Voigt–Mandel’s vector notation makes it geo-

metrically equivalent to the tensor notation. The transformation
from 6D stresses or strains to their deviatoric part can be repre-
sented by a 6 � 6 projection matrix [A6D] through ~s ¼ A6D � ~r and
~e ¼ A6D �~e, where

A6D½ � ¼

2=3 �1=3 �1=3 0 0 0

�1=3 2=3 �1=3 0 0 0

�1=3 �1=3 2=3 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
66666666664

3
77777777775

ð2Þ
If ~e is elastoplastic, then it is possible to represent its elastic
and plastic components in Voigt–Mandel’s notation through
~e ¼~eel þ~epl, where

~eel ¼ exel eyel ezel cxyel=
ffiffiffi
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p
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ffiffiffi
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p
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ffiffiffi
2

ph iT
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ph iT ð3Þ
2.2. Ilyushin deviatoric spaces

When dealing with multiaxial stress–strain calculations, it is a
good idea to work in stress or strain spaces with reduced dimen-
sions, to save computational cost without modifying the results.
By working in the deviatoric space, several equations can be sim-
plified, e.g. Hooke’s law becomes a scalar operation instead of
involving stiffness matrices. Voigt–Mandel’s 6D vectorial represen-
tation of the deviatoric stresses ~s and strains ~e is a good choice,
since it is geometrically equivalent to the deviatoric tensors, and
Hooke’s law only requires a scalar elastic parameter 2G, where G
is the shear elastic modulus.

As the deviatoric stresses sx, sy and sz are linearly-dependent,
since sx + sy + sz = 0, it is possible to reduce the deviatoric stress
space dimension from 6D to 5D, defining a 5D deviatoric stress
vector ~s0 = [s1 s2 s3 s4 s5]T [4]. There are infinite ways to do this,
e.g. defining s3, s4 and s5 as proportional to the shear stresses sxy,
sxz and syz, while representing the normal stresses rx, ry and rz

by their hydrostatic component rh and two new variables s1 and
s2, through

s1
s2
rh

2
64

3
75 ¼

ax1 ay1 az1
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2
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2
64

3
75 ð4Þ

where the user-defined coefficients ax1, ay1, az1, ax2, ay2 and az2 are
values that make the transformation matrix rows [ax1 ay1 az1],
[ax2 ay2 az2], and [1/3 1/3 1/3] become linearly independent.

To avoid undesirable geometric distortions in this transforma-
tion, the axes associated with s1, s2 and rh should also be orthogo-
nal. Hence, the axes associated with the components s1 and s2
should be defined on the deviatoric plane and perpendicular to
each other. Using this requirement, a family of coordinate transfor-
mations involving a scaling factor ks and a rotation angle us can be
proposed, see Fig. 1(left), where
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This is a generalization of the classical Ilyushin’s transforma-
tions [5], which adopted the particular scaling factor
ks ¼ cos 35:3� ¼ ffiffiffiffiffiffiffiffi

2=3
p

.
Defining s3 � ks

p
3 � sxy, s4 � ks

p
3 � sxz and s5 � ks

p
3 � syz, it can

be shown that, for any us,

s21 þ s22 ¼ k2s � r2
x þ r2

y þ r2
z � rxry � rxrz � ryrz

� �
s23 þ s24 þ s25 � k2s � 3 s2xy þ s2xz þ s2yz

� �
9>=
>; ) j~s0 j ¼ rMises � ks

ð6Þ

where rMises is the von Mises equivalent stress, and |�| stands for the
Euclidean norm of a vector. Note that Ilyushin’s



Fig. 1. Coordinate transformations between the normal stresses rx, ry and rz and the deviatoric stresses s1 and s2 on the deviatoric plane, for a generic scaling factor ks and
rotation angle us (left) and for the adopted ks = 1 and us = 0� (right).
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ks ¼ cos 35:3� ¼ ffiffiffiffiffiffiffiffi
2=3

p
makes the 6D~s and the 5D~s0 have the same

norm.
On the other hand, adopting instead ks = 1 conveniently results

in j~s0j ¼ rMises. The resulting transformation between the 5D devia-
toric stress~s0 and the 6D stress ~r becomes~s0 ¼ Aðks;usÞ �~r, where
the projection matrix A(ks, us) is given by:
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Note that the 6D-to-5D projection matrix adopted by Papado-
poulos [6] is a particular case of Eq. (7), namely for A(ks = 1/

p
3,

us = 0�). The 5D Euclidean sub-space E5s adopted in this work uses
instead a projection matrix A(ks = 1, us = 0�), see Fig. 1(right), to
make its metric j~s0j equal to rMises:
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Such adopted transformation remains unchanged if rx, ry and
rz are replaced respectively by their deviatoric components sx, sy
and sz, therefore

~s0 � s1 s2 s3 s4 s5½ �T ¼ A �~r ¼ A �~s ð9Þ
where

s1 � rx � ryþrz

2 ¼ 3
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The above defined 5D deviatoric stress vector ~s0 has three
important properties:

1. The Euclidean norm of the 5D vector~s0 from the E5s deviatoric
sub-space is equal to the von Mises equivalent stress rMises, thus
j~s0j ¼ j~sj=
ffiffiffiffiffiffiffiffi
2=3

p
¼ rMises � sMises

ffiffiffi
3

p
ð11Þ
2. The Euclidean distance in the E5s space between two stress
states (points) A and B, defined by ~s0A = [s1A s2A s3A s4A s5A]T

and ~s0B = [s1B s2B s3B s4B s5B]T, respectively associated with
the 6D deviatoric stresses~sA and~sB, is equal to the von Mises
range DrMises between these stress states:

j~s0B �~s0Aj ¼ j~sB �~sAj=
ffiffiffiffiffiffiffiffi
2=3

p
¼ DrMises � DsMises

ffiffiffi
3

p
ð12Þ

3. The locus of the points that have the same range DrMises

with respect to a stress state ~s0 in E5s is the surface of a
hypersphere with center in~s0 and radius DrMises, a corollary
from the second property.

Note that such properties are valid for any projection matrix
with a scaling factor ks = 1, independently of the choice of us, i.e.,
for any projection matrix A(1, us).

2.3. Elastic and plastic deviatoric strain spaces

For strain histories, it is also possible to represent the deviatoric
strains in 5D strain-based sub-spaces. In this work, the same
A(1, 0�) projection matrix is used for strains, resulting in the 5D
Euclidean sub-space E5e with coordinates
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~e0 � ½ e1 e2 e3 e4 e5 �T ¼ A �~e ¼ A �~e ð13Þ
where

e1 � ex � eyþez
2 ¼ 3
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ð14Þ

This 5D deviatoric strain~e0 in the defined sub-space E5e also has
three important properties, very similar to the E5s stress sub-space
properties:

1. The Euclidean norm of the 5D vector~e0 divided by 1þ �m is equal
to the von Mises equivalent strain eMises:
j~e0j
1þ �m

¼ 1
1þ �m

� j~ejffiffiffiffiffiffiffiffi
2=3

p ¼ eMises � 1
1þ �m

� cMises

2

ffiffiffi
3

p
ð15Þ

where �m is the effective Poisson ratio, a weighted average
between the elastic m and plastic 0.5 Poisson ratios.

2. The Euclidean distance in the E5e sub-space between two
points, divided by 1þ �m, is equal to the von Mises strain range
DeMises between these strain states.

3. The locus of the points with same DeMises with respect to a point
~e0 in the E5e sub-space is the surface of a 5D hypersphere with
center in~e0 and radius DeMises � ð1þ �mÞ, a corollary from the sec-
ond property.

The 5D deviatoric stresses and strains proposed above can rep-
resent any multiaxial history, even at points below the surface of
the specimen. In the particular case of points on a free surface per-
pendicular to the z direction, where sxz = syz = 0 and cxz = cyz = 0 but
allowing rz – 0 (due e.g. to a surface pressure), the proposed devi-
atoric stress and strain vectors can be further reduced to 3D sub-
spaces

~s3D � s1 s2 s3½ �T ¼ rx � ryþrz
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p
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ph iT
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8><
>: ð16Þ

Moreover, for surface histories consisting of combinations of
only uniaxial tension rx and torsion sxy, 2D sub-spaces could be
used to simplify even further the representation of the deviatoric
stress and strain vectors

~s2D � ½ s1 s3 �T ¼ ½rx sxy
ffiffiffi
3

p �T

~e2D � e1 e3½ �T ¼ ex � ð1þ �mÞ cxy
2

ffiffiffi
3

ph iT
8<
: ð17Þ

Such simplifications are a major advantage of the E5s and E5e
spaces. For instance, since the stress component rx shows up in
all deviatoric components sx, sy and sz, a simple tension–torsion
history would normally need to be represented in a 4D sub-space

sx sy sz sxy
ffiffiffi
2

p� 	T
if Voigt–Mandel’s notation was used, instead

of the above reduced 2D formulation. Note that, for uniaxial histo-
ries, the trivial scalar sub-spaces~s1D � ½s1� and ~e1D � ½e1� could be
adopted.

Instead of having to deal with the effective Poisson ratio �m,
which is an approximation combining the elastic m and plastic
0.5 Poisson ratios, it is much better to represent the deviatoric
strain as a sum of its elastic and plastic components ~e0 ¼~eel þ~epl
in 5D:

~e0el � e1el e2el e3el e4el e5el
� 	T ¼ A �~eel ¼ A �~eel ð18Þ

~e0pl � e1pl e2pl e3pl e4pl e5pl
� 	T ¼ A �~epl ¼ A �~epl ð19Þ

where el and pl subscripts stand respectively for elastic and plastic
components, and
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ð20Þ
e1pl � expl �
eyplþezpl

2 ¼ 3
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The 5D plastic strain space defined by ~e0pl is hereby called E5p
space. Note that such ~e0pl vector, multiplied by 3/2, is identical to
the 5D representation of plastic strains proposed by Tanaka [7]:

~e0pl ¼
3
2
� expl

explþ2eyplffiffi
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p
cxyplffiffi
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cxzplffiffi
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p
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h iT
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Tanaka0s 5D deviatoric space

ð22Þ

since the identity expl + eypl + ezpl = 0 implies that eypl � ezpl =
expl + 2eypl. Therefore, Tanaka’s efficient non-proportional hardening
model [7] can be directly computed in the proposed E5p formula-
tion, without requiring any additional plastic strain projection.

Similarly to the E5s stress sub-space, 3D and 2D versions of the
strain spaces can also be defined respectively under free-surface
and tension–torsion conditions, resulting in
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Note that the plastic 2D sub-space where~e2Dpl
is represented is

equivalent to the classic Mises diagram expl � cxypl/
p
3 multiplied

by 3/2. But the common practice of representing the elastoplastic
strain history in tension–torsion tests using an ex � cxy/

p
3 diagram

is only appropriate if plastic strains dominate, i.e. if ex ffi expl, cxy
ffi cxypl and thus~e2D ffi~e2Dpl

. Otherwise,~e2Del
and~e2Dpl

should be stud-
ied in separate elastic and plastic diagrams, or altogether in a sin-
gle elastoplastic diagram~e2D using the effective Poisson ratio.
2.4. Direct and inverse transforms between the adopted 6D and 5D
spaces

The inverse transform from the 5D to the 6D space is now cal-
culated using the projection matrix A defined in Eq. (8). Two
important properties of A are A � AT ¼ 1:5 � I5�5 and AT � A ¼ 1:5�
A6D, where I5�5 is the 5 � 5 identity matrix and A6D is the projection
matrix onto the 6D deviatoric space in Voigt–Mandel’s notation,
shown in Eq. (2). These identities would also be valid for any other
projection matrix A(ks = 1, us), independently of the orientation us

of the chosen s1–s2 coordinate frame. However, A is a 5 � 6 matrix,
thus it cannot be inverted since it is not square. But its right
pseudo-inverse could be used instead.

The right pseudo-inverse of a matrix X, defined as pinv(X) � XT

� (X � XT)�1, is a generalization of the inverse that is valid even for
non-square matrices. If X � XT is invertible, then it is easy to show
that X � pinv(X) = (X � XT) � (X � XT)�1 is equal to the identity matrix,
analogously to the properties of a square inverse matrix. The right
pseudo-inverse of A becomes then

pinvðAÞ � AT � ðA � ATÞ�1 ¼ AT � ð1:5 � I5�5Þ�1 ¼ 1:5 � AT ð25Þ

which can be used to calculate the inverse transform from the con-
sidered 5D stress sub-space back to 6D. But, even though~s0 ¼ A � �r,
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in general it is not true that pinvðAÞ �~s0 is equal to the original 6D
stress ~r. Instead, this product results in the 6D deviatoric stress~s
pinvðAÞ �~s0 ¼ 2
3
AT � ðA � �rÞ ¼ 2

3
� 3
2
A6D � �r ¼~s )~s

¼ pinvðAÞ �~s0 ð26Þ
The reconstruction of the 6D ~r would also require the

knowledge of the 6D hydrostatic stress vector ~rh ¼ rh�
1 1 1 0 0 0½ �T to obtain ~r ¼~sþ~rh. In an analogous way
as done for stresses, the pseudo-inverse can also be used to project
5D strains back to their 6D space. The direct and inverse transfor-
mations using the proposed projection matrix A are summarized in
Tables 1 and 2.

In summary, the 5D representation of stresses and strains is
highly recommended, since it reduces the dimensionality of the
stress–strain relations from 6D to 5D. For either free-surface condi-
tions, un-notched tension–torsion, or uniaxial histories, respec-
tively 3D, 2D, or 1D sub-spaces of the 5D representation can be
used, significantly decreasing computational cost. Recall that, even
for a uniaxial history in x, Voigt–Mandel’s 6D deviatoric represen-
tation would need to use three dimensions due to its redundant
formulation, since rx is present in all three normal deviatoric com-
ponents sx, sy and sz. On the other hand, with a uniaxial rx present
only in the s1 expression, the 5D representation could use a single
component in this case without problems.

The proposed 5D stress and strain formulation will be used in
Part II of this paper to better describe non-linear incremental plas-
ticity models, which are required for predicting ratcheting and
Table 1
Direct and inverse matrix transforms between Voigt–Mandel’s 6
AT � A ¼ 1:5 � A6D.

Transform From 6D to 5D

Stress ~s0 ¼ A � ~r ¼ A �~s ¼ A0 �~s
Elastoplastic strain ~e0 ¼ A �~e ¼ A �~e
Elastic strain ~e0el ¼ A �~eel ¼ A �~eel
Plastic strain ~e0pl ¼ A �~epl ¼ A �~epl

Table 2
Direct and inverse scalar transformations between the 6D and 5D repr

Transform From 6D to 5D

Stress s1 ¼ rx � ðry þ rzÞ=2
s2 ¼ ry � rz


 � ffiffiffi
3

p
=2

s3 ¼ sxy
ffiffiffi
3

p
; s4 ¼ sxz

ffiffiffi
3

p

s5 ¼ syz
ffiffiffi
3

p

Elastoplastic strain e1 ¼ ex � ðey þ ezÞ=2
e2 ¼ ðey � ezÞ

ffiffiffi
3

p
=2

e3 ¼ cxy
ffiffiffi
3

p
=2

e4 ¼ cxz
ffiffiffi
3

p
=2

e5 ¼ cyz
ffiffiffi
3

p
=2

Elastic strain e1el
¼ exel � ðeyel þ ezel Þ=2

e2el
¼ ðeyel � ezel Þ

ffiffiffi
3

p
=2

e3el
¼ cxyel

ffiffiffi
3

p
=2

e4el
¼ cxzel

ffiffiffi
3

p
=2

e5el
¼ cyzel

ffiffiffi
3

p
=2

Plastic strain e1pl
¼ expl � ðeypl þ ezpl Þ=2

e2pl
¼ ðeypl � ezpl Þ �

ffiffiffi
3

p
=2

e3pl
¼ cxypl �

ffiffiffi
3

p
=2

e4pl
¼ cxzpl �

ffiffiffi
3

p
=2

e5pl
¼ cyzpl �

ffiffiffi
3

p
=2
mean stress relaxation effects. Such effects are discussed next, in
the light of the proposed 5D formulation.

3. Uniaxial ratcheting behavior and definitions

Uniaxial unbalanced histories are essentially cyclic histories
with a significant mean stress component. Such histories may pre-
sent plastic strain accumulation in the direction of the mean stress,
called uniaxial ratcheting. Uniaxial ratcheting is a result of a differ-
ent non-linear behavior of the material in tension and in compres-
sion, i.e. anisotropy between tension and compression. Masing [8]
assumed that the elastoplastic hysteresis loop curves should be
geometrically similar to the cyclic stress–strain curves magnified
by a scale factor of two, implying that cyclically-stabilized
constant-amplitude elastoplastic loops should always close. Uniax-
ial ratcheting behavior, however, is one in which the steady-state
of a cyclic uniaxial loading is an elastoplastic loop that does not
close, causing the material to accumulate a net strain during each
cycle. From a microscopic point of view, this non-Masing behavior
indicates an unstable microstructure in the fatigue process.

Consider the uniaxial load history shown in Fig. 2, with stresses
varying between a peak ~s1D ¼ ½rmax� (rmax > SYc) and a valley
~s1D ¼ ½�SYc�, where SYc is the cyclically-stabilized yield strength.
For simplicity, the material stress–strain behavior is assumed bi-
linear and without any isotropic hardening transient. The stress
levels reproduced in Fig. 2 are compatible with kinematic harden-
ing, where yielding in the opposite direction occurs after a stress
variation Drx = ±2SYc, but the hysteresis loops do not close. This
is caused by a non-Masing behavior, where plastic straining along
D and the proposed 5D spaces, where A � AT ¼ 1:5 � I5�5 and

From 5D to 6D

~s ¼ ð2=3ÞAT �~s0 ) ~r ¼~sþ~rh

~e ¼ ð2=3ÞAT �~e0 )~e ¼~eþ~eh

~eel ¼ ð2=3ÞAT �~e0el )~eel ¼~eel þ~eh

~epl ¼~e0pl ¼ ð2=3ÞAT �~e0pl ðsince ~eh is elasticÞ

esentations.

From 5D to 6D

rx ¼ rh þ s1 � 2=3
ry ¼ rh � s1=3þ s2=

ffiffiffi
3

p

rz ¼ rh � s1=3� s2=
ffiffiffi
3

p
sxy ¼ s3=

ffiffiffi
3

p
; sxz ¼ s4=

ffiffiffi
3

p
; syz ¼ s5=

ffiffiffi
3

p

ex ¼ eh þ e1 � 2=3
ey ¼ eh � e1=3þ e2=

ffiffiffi
3

p

ez ¼ eh � e1=3� e2=
ffiffiffi
3

p
cxy ¼ e3 � 2=

ffiffiffi
3

p
; cxz ¼ e4 � 2=

ffiffiffi
3

p

cyz ¼ e5 � 2=
ffiffiffi
3

p

exel ¼ eh þ e1el
� 2=3

eyel ¼ eh � e1el
=3þ e2el

=
ffiffiffi
3

p

ezel ¼ eh � e1el
=3� e2el

=
ffiffiffi
3

p

cxyel ¼ e3el
� 2=
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3

p
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� 2=
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3

p
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ffiffiffi
3
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expl ¼ e1pl
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eypl ¼ �e1pl
=3þ e2pl

=
ffiffiffi
3

p

ezpl ¼ �e1pl
=3� e2pl

=
ffiffiffi
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cxypl ¼ e3pl
� 2=

ffiffiffi
3
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; cxzpl ¼ e4pl

� 2=
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� 2=
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p



Fig. 2. Uniaxial ratcheting for a bi-linear material subjected to an unbalanced stress
history between rmax > SYc and �SYc, under stress control, in the absence of strain
hardening or softening.
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the path AB is larger than in CD, even though both paths are sub-
jected to the same stress variation. This non-Masing asymmetrical
behavior causes the slope of the tension path AB to be lower than
the slope of the compression path CD, resulting in a net increase in
plastic strain after each loop. Note that such increase in plastic
strain levels cannot be explained by isotropic softening, since all
paths AB, A0B0 and A00B00 are parallel, representing a stabilized strain
hardening/softening behavior. Similarly, paths CD, C0D0 and C00D00

are also parallel, even though they are not parallel to AB due to
the non-Masing behavior.

Since isotropic softening under stress control can also cause a
net increase in plastic strain per loading cycle, it is useful to sepa-
rate ratcheting from isotropic softening effects by defining the
ratcheting strain as the mean strain along each cycle. In Fig. 2,
the ratcheting strain eri is thus defined after the first cycle as
er1 = (eB + eD)/2, after the second cycle as er2 = (eB0 + eD0)/2, after
the third as er3 = (eB00 + eD00)/2, and so on. The ratcheting rate per
cycle de/dN is then the difference de/dN = (eri+1 � eri) between the
ratcheting strains from consecutive cycles.

This definition of the ratcheting rate is able to only account for
the non-Masing asymmetrical behavior. It is independent of any
isotropic transient, since isotropic hardening or softening in
fully-reversed (zero mean stress) tension–compression under
stress control would result in zero mean strains, therefore eri = 0
and thus de/dN = 0, even though there is an increase (or decrease)
of the maximum strain per cycle due to cyclic softening (or hard-
ening, respectively).

In summary, cyclic softening and ratcheting are two different
processes, the first caused by a symmetrical softening behavior
in both tension and compression, and the second by a
tension–compression asymmetry in the stress–strain behavior that
may happen even after the strain hardening/softening transient.
Both effects should be separately modeled to independently pre-
dict their similar capability to cause a net increase in plastic strain
per loading cycle, even though sometimes their effects are shown
superposed in the literature and simply called a ratcheting process.

The ratcheting rate de/dN increases with both the stress range
and the mean stress [9], however it is much more sensitive to
Fig. 3. Uniaxial ratcheting for a bi-linear material subjected to an unbalanced s
the mean stress [10]. The ratcheting rate usually varies with the
number of cycles, even for constant amplitude loadings. For high
stress ranges, the ratcheting rate de/dN tends to increase at each
cycle, until the component fails due to exhaustion of the material
ductility, see Fig. 3(a). For lower stress ranges, the ratcheting rate
tends to decrease until reaching steady-state with de/dN = 0, asso-
ciated with a stable hysteresis loop that fully closes, see Fig. 3(b).
Note also that uniaxial ratcheting may induce a significant increase
in dislocation density when compared to zero-mean-strain low-
cycle fatigue loading, which can cause an additional strain-
hardening in certain materials, as reported in [11].
4. Multiaxial ratcheting analysis using deviatoric spaces

Multiaxial load histories can also result in plastic strain accu-
mulation along a certain direction, a phenomenon called multiaxial
ratcheting. Multiaxial ratcheting happens for unbalanced histories
even if the material follows the Masing behavior, without any
asymmetry in the hysteresis loops under tension and compression.
The most common multiaxial ratcheting example can be seen in
Fig. 4, which shows an elastoplastic cyclic torsion history with
amplitude sa applied to a shaft, combined with a constant axial
stress rm (a static ‘‘mean” stress). This example can adopt a 2D
sub-space of the defined E5s space, representing stress states in
an s1 � s3 diagram from the 2D vector~s2D defined in Eq. (17).

Initially, the uniaxial path OO0 causes elastic straining in the
normal direction s1 0½ �T until rm is reached, in a linear elastic
process inside the yield surface. The yield surface is the locus of
all points associated with a yielding criterion, which in this exam-
ple is a circle since it is defined from the von Mises criterion
j~s2Dj ¼ S, where S is the monotonic or cyclic yield strength. Since
the path O0A0 is inside the yield surface, it will cause an elastic
shear strain, but without any axial component.

After the stress state reaches the yield surface at point A0, the
yield surface starts translating toward point A, during which plastic
straining occurs. In most materials, such plastic straining happens
along a direction ~nA normal to the yield surface, what is known as
the normality condition or normality rule, discussed in detail in
Part II of this work. Since the normal vector ~nA is not vertical in
the example from Fig. 4(a), plastic straining along the path A0A will
not only induce an elastoplastic shear level ca, but it will also cause
a purely plastic tensile strain increment (the ratcheting
increment), where the resulting strain path describes a slope in
the ex � cxy/

p
3 diagram approximately equal to the slope of ~nA.

The path A0A causes the yield surface to translate until its center

(the backstress) reaches the position~b2D ¼ 0 b3½ �T in the 2D sub-
space shown in Fig. 4(b), where b3 is the torsional component of
the backstress vector in this s1 � s3 diagram. Elastic unloading of
the shear component follows along the path AB1, until the stress
state reaches the translated surface at B1, associated with a normal
vector ~nB. Then, the yield surface starts translating toward point B,
tress-controlled history under (a) high stress ranges; (b) low stress ranges.



(a)

(b)

(c)

Fig. 4. Cyclic torsion history with shear amplitude sa and constant axial stress rm applied to a shaft, defined by the path ABA in the~s2D diagram rx � sxy
p
3, and resulting

multiaxial ratcheting in the axial direction of the ex � cxy/
p
3 diagram.
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causing plastic straining in both shear and axial components, along
a direction in the ex � cxy/

p
3 diagram approximately equal to the

direction of ~nB, see Fig. 4(b).
Fig. 4(c) shows the translated yield surface after the stress state

reaches B, with center at a new backstress ~b2D ¼ 0 b3½ �T with
b3 < 0. Elastic loading follows along the path BA1, until reaching
again the yield surface at point A1. Yielding along the path A1A
causes once again ratcheting, associated with the slope~nA. The pro-
cess continues, resulting in this example in a constant ratcheting
rate, see Fig. 4(c). Note that yielding occurs at point A0 only in
the first cycle, while in all subsequent cycles it will happen at
the A1 stress state due to the kinematic hardening process.

In this example, yield surface translations were all assumed in
the vertical (shear) direction. However, the surface translation
direction in most materials is a function of the directions of the

normal vectors ~nA or ~nB and of the backstress vector ~b, as it will
be detailed in Part II of this work. The actual surface translation
direction ends up changing the directions of ~nA and ~nB in the sub-
sequent cycles, which in turn will change the translation direction,
in a highly-coupled plasticity process. When improved surface
translation equations are used to model these effects, it is found
that the ratcheting rate may vary from cycle to cycle instead of
being constant.

Ratcheting is also an important problem in pressure vessels or
pressurized pipelines that suffer cyclic shear, tension, or bending.
Internal pressure causes a hoop stress rh that acts as the mean
component associated with ratcheting problems. If the combina-
tion of rh with the cyclic shear, tension, or bending stresses causes
cyclic yielding, then ratcheting may occur in the hoop direction
after each loading cycle, causing the vessel pipe to radially expand
until eventually exhausting its ductility. Increasing ovalization of
the cross section may also happen under cyclic bending, since
the vessel/pipe walls will only suffer ratcheting in the highly
stressed regions farther away from the neutral bending axis.

In the tension–torsion shaft example, the stress state and yield
surface were represented in the usual diagram s1 � s3 � rx �
sxy

p
3, a sub-space of the E5s stress space, since there were no other

normal (or shear) components ry or rz. However, for cyclic tension
or bending problems on a pressurized vessel/pipe, which involve
three normal components rx, rh, and rz acting on the inner walls,
another sub-space of E5s needs to be used instead, the stress
diagram s1 � s2 defined by the deviatoric components
s1 � rx � (rh + rz)/2 and s2 � (rh � rz)/2, where rz = �p accounts
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for the compressive stresses on such inner walls under a pressure
p > 0. Even though a different sub-space of the E5s stress space
would be adopted, a behavior very similar to the one illustrated
in Fig. 4 could be obtained. The use of the 5D formulation or its
sub-spaces makes it systematic to predict ratcheting effects, with
the ability to consider altogether all 6D stress or strain compo-
nents, as long as a proper kinematic hardening model is adopted
[12, 13], as studied in Part II of this work.
5. Mean stress relaxation under strain control

Mean stress relaxation happens during strain-controlled defor-
mation with an initial mean stress [14], being closely related to
ratcheting. The mean stress gradually relaxes toward zero, both
in uniaxial and multiaxial unbalanced histories. Consider the
strain-controlled uniaxial history shown in Fig. 5, applied to the
same bi-linear material from Figs. 2–4, without isotropic hardening
transients. Non-Masing behavior causes the slope of paths AB, A0B0

and A00B00 to be smaller than the slopes of CD, C0D0 and C00D00, result-
ing in an asymmetrical behavior with open hysteresis loops that
gradually decrease the mean stress component. As the mean stress
tends toward zero, the non-Masing behavior diminishes, making
the hysteresis loops become once again symmetric and closed.

Mean stress relaxation caused by high plastic strain ranges is
one of the reasons why low-cycle fatigue lives are less influenced
by the mean stress effect than high-cycle fatigue lives. It can also
explain why the mean stress correction in the plastic term of Mor-
row’s elastoplastic strain-life curve is usually very conservative.

Isotropic hardening and softening compete with mean stress
relaxation mechanisms in strain-controlled cyclic deformations of
structural alloys. To separate their effects, it is necessary to evalu-
ate the relaxation of the mean stress, not of the maximum stress.
Strain-controlled isotropic softening causes a gradual reduction
of the maximum stress even in the absence of mean stress relax-
ation. Hence, the transient effects of mean stress relaxation and
isotropic strain softening/hardening can be separated in uniaxial
histories by studying, respectively, the evolution of the mean stress
and the variation of the stress amplitude or range.

Mean stress relaxation is also found in multiaxial histories,
caused by yield surface translations in unbalanced strain-
controlled paths. It is present as well in multiaxial elastoplastic
paths with mixed stress and strain control, as long as the relaxation
direction is under strain control with an initial mean stress. For
instance, exposed portions of buried pipelines may bear high static
tensile and bending stresses in the axial direction due to ground or
seabed displacements. Axial loadings in such long pipelines are
Fig. 5. Uniaxial mean stress relaxation for a bi-linear material subjected to an
unbalanced strain history between emin and emax, under strain control.
usually assumed as strain controlled, therefore superimposed pres-
sure cycles that cause plastic straining may result in a gradual
relaxation of the axial stresses, increasing the fatigue life. Even
though both hoop and radial histories are stress-controlled in the
exposed pipeline portion due to the applied internal pressure,
mean stress relaxation may happen in the strain-controlled axial
direction of such partially-buried pipeline.

Mean stress relaxation can be quantitatively predicted from
incremental plasticity simulations [15], if non-linear kinematic
models are used to describe the associated asymmetrical behavior
of the stress–strain curves, as studied in Part II of this work.

6. Conclusions

In this work, five-dimensional (5D) stress and strain spaces
were proposed, representing a scaled version of Ilyushin’s 5D
spaces. These 5D spaces have several important properties, such
as a metric proportional to von Mises equivalent stresses or strains,
the ability to represent yield surfaces using simple equations with-
out scaling factors, and the possibility to work in reduced-order
sub-spaces under free-surface conditions by simply removing
appropriate rows from the stress and strain vectorial representa-
tions. The transformations to and from the proposed 5D spaces
have been presented, providing an efficient framework to define
incremental plasticity equations. These 5D spaces were applied
to the qualitative study of uniaxial ratcheting, multiaxial ratchet-
ing, and mean stress relaxation, through tension–torsion loading
examples in 2D sub-spaces, and an unbalanced stress-controlled
uniaxial loading example with significant mean stress. In Part II,
a computationally-efficient incremental plasticity formulation is
presented in the proposed 5D spaces, with the ability to model iso-
tropic, non-proportional and non-linear kinematic hardening and
thus to quantitatively predict ratcheting and mean stress relax-
ation effects, as verified from experimental measurements.
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