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Part I of this work introduced efficient reduced-order five-dimensional (5D) stress and strain spaces that
can be used to predict ratcheting and mean stress relaxation phenomena at a much lower computation
cost than in traditional 6D formulations. These 5D spaces were then applied to the qualitative study of
uniaxial ratcheting, multiaxial ratcheting, and mean stress relaxation. Several non-linear kinematic
(NLK) hardening models have been proposed to capture these effects in incremental plasticity simula-
tions. In this Part II, an incremental plasticity formulation is proposed in the adopted 5D spaces, while
its advantages over the classical 6D formulation are discussed. The 5D version of the main NLK models
proposed in the literature are presented, which allows the definition of a unified generalized equation.
The physical and geometrical interpretation of the hardening, dynamic recovery, and radial return terms
from the proposed generalized equation are presented. Several surface translation rules can be repre-
sented as a particular case of the proposed model, including the ones by Chaboche (1979), Burlet–
Cailletaud (1986), Ohno–Wang (1993), Jiang–Sehitoglu (1996), Bari–Hassan (2001) and Chen–Jiao
(2004), among others. The adopted hardening surface representation can be used not only for the studied
NLK models, but also to reproduce the Mróz–Garud multi-surface approach. Uniaxial ratcheting,
multiaxial ratcheting, and mean stress relaxation experiments with 316L and 1020 steel tubular and
cylindrical specimens are conducted to validate the proposed models.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The Bauschinger effect, observed under cyclic loading and com-
monly called kinematic hardening, is a change in the absolute value
of the opposite yield strength after strain hardening, due to the
microscopic stress distribution. Fig. 1 exemplifies the Bauschinger
effect for a uniaxial load history represented in the rx � sxy

p
3 von

Mises diagram. In this example, the von Mises yield surface
rMises = SY, which is the equation that describes the combinations
of stress components that cause yielding, is allowed to translate
with no change in its shape or radius S = SY. If the center of the yield
surface is translated in the x direction of the von Mises stress space
by (rmax � SY), then the resulting surface will intersect the x axis in
the new tensile yield stress (rmax � SY + SY) = rmax and in the new
compressive yield stress (rmax � SY � SY) = (rmax � 2SY).

The new center of the yield surface is commonly called

backstress, represented here by the stress vector ~b, which is
responsible for storing the plastic memory. In this 2D example,
the tensile yielding from the first cycle would change the
backstress in the rx � sxy

p
3 diagram from its initial value

~b� bx by

� �T ¼ 0 0½ �T to~b � bx by

� �T ¼ rmax � SY 0½ �T , see Fig. 1.
For a general multiaxial stress state, a 6D (instead of 2D) yield

surface equation Y = 0 is adopted, usually based on the von Mises
criterion if the material is isotropic. The von Mises yield surface
can be represented as a hyper-sphere with radius S � ffiffiffiffiffiffiffiffi

2=3
p

in
Voigt–Mandel’s 6D deviatoric space, since

~s ¼ sx sy sz sxy
ffiffiffi
2

p
sxz

ffiffiffi
2

p
syz

ffiffiffi
2

p� �T
) Y ¼ ð3=2Þ � j~sj2 � ðS �

ffiffiffiffiffiffiffiffi
2=3

p
Þ2

h i
¼ 0

ð1Þ
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Fig. 1. Kinematic hardening in the x direction and associated Mises yield surface
translation in the rx � sxy

p
3 diagram.
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But a more convenient and computationally-efficient representa-
tion uses the E5s stress space defined in Part I of this work, where
the yield surface becomes a 5D hyper-sphere with radius S, since
j~s0j ¼ S, with the 5D deviatoric stress vector defined as

~s0 � s1 s2 s3 s4 s5½ �T

¼ rx � ryþrz

2
ry�rz

2

ffiffiffi
3

p
sxy

ffiffiffi
3

p
sxz

ffiffiffi
3

p
syz

ffiffiffi
3

ph iT ð2Þ

It was shown in Part I that the 6D and 5D spaces are related by a
5 � 6 transformation matrix A through

~s0 ¼ A � ~r ¼ A �~s; ~e0el ¼ A �~eel ¼ A �~eel; ~e0pl ¼ A �~epl ¼ A �~epl ð3Þ

where ~e; ~e, and ~e0 are respectively the 6D strain, 6D deviatoric
strain, and 5D deviatoric strain, while the el and pl subscripts stand
for their elastic and plastic components, and ~r is the 6D stress.

Hooke’s law is essentially represented in the same way in both
6D and 5D deviatoric spaces, because the relations ~s0 ¼ A �~s and
~e0el ¼ A �~eel imply that

~eel ¼~s=2G ) A �~eel ¼ A �~s=2G ) ~e0el ¼~s0=2G ð4Þ
hence the deviatoric stress~s0 and elastic strain~e0el vectors are paral-
lel and related by the scalar constant 2G, a simple and convenient
relation that further justifies the use of 5D stress and strain spaces.

But note that 5D formulations are not new, they have been orig-
inally proposed by Ilyushin [1], having been used in several multi-
axial problems to calculate e.g.: (i) yield surface equations and
failure criteria; (ii) path-equivalent stresses and strains using con-
vex enclosures [2] or the Moment Of Inertia method [2,3]; (iii)
multiaxial rainflow in the Modified Wang–Brown method [4];
and (iv) non-proportional hardening, using a 5D plastic strain
space defined by Tanaka [5]. Nevertheless, incremental plasticity
models are usually presented in a 6D formulation, performing 5D
projections only after the calculation of the multiaxial stress–strain
behavior, to perform multiaxial rainflow or path-equivalent calcu-
lations; or using a mixed 6D–5D formulation to compute non-
proportional hardening transients, where 6D plastic strain incre-
ments are transformed to a 5D space at every cycle to compute
Tanaka’s 5 � 5 polarization matrix [5].

On the other hand, in this work the entire incremental plasticity
formulation is presented in the adopted 5D spaces, which is sur-
prisingly almost identical to the 6D formulation, except for scaling
factors such as the

ffiffiffiffiffiffiffiffi
2=3

p
from the yield surface equations. One of

the main advantages of the proposed 5D spaces is that the entire
incremental plasticity formulation can be easily reduced to 3D,
2D, or 1D only from the removal of appropriate rows from the devi-
atoric stress and strain vectors, as it was shown in Part I. For
instance, incremental plasticity calculations for a tension–torsion

history could be performed in the 2D sub-spaces ~s2D � s1 s3½ �T
and ~e2D � e1 e3½ �T defined in Part I. This dimensional reduction
would decrease computational cost in more than 50%, especially
if non-proportional hardening transients are modeled, adopting a
2 � 2 polarization matrix instead of Tanaka’s original 5 � 5 version
defined in [5].
Kinematic hardening can be modeled in the 5D formulation (or
in its 3D, 2D, or 1D sub-spaces) by allowing the yield surface j~s0j ¼ S
to translate its center from the origin of the E5s space to a 5D back-

stress position ~b0, becoming represented by j~s0 �~b0j ¼ S, with no
change in its radius S or shape. Such translation is associated with
plastic straining, usually assumed from the normality rule in the
direction of the unit normal to the yield surface, defined as ~n for
the 6D and ~n0 for the adopted 5D formulation, evaluated at the
current stress point. The Prandtl–Reuss plastic flow rule assumes
that the magnitude of the plastic strain increment d~epl (in 6D) or
d~e0pl (in 5D) depends on the applied stress increment, being
inversely proportional to the generalized plastic modulus P that
defines the slope between stress and plastic strain increments.
The Prandtl–Reuss rule is usually defined in tensor or 6D
notation, but it is easy to show from the relations
~n0 ¼ A �~n � ffiffiffiffiffiffiffiffi

2=3
p

; ~n ¼ AT �~n0 � ffiffiffiffiffiffiffiffi
2=3

p
, and A � AT ¼ 1:5 � I5�5 (where

I5�5 is the 5 � 5 identity matrix) that it has an almost identical
version in the proposed 5D spaces:

d~epl ¼ 1
P
� ðd~rT �~nÞ �~n ¼ 1

P
� ðd~sT �~nÞ �~n ) d~e0pl

¼ 1
P
� d~s0T �~n0� � �~n0 ð5Þ

using the same P without the need for a scaling factor.
There are several models to calculate the current value of the

generalized plastic modulus P as the yield surface translates, as
well as the direction of such translation, to obtain the associated
plastic strain increments. Most of these hardening models can be
divided into three classes: multi-surface [6,7], two-surface [8,9],
and non-linear [10] kinematic hardening models.

Multi-surface kinematic hardening models assume that P is
piecewise constant, resulting in a multi-linear description of the
stress–strain curve, i.e. the non-linear shape of the stress–strain
relation is approximated by several linear segments. Non-linear
kinematic hardening models, on the other hand, are more general
since they adopt non-linear equations to describe the surface
translation direction and the value of P, leading to a more precise
non-linear description of the stress–strain curve. A third class of
kinematic hardening models involves the so-called two-surface
models, which use a rather simplified formulation that
combines elements of both non-linear and multi-surface kinematic
models.

Multi-surface models cannot predict any uniaxial ratcheting or
mean stress relaxation caused by unbalanced loadings, because
their unrealistic perfectly symmetric hysteresis loops always close.
In addition, under several non-proportional loading conditions,
these models predict multiaxial ratcheting with a constant rate
that never decays, severely overestimating the ratcheting effect
measured in practice [11]. As a result, multi-surface kinematic
hardening models should only be confidently applied to balanced
proportional loading histories.

To correctly predict the stress–strain history associated with
unbalanced loadings, it is necessary to use non-linear kinematic
(NLK) models. Their original formulation [12] was improved by
Chaboche [13], who indirectly introduced some multi-surface ele-
ments into the NLK models, however in a better non-linear instead
of the simplistic multi-linear formulation.

In the following sections, the main NLK hardening models
applicable to the prediction of ratcheting and mean stress
relaxation are reviewed. A general hardening equation is
presented, from which all NLK models are a special case. This
equation is presented in the reduced-order five-dimensional
space E5s detailed in Part I of this work, which significantly
decreases the computational cost in incremental plasticity
calculations.
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2. Multi-surface and non-linear kinematic (NLK) hardening
models

Even though multi-surface models will not be simulated in this
work, due to their inability to properly predict ratcheting and
mean stress relaxation, their framework is detailed as follows. That
is because Chaboche’s 1979 contribution [13] to the NLK models
indirectly made them adopt essentially the same multi-surface for-
mulation, as proven in [14], however associated with non-linear
instead of multi-linear incremental rules. The multi-surface formu-
lation is presented next, in the proposed stress space E5s.
2.1. Multi-surface formulation in 5D

Multi-surface models describe the behavior of elastoplastic
solids from a family of nested surfaces in the stress space [6], the
innermost being the yield surface associated with a yield strength
S. In this work, instead of defining the nested surfaces in the 6D
stress or 6D deviatoric stress spaces, the 5D reduced-order devia-
toric stress space E5s defined in Part I is adopted, using the von
Mises yield function to describe each surface. As mentioned before,
this 5D space has several advantages over the 6D formulations,
since it is a non-redundant representation of the deviatoric stres-
ses, which decreases the computational cost of stress–strain calcu-
lations. Although all kinematic hardening equations are presented
here in the 5D space, their conversion to and from their original 6D
versions is trivial, as it will be shown later.

Fig. 2 shows the family of nested surfaces that store plastic
memory, represented in a sub-space s1 � s2 of the 5D space E5s.
The first and innermost circle in Fig. 2 is the yield surface (either
monotonic or cyclic), with radius r1 � S (without the need for the
scaling factor

ffiffiffiffiffiffiffiffi
2=3

p
). In addition, M � 1 hardening surfaces with

radii r1 < r2 < � � � < rM+1 are defined, along with an outermost failure
surface whose radius rM+1 is equal to the true rupture stress rU of
the material. Their centers are located at points ~s0ci with i = 2, 3,
. . ., M + 1, respectively. These M + 1 nested circles cannot cross
Fig. 2. Initial yield, hardening, and failure surfaces forM = 3 in the s1 � s2 deviatoric
stress sub-space of E5s, showing the backstress vector~b0 that defines location of the
yield surface center~s0c1 and its components ~b0

1;
~b0
2, and ~b0

3 that describe the relative
positions between the centers of consecutive surfaces.
each other, must have increasing radii, and for a virgin material
be initially concentric at the origin of the E5s space, i.e. initially
their~s0ci ¼ 0. Moreover, the failure surface never translates, i.e. its
center is always at the origin of the E5s space, ~s0cMþ1

� 0. Indeed,
any stress point that reaches its boundary causes the material to
locally fracture due to ductility exhaustion, which is equivalent
to the criterion j~s0j ¼ rMþ1 ¼ rU .

However, all other hardening surfaces can translate while the
material strain-hardens, as shown in the arbitrary arrangement
in Fig. 2. The surface centers move as the material plastically
deforms and hardens. The difference between the radii of each pair
of consecutive surfaces in the proposed E5s space is defined as
Dri � ri+1 � ri. In principle, all radii ri may change during plastic
deformation as a result of isotropic and non-proportional harden-
ing effects, which would require additional equations such as the
Voce and Tanaka’s rule [5].

The backstress vector~b0, which locates the current yield surface

center ~b0 �~s0c1 , can be decomposed as the sum of up to M surface

backstresses ~b0
1;
~b0
2; . . . ;

~b0
M that describe the relative positions

~b0
i ¼~s0ci �~s0ciþ1

between centers of consecutive surfaces, see Fig. 2

(which depicts a case with M = 3). Note that the length (norm)

j~b0
ij of each surface backstress in this 5D representation is always

between j~b0
ij ¼ 0, if the surface centers~s0ci and ~s0ciþ1

coincide (as in

the unhardened condition from Fig. 3), and j~b0
ij ¼ Dri, if the surfaces

are mutually tangent (a saturation condition with maximum
hardening, see Fig. 3). In the saturated condition for surface i,

the surface backstress ~b0
i is aligned with the normal vector ~n0

that is perpendicular to these mutually tangent surfaces
at the current deviatoric stress state ~s0, see Fig. 3, resulting in
~b0
i ¼ ~n0 � ðriþ1 � riÞ ¼~n0 � Dri.
2.2. Multi-surface model drawbacks

The multi-surface models proposed by Mróz [6] and Garud [7]
use the above formulation (either in the original 6D version or in
the proposed 5D spaces), however they assume that each harden-
ing surface has its own generalized plastic modulus P, therefore it
is piecewise-constant, generating a multi-linear description of
stress–strain curves. Such description usually provides good
results for balanced proportional loadings, explaining their use in
several multiaxial fatigue problems involving balanced loadings.

But such multi-linear models cannot predict any uniaxial ratch-
eting or mean stress relaxation caused by unbalanced proportional
loadings. This shortcoming is due to the linearity of the multi-
surface translation rules and the resulting multi-linearity of the
stress–strain representation, which describes all hysteresis loops
using multiple straight segments, instead of predicting the experi-
mentally observed curved paths caused by non-linear effects. Such
straight segments generate unrealistic perfectly symmetric
hysteresis loops that always close under constant amplitude pro-
portional loadings, unable to predict uniaxial ratcheting or mean
stress relaxation.

In addition, for NP loadings, multi-surface models may predict
multiaxial ratcheting with a constant rate that never decays,
severely overestimating the ratcheting effect measured in practice.
As a result, multi-surface kinematic hardening models should only
be applied to balanced loading histories, severely limiting their
application.

These major drawbacks are a consequence of multi-surface
kinematic hardening models being of an ‘‘uncoupled formulation”
type, as qualified in [15]. Such uncoupling means that the general-
ized plastic modulus P in the multi-surface formulation is not a
function of the straining direction. Such ‘‘uncoupled procedure”



Fig. 3. Unhardened (left) and saturated (right) configurations of consecutive hardening surfaces i and i + 1 in the proposed E5s stress space, respectively associated with~b0
i ¼ 0

and ð~b0
i ¼~n0 � ðriþ1 � riÞ ¼~n0 � Dri .

170 M.A. Meggiolaro et al. / International Journal of Fatigue 82 (2016) 167–178
provides undesirable additional degrees of freedom to the multi-
surface models that allow, for instance, 90� out-of-phase ten-
sion–torsion predictions with resulting plastic strain amplitudes
that are not a monotonic function of the applied stress amplitudes,
as they should be [16]. These wrong multi-surface predictions are
both qualitatively and quantitatively dependent on the number of
surfaces adopted in the model, without any clear convergence.

To correctly predict the stress–strain history associated with
unbalanced loadings, it is necessary to couple the values of the
generalized plastic modulus P and the straining direction, in addi-
tion to introducing non-linearity in the surface translation equa-
tions, generating the non-linear kinematic (NLK) models. Note
that the same multi-surface formulation presented in Section 2.1
can be used for NLK models, since the seminal work by Chaboche
et al. [13], who indirectly introduced multi-surface elements into
NLK models.
2.3. Multi-surface formulation in 5D for NLK hardening models

The first non-linear kinematic hardening model was proposed
by Armstrong and Frederick in 1966 [12]. Their original single-
surface model did not include any additional hardening surface,
but their single yield surface already translated according to a
non-linear rule. Since then, several improvements on Armstrong–
Frederick’s original NLK model have been proposed in the
literature.

Fortunately, the exact same representation of the hardening
state defined in Section 2.1 for multi-surface models, which
includes one inner yield surface, M � 1 hardening surfaces, and
one failure surface, can be used in the NLK hardening formulation,
as it was demonstrated in [14]. Once again, instead of defining
these surfaces in the 6D stress or deviatoric stress spaces, the pro-
posed 5D reduced order deviatoric stress space E5s is adopted,
using the von Mises yield function to describe each surface. All
kinematic hardening equations are presented in such 5D space,
while their conversion to the 6D versions is trivial, as summarized
in Table 1.

Similarly to multi-surface models, the backstress vector ~b0 that
locates the center of the yield surface can be decomposed as the

sum of M surface backstresses ~b0
1;
~b0
2; . . . ;

~b0
M that describe the rela-

tive positions ~b0
i ¼~s0ci �~s0ciþ1

between the centers of consecutive

yield surfaces, as proposed by Chaboche in 1979 [13], significantly
improving the Armstrong–Frederick model capabilities by
indirectly introducing the concept of multiple hardening surfaces.
Therefore, Figs. 2 and 3 and all their variables defined for the
multi-surface models can also be used in the NLK formulation.

One of their main differences is that in multi-surface models
each hardening surface would only translate if the stress point
was located on its border, while in NLK models all yield and hard-
ening surfaces translate during a plastic straining process (but with
different rates). The initial yield and the additional hardening sur-
faces from the NLK hardening models behave as if they were all
attached to one another with non-linear spring-slider elements,
causing coupled translations even before they enter in contact.
Therefore, any yield surface translation causes all hardening sur-
faces to translate, usually with different magnitudes and direc-
tions, even before they become tangent to each other. Such
coupling among surfaces allows the NLK models to introduce the
necessary non-linearity in the stress–strain description.

Pairs of consecutive yield surfaces i and i + 1 eventually become

mutually tangent if j~b0
ij ¼ Dri (the 5D saturation condition), when

their respective translations d~s0ci and d~s0ciþ1
will have the same mag-

nitude and direction, therefore d~b0
i ¼ d~s0ci � d~s0ciþ1

¼ 0, i.e. a zero sur-

face backstress variation. In other words, in the proposed 5D

formulation, plastic straining causes increments d~b0
i – 0 in all back-

stress components, except for the saturated surfaces, therefore
during plastic straining

d~b0
i ¼

pi �~v 0
i � dp; if j~b0j < Dri

0; if j~b0j ¼ Dri

(
; i ¼ 1;2; . . . ;M ð6Þ

where ~v 0
i is the translation direction vector for surface i, dp is the

equivalent plastic strain increment, calculated in the proposed 5D
E5p plastic strain space as dp ¼ ð2=3Þ � jd~e0plj, and pi is a generalized
plastic modulus coefficient that must be calibrated for every
surface, used in the calculation of P.

The main difference among the several NLK hardening models
proposed in the literature rests in the equation of the surface trans-
lation direction ~v 0

i. In the next section, a generalized surface trans-
lation rule is proposed in the adopted 5D E5s stress space, which is
able to unify all major NLK models into a single equation.

3. Generalized surface translation rule

The generalized surface translation rule proposed in this work
can be written as



Table 1
Incremental plasticity equations using the proposed 5D or the classical 6D deviatoric formulations.

Proposed 5D formulation 6D formulation

Vector norm j~s0 j ¼ rMises j~sj ¼ rMises

ffiffiffiffiffiffiffiffi
2=3

p
Hooke’s law ~e0el ¼~s0=2G; d~e0el ¼ d~s0=2G ~eel ¼~s=2G; d~eel ¼ d~s=2G

Plastic flow rule d~e0pl ¼ ð1=PÞ � ðd~s0T �~n0Þ �~n0 d~epl ¼ d~epl ¼ ð1=PÞ � ðd~sT �~nÞ �~n
Direct problem d~e0 ¼ ðd~s0=2GÞ þ ð1=PÞ � ðd~s0T �~n0Þ �~n0 d~e ¼ ðd~s=2GÞ þ ð1=PÞ � ðd~sT �~nÞ �~n

d~e ¼ ð2=3Þ � AT � d~e0 þ d~rh=3K d~e ¼ d~eþ d~rh=3K
Inverse problem d~s0 ¼ 2G � d~e0 � 2G�ðd~e0T �~n0 Þ�~n0

2GþP

h i
d~s ¼ 2G � d~e� 2G�ðd~eT �~nÞ�~n

2GþP

h i
d~r ¼ 2AT � d~s0=3þ 3K � d~eh dr ¼ d~sþ 3K � d~eh

Normal vector ~n0 ¼ ~s0�~b0
rMises

¼ A � n � ffiffiffiffiffiffiffiffi
2=3

p
~n ¼ ~s�~b

rMises

ffiffiffiffiffiffi
2=3

p ¼ AT �~n0 � ffiffiffiffiffiffiffiffi
2=3

p
Consistency d~s0T �~n0 ¼ d~b0T �~n0 þ dS d~sT �~n ¼ d~bT �~nþ dS � ffiffiffiffiffiffiffiffi

2=3
p

Surface radii ri (with Dri = ri+1 � ri) r�i ¼ ri
ffiffiffiffiffiffiffiffi
2=3

p
(with Dr�i ¼ Dri

ffiffiffiffiffiffiffiffi
2=3

p
)

NLK hardening
d~b0i ¼

pi �~v 0
i � dp; if j~b0ij < Dri

0; if j~b0ij ¼ Dri

(
d~bi ¼ pi �~v i � dp; if j~bij < Dr�i

0; if j~bij < Dr�i

(

~v 0
i ¼~n0 � Dri � v�

i �m�
i � ci � ½di �~b0i þ ð1� diÞ � ð~b0Ti �~n0Þ �~n0 � ~v i ¼~n � Dr�i � v�

i �m�
i � ci � ½di �~bi þ ð1� diÞ � ð~bTi �~nÞ �~n�

m�
i �

~b0Ti �~n0=j~b0ij
� 	mi

; if ~b0Ti �~n0 P 0

0; if ~b0Ti �~n0 < 0

8<
: m�

i �
~bTi �~n=j~bij
� 	mi

; if ~bTi �~n P 0

0; if ~bTi �~n < 0

8<
:

v�
i � ðj~b0ij=DriÞ

vi v�
i � j~bij=Dr�i

� 	vi

P ¼PM
i¼1

2piðDri�v�
i �m�

i �ci �~b0Ti �~n0 Þ
3 P ¼

ffiffi
2
3

q PM
i¼1pi Dr�i � v�

i �m�
i � ci �~b0Ti �~n0

� 	
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~v 0
i ¼ ~n0 � Dri|fflfflffl{zfflfflffl}

Prager—Ziegler

�v�
i �m�

i � ci

� di �~b0
i|fflffl{zfflffl}

dynamic recovery

þð1� diÞ � ~b0T
i �~n0

� 	
�~n0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

radial return

2
664

3
775 ð7Þ

where the scalar functions v�
i and m�

i are defined as

v�
i �

j~b0
ij

Dri

 !vi

and m�
i �

~b0T
i �~n0=j~b0

ij
h imi

; if ~b0T
i �~n0 P 0

0; if ~b0T
i �~n0 < 0

8<
: ð8Þ

This function is a further generalization of the (already general)
class of hardening rules defined in [17], which only included the
Prager–Ziegler and dynamic recovery terms from Eq. (7), but not
the radial return term (discussed later on), i.e. it always assumed
that di = 1.

The calibration parameters for each hardening surface i are the
ratcheting exponent vi, the multiaxial ratcheting exponent mi, the
ratcheting coefficient ci, and the multiaxial ratcheting coefficient di,
Table 2
Calibration parameters for the general translation direction from Eqs. (7) and (8).

Year Kinematic model vi

1949 Prager [18] 0
1966 Armstrong–Frederick [12] 0
1967 Mróz [6] 0
1979 Chaboche [13] 1
1986 Burlet–Cailletaud [20] 0
1993 Ohno–Wang I [21–22] 1
1993 Ohno–Wang II [21–22] 0 6 vi <1
1995 Delobelle [24] 0
1996 Jiang–Sehitoglu [17,23] 0 6 vi <1
2004 Chen–Jiao [26] 0 6 vi <1
2005 Chen–Jiao–Kim [25] 0 6 vi <1
which are scalar values listed in Table 2 for several popular models.
Note that several references represent the NLK hardening parame-
ters Dri, pi and vi using respectively the terms r(i), c(i) and v(i), how-
ever this notation is not used in this work to avoid mistaking the (i)
superscripts for exponents, as well as to emphasize the geometrical
meaning of the Dri parameters, which are differences between
radii of consecutive surfaces.

The 5D translation direction ~v 0
i of each surface from Eq. (7) can

be separated into three components: (i) the Prager–Ziegler term, in
the normal direction ~n0 perpendicular to the yield surface; (ii) the

dynamic recovery term, in the opposite direction �~b0
i of the back-

stress of the considered surface, which acts as a recall term that
gradually erases plastic memory with an intensity proportional
to the product v�

i �m�
i � ci � di; and (iii) the radial return term, in

the opposite direction �~n0 of the normal vector, which affects mul-
tiaxial ratcheting predictions, calibrated from v�

i �m�
i � ci � ð1� diÞ�

~b0T
i �~n0

� 	
.

Fig. 4 shows the geometric interpretation of these three compo-
nents. The dynamic recovery term deviates the surface translation
mi ci di

0 0 1
0 0 6 ci 6 1 1
0 1 1
0 1 1
0 0 6 ci 6 1 0
1 1 1
1 1 1
0 0 6 ci 6 1 0 6 di 6 1
0 1 1
1 1 0 6 di 6 1
�1 <mi <1 1 1



Fig. 4. Geometric interpretation of the three components of the translation direction ~v 0
i of a hardening surface i, in the proposed E5s stress space: Prager–Ziegler’s, dynamic

recovery, and radial return terms, where the equivalent parameter ci � v�
i �m�

i � ci.
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direction ~v 0
i from the normal direction ~n0, while the radial return

term reduces the magnitude of the normal component from its
original Prager–Ziegler term ~n0 � Dri. Both dynamic recovery and
radial return terms from each surface i are influenced by all four
calibration parameters vi, mi, ci and di, which are further explained
as follows.

Among the models included in Table 2, Prager’s [18] translation
direction ~v 0

i ¼ ~n0 � Dri is not able to predict uniaxial ratcheting since
it only uses the Prager–Ziegler term, which is linear. For multiaxial
ratcheting, it only predicts a very short transient that almost
immediately arrests (shakedown), highly underestimating multi-

axial ratcheting rates. The translation direction ~v 0
i ¼~n0 � Dri �~b0

i

from Mróz [6] includes a dynamic recovery term, however in a lin-
ear formulation that highly overestimates multiaxial ratcheting. As
discussed before, the Mróz rule cannot predict any uniaxial ratch-
eting at all when used in a multi-surface formulation, where the
outer surfaces not touched by the current stress point are not
allowed to translate. But when applied to the NLK formulation,
where all surfaces translate during plastic straining, the Mróz
translation direction becomes capable of predicting uniaxial ratch-
eting, albeit largely overestimating it.

Armstrong and Frederick proposed the use of a ratcheting coef-
ficient 0 6 ci 6 1, originally intended to be a scalar function of the
plastic strain path, adding non-linearity to their hardening model
[12]. This parameter has been included in the proposed 5D general
surface translation rule. However, in many practical implementa-
tions, ci was assumed as a constant, turning their translation equa-

tion ~v 0
i ¼ ~n0 � Dri � ci �~b0

i into a linear rule that suffers the same
drawbacks of the Mróz translation rule in the NLK formulation,
with a large overestimation of both uniaxial and multiaxial ratch-
eting. Even though ci can calibrate ratcheting rates, with the limit
values ci = 0 (Prager’s rule) for no ratcheting and ci = 1 (Mróz rule)
for large ratcheting rates, the linearity associated with a constant ci
makes it impossible to predict multiaxial ratcheting rate decay and
arrest (shakedown) observed in several constant amplitude exper-
iments. In addition, for constant coefficients ci < 1, the Armstrong–

Frederick translation rule would result in d~b0
i – 0 in the saturated

condition, which would allow the surfaces to pass through one
another. To avoid this, it has been proposed to simply enforce
ci = 1 in the saturation condition j~b0
ij ¼ Dri, while allowing the use

of a calibrated ci < 1 for j~b0
ij < Dri [19]. Both Armstrong–Frederick

and Mróz rules are a particular case of the proposed generalized
surface translation rule from Eqs. (7) and (8), for vi =mi = 0,
di = 1, and an adjustable 0 6 ci 6 1 that for Mróz is set to ci = 1.

Chaboche [13] replaced the constant ratcheting coefficient ci
with a saturation ratio, which in the proposed 5D formulation is

represented as j~b0
ij=Dri, ranging from 0 in the unhardened condition

to 1 at saturation, eliminating the discontinuity problem caused by
ci – 1. But even though the resulting surface translation rule (rep-
resented in its 5D version)

~v 0
i ¼~n0 � Dri � j~b0

ij=Dri
� 	

�~b0
i ð5D ChabocheÞ ð9Þ

is an improvement over the constant ci models such as Mróz and
most implementations of Armstrong–Frederick, it is unable to pre-
dict multiaxial ratcheting rate decay and arrest. This model predicts
a short ratcheting transient followed by a constant ratcheting rate
that never decays, overestimating its effects in multiaxial experi-
ments. Chaboche’s model is also a particular case of Eqs. (7) and
(8), for vi = 1, mi = 0, and ci = di = 1.

Burlet and Cailletaud noticed that multiaxial experiments gen-
erally show lower ratcheting rates than the uniaxial ones for equiv-
alent conditions on stress or strain amplitudes [20]. To lower the
multiaxial ratcheting rate predictions without altering the uniaxial
response, they replaced the dynamic recovery term with a radial
return term. In the 5D formulation adopted in this work, their sur-
face translation direction becomes

~v 0
i ¼~n0 � Dri � ci � ~b0T

i �~n0
� 	

�~n0 ð5D Burlet—CailletaudÞ ð10Þ

Burlet–Cailletaud’s model is also obtained from the proposed Eqs.
(7) and (8), assuming vi =mi = di = 0 and an adjustable 0 6 ci 6 1.

The product ~b0T
i �~n0 used in the radial return term measures the

non-coaxiality between the surface backstress ~b0
i and the plastic

strain increment direction ~n0. As a result, it is a measure of non-

proportionality, since parallel ~b0
i and ~n0 usually found in propor-

tional loadings result in ~b0T
i �~n0 ¼ �j~b0

ij, while 90� out-of-phase
loadings where plastic straining happens in a direction ~n0
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perpendicular to the surface backstress ~b0
i gives ~b0T

i �~n0 ¼ 0. Such
different products allow the model to predict non-proportional
effects in multiaxial ratcheting.

In addition, the Burlet–Cailletaud’s radial return term becomes
identical to the Armstrong–Frederick’s dynamic recovery term for

uniaxial loadings, where parallel ~b0
i and ~n0 make ci � ð~b0T

i �~n0Þ �~n0 ¼
ci �~b0

i; therefore, both models behave identically under uniaxial
conditions, overpredicting uniaxial ratcheting rates. Note that
Burlet–Cailletaud’s surface translation direction ~v 0

i is always
parallel to ~n0, therefore it behaves similarly to Prager’s rule under
multiaxial loading conditions, largely underpredicting multiaxial
ratcheting rates, which always rapidly decay in the simulations
causing premature shakedown.

Ohno and Wang used the non-proportionality product (calcu-

lated in our 5D formulation from ~b0T
i �~n0) in a different way

[21,22]. For plastic straining in a direction ~n0 that makes an obtuse

angle with ~b0
i, i.e. when ~b0T

i �~n0 < 0 (usually during an elastoplastic
unloading process), they assumed that the translation direction fol-

lows Prager’s linear rule ~v 0
i ¼~n0 � Dri. Otherwise, when ~b0T

i �~n0 P 0
(usually during an elastoplastic loading process), they introduced

in their model a scalar function (given by 0 6 v�
i � ðj~b0

ij=DriÞ
vi 6 1

in the proposed 5D formulation) and a non-proportionality term

(defined in 5D as 0 6 ð~b0T
i �~n0=j~b0

ijÞ 6 1), resulting in the ‘‘Ohno–Wang
II” (OW-II) surface translation direction, whose 5D version in the E5s
stress space becomes

~v 0
i ¼~n0 � Dri � j~b0

ij=Dri
� 	vi � ð~b0T

i �~n0=j~b0
ijÞ �~b0

i ð5D Ohno—Wang IIÞ
ð11Þ

where vi (0 6 vi 61) is the ratcheting exponent. Surfaces cali-
brated with a very large vi (such as in their ‘‘Ohno–Wang I” OW-I
model version that assumes vi ?1) have v�

i � 0, which results in

Prager’s linear rule ~v 0
i ¼~n0 � Dri for most of the range 0 6 j~b0

ij=Dri 6 1
before saturation, becoming unable to predict uniaxial ratcheting.
The dynamic recovery term would only be activated when the sur-

faces are closer to contacting each other, i.e. when j~b0
ij=Dri ffi 1.

Lower calibrated values of vi, on the other hand, allow the dynamic

recovery term to be partially operative in the entire j~b0
ij=Dri range,

increasing the predicted uniaxial ratcheting rates. So, in summary,
lower calibrated values of vi result in higher uniaxial ratcheting rate
predictions. Note that both OW-I and OW-II Ohno–Wang models
are a particular case of the proposed Eqs. (7) and (8), adopting mi =
ci = di = 1, and an adjustable 0 6 vi <1 that tends to infinity for the
OW-I.

However, the ratcheting parameter vi influences both uniaxial
and multiaxial ratcheting predictions. When vi is calibrated to fit
uniaxial ratcheting data, the OW-II model ends up overestimating
multiaxial ratcheting. In addition, although the OW-II model is able
to predict multiaxial ratcheting rate decay, the use of a single cal-
ibration parameter vi renders it unable to model experiments with
constant multiaxial ratcheting rates.

Jiang and Sehitoglu [17,23] improved the OW-II model to solve
this last problem by simply removing the non-proportionality term

(~b0T
i �~n0=j~b0

ij in our 5D formulation) from its translation rule. When
represented in the proposed E5s stress space, Jiang–Sehitoglu’s sur-
face translation direction is expressed as

~v 0
i ¼~n0 � Dri � j~b0

ij=Dri
� 	vi �~b0

i ð5D Jiang—SehitogluÞ ð12Þ

where 0 6 vi <1. This equation is used even during an elastoplastic

unloading ~b0T
i �~n0 < 0, instead of switching to Prager’s linear rule as

it had been done by Ohno and Wang.
Jiang–Sehitoglu’s equation is also a particular case of Eqs. (7)
and (8), for mi = 0 and ci = di = 1, similar to Chaboche’s model
[13], and with an adjustable 0 6 vi <1. As a result, Jiang–
Sehitoglu’s equation is a generalized version of Chaboche’s original
model [13], which would be obtained for the particular case
vi = 1. Since Chaboche’s model has the ability to predict constant
ratcheting rate for both uniaxial and multiaxial loadings, Jiang–
Sehitoglu’s equation overcomes the inability of the OW-II model
to predict constant multiaxial ratcheting rates. Multiaxial ratchet-
ing rate decay can also be predicted, if a ratcheting rate exponent
vi – 1 is chosen in the calibration. Nevertheless, Jiang–Sehitoglu’s
model still relies on a single calibration parameter vi to predict
both uniaxial and multiaxial ratcheting rates.

Calibrating a kinematic hardening model using different param-
eters to independently control uniaxial and multiaxial ratcheting
allows for a much better description of the material behavior. This
separation is necessary because both ratcheting types are caused
by different phenomena: uniaxial ratcheting is a consequence of
anisotropy between the tension and compression behaviors, as dis-
cussed in Part I of this work, while multiaxial ratcheting is associ-
ated with elastoplastic deviatoric stress increments d~s0 that are not
parallel to the normal ~n0 to the yield surface at the current state,
causing plastic strains not only in the direction of d~s0 but also
ratcheting strains in perpendicular directions. For instance, a mate-
rial with a significant strength difference between tension and
compression could have almost the same multiaxial ratcheting
behavior as a perfectly isotropic one, even though only the former
could suffer uniaxial ratcheting. It would be impossible to accu-
rately calibrate both independent behaviors with a single scalar
parameter for each surface such as vi.

Since Armstrong–Frederick’s model largely underpredicts while
Burlet–Cailletaud’s largely overestimates multiaxial ratcheting
rates, Delobelle et al. [24] decided to interpolate them using a mul-
tiaxial ratcheting coefficient di (0 6 di 6 1). In the proposed E5s
space, Delobelle’s surface translation direction becomes

~v 0
i ¼~n0 � Dri � ci

� di �~b0
i þ ð1� diÞ � ð~b0T

i �~n0Þ �~n0
h i

ð5D DelobelleÞ ð13Þ

The limit value di = 0 gives exactly the Burlet–Cailletaud model,
associated with a large radial return term and zero dynamic recov-
ery, a ‘‘radial evanescence” condition that results in low multiaxial
ratcheting rates with large rate decay. The other limit value di = 1
gives exactly the Armstrong–Frederick model, with a large
dynamic recovery term and zero radial return, the usual ‘‘back-
stress evanescence” condition that results in overestimated multi-
axial ratcheting without rate decay, as discussed before. If
0 < di < 1, then the predictions are somewhere in between the
two limit cases, with di acting as a weighting factor to calibrate
the multiaxial ratcheting rates. The value of ci influences both uni-
axial and multiaxial ratcheting estimations. However, the uniaxial
ratcheting response is not affected by di because, for uniaxial load-

ings, ~b0
i and ~n0 are always parallel to the uniaxial direction, there-

fore the relation ci � ð~b0T
i �~n0Þ �~n0 ¼ ci �~b0

i causes a translation
direction

~v 0
i ¼~n0 � Dri � ci � ½di þ ð1� diÞ� �~b0

i

¼~n0 � Dri � ci �~b0
i ð5D Delobelle — uniaxial caseÞ ð14Þ

that is independent of di. So, ci must be calibrated first for every sur-
face to fit uniaxial ratcheting data, and after that the di values can be
freely calibrated to multiaxial ratcheting data without affecting the
previous uniaxial calibration. Delobelle’s model is obtained from
the generalized surface translation rule from Eqs. (7) and (8)
for vi =mi = 0, and adjustable 0 6 ci 6 1 and 0 6 di 6 1 to
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independently calibrate uniaxial and multiaxial ratcheting. Note
however that, similarly to both Armstrong–Frederick and Burlet–
Cailletaud equations, the Delobelle model still overpredicts uniaxial
ratcheting rates, since the ratcheting coefficient ci is not as efficient
as the ratcheting exponent vi to model uniaxial ratcheting rate
decay or even growth as a function of the stress amplitude.

On the other hand, the Chen–Jiao–Kim model [25], in addition
to the use of the better parameter vi to calibrate uniaxial ratchet-
ing, is able to independently calibrate uniaxial and multiaxial
ratcheting behaviors by incorporating a multiaxial ratcheting

exponent mi in the non-proportionality term ~b0T
i �~n0=j~b0

ij from the
OW-II model. Therefore, for a multiaxial elastoplastic loading pro-

cess with~b0T
i �~n0 P 0, the scalar functionm�

i � ð~b0T
i �~n0=j~b0

ijÞ
mi is used

to multiply the dynamic recovery term. In the proposed 5D formu-
lation, Chen–Jiao–Kim’s surface translation direction becomes

~v 0
i ¼~n0 � Dri � ðj~b0

ij=DriÞ
vi � ð~b0T

i �~n0=j~b0
ijÞ

mi �~b0
i ð5D Chen—Jiao—KimÞ

ð15Þ
where 0 6 vi <1 and �1 <mi <1. For an elastoplastic unloading

process with ~b0T
i �~n0 < 0, Prager’s linear rule ~v 0

i ¼~n0 � Dri is used
instead. For uniaxial load histories during elastoplastic loading,

where the relation ~b0T
i �~n0 ¼ j~b0

ij is always valid, the scalar function
m�

i simply becomes m�
i ¼ ð1Þmi ¼ 1, therefore uniaxial ratcheting

predictions are not affected by the calibrated value of mi. Thus, vi

should be calibrated first for the yield and every hardening surface
to fit uniaxial ratcheting rate data, and after that themi values could
be freely calibrated to correctly describe measured multiaxial ratch-
eting rates and decays without affecting the previous uniaxial cali-
bration. Chen–Jiao–Kim’s model can also be obtained from the
general Eqs. (7) and (8) proposed in this work, adopting ci = di = 1,
and independently adjustable 0 6 vi <1 and �1 6mi 6 1.

A different approach for obtaining a simultaneous correct
description of uniaxial and multiaxial ratcheting was adopted in
the Chen–Jiao model [26]. This model uses Delobelle’s [24] multi-
axial ratcheting coefficient di (0 6 di 6 1) instead of the multiaxial
ratcheting exponent mi, incorporated into Jiang–Sehitoglu’s model
to give, in the adopted E5s space version,

~v 0
i ¼~n0 � Dri � ðj~b0

ij=DriÞ
vi � ½di �~b0

i þ ð1� diÞ � ð~b0T
i �~n0Þ

�~n0� ð5D Chen—JiaoÞ ð16Þ

As in Delobelle’s model, di can calibrate multiaxial ratcheting data
without affecting uniaxial ratcheting calculations. The exponent vi

(0 6 vi <1) of the yield or every hardening surface should be cali-
brated first to accurately match uniaxial ratcheting data, and only
then the di should be fitted to describe multiaxial ratcheting rates
Table 3
Characteristics of the various NLK surface translation direction equations regarding number
yield surface are already identified) and ability to accurately model all uniaxial ratchetin
constant rate (MRC) or with rate decay (MRD), to calibrate arbitrary uniaxial (U) or mu
multiaxial ratcheting rates (UM).

Year Kinematic model NPC UR

1949 Prager [18] 0
1966 Armstrong–Frederick [12] M
1967 Mróz [6] 0
1979 Chaboche [13] 0
1986 Burlet–Cailletaud [20] M
1993 Ohno–Wang I [21–22] 0
1993 Ohno–Wang II [21–22] M U

1995 Delobelle [24] 2M
1996 Jiang–Sehitoglu [17,23] M U

2004 Chen–Jiao [26] 2M U

2004 Chen–Jiao (refined) [26] 3M + 1 U

2005 Chen–Jiao–Kim [25] 2M U
and decay. Chen and Jiao also refined the multiaxial ratcheting
description, allowing the di parameter from each surface to vary
between an initial value and a target value dti, with an evolution
equation ddi ¼ ðdti � diÞ � bCJ � dp controlled by the equivalent plastic
strain increments dp, where bCJ is the Chen–Jiao evolution rate. Note
however that this refinement introduces the additional parameters
dti (one for each surface i) and bCJ, which would need to be
calibrated in proper tests. Finally, note that Chen–Jiao’s model is
also a particular case of the proposed Eqs. (7) and (8), adopting
mi = ci = 1, and independently adjustable 0 6 vi <1 and 0 6 di 6 1.

Table 2 summarizes the calibration parameter choices for the
general translation direction from Eqs. (7) and (8), showing that
all presented models are a particular case of the proposed expres-
sion. Table 3 summarizes the advantages and disadvantages of the
various equations that intend to describe the yield surface transla-
tion direction ~v 0

i. Note that independent calibration of uniaxial and
multiaxial ratcheting rates can only be achieved using equations
with at least two parameters per surface (i.e. a total of at least
2M parameters for M yield and hardening surfaces), such as the
Delobelle, Chen–Jiao, and Chen–Jiao–Kim equations. However,
Delobelle’s model still overpredicts uniaxial ratcheting rates, due
to the use of the ratcheting coefficient ci instead of the better ratch-
eting exponent vi to calibrate them. Nevertheless, if the studied
load history only causes significant uniaxial or multiaxial ratchet-
ing, but not both, then Jiang–Sehitoglu’s equation would also be a
good modeling choice, since it can calibrate arbitrary uniaxial or
multiaxial ratcheting rates, including multiaxial ratcheting with
constant rate or rate decay, using only the M ratcheting exponents
vi from the M surfaces, without requiring the (possibly less robust)
calibration of 2M or more parameters.

The fitting of the generalized plastic modulus coefficients pi
from each surface for a given Dri, see Eq. (6), as well as the calibra-
tion of the ratcheting coefficients vi,mi, ci, and/or di, depend on the
adopted NLK model. Approximate fitting algorithms for the param-
eter pairs (pi, vi) or (Dri, vi) are shown in [23] for Jiang–Sehitoglu’s
model, which can be easily adapted from the 6D to the proposed
5D formulation, however they are precise only for materials with
very large ratcheting exponents vi. For other cases, a least-
squares fitting approach should be adopted to calibrate such
parameters, comparing experimental measurements with incre-
mental plasticity simulations.
4. Consistency condition formulation in 5D

Any straining process within the yield surface is assumed
purely elastic, so from Hooke’s law in Eq. (4) the stress and elastic
strain increments in 5D are related by d~e0el ¼ d~s0=2G. A plastic
of parameters to be calibrated (NPC) forM surfaces (assuming theDri and pi from each
g conditions including rate decay (UR), or all multiaxial ratcheting conditions with
ltiaxial ratcheting rates (M), and to independently calibrate arbitrary uniaxial and

MRC MRD U M UM

U U U

U

U

U U U

U

U U U

U U U U U

U U U U

U U U U U

U U U U U

U U U U U
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straining process beyond the yield surface would make it translate
according to Eq. (6), preventing the stress state from crossing out-
side its boundary. The mathematical condition that guarantees that
the new stress state~s0 þ d~s0 during a plastic process will remain on
the yield surface border, without crossing outside it, is called con-
sistency condition. Such infinitesimal condition can be calculated
in the proposed E5s space forcing the yield surface equation

Y ¼ ð~s0 �~b0ÞT � ð~s0 �~b0Þ � S2 ¼ 0 to remain valid throughout the sur-
face translation process, thus

dY ¼ 2 � d~s0T � ð~s0 �~b0Þ � 2 � d~b0T � ð~s0 �~b0Þ � 2 � S � dS ¼ 0 ð17Þ
and, since the normal unit vector is such that~n0 ¼ ð~s0 �~b0Þ=j~s0 �~b0j ¼
ð~s0 �~b0Þ=S, then
d~s0T �~n0 ¼ d~b0T �~n0 þ dS ð5D consistency conditionÞ ð18Þ
The scalar dS term in the consistency condition accounts for the
variation of the yield surface radius S, gradually changing from
the monotonic S = SY to the cyclic S = SYc in isotropic hardening
and, in non-proportional (NP) loadings, to an NP-hardened yield
strength S ¼ SYNP .

In the proposed incremental plasticity formulation, without loss
of generality, instead of varying the radii r1 = S of the yield and ri of
the hardening surfaces (and consequently the radius differences
Dri � ri+1 � ri), they are assumed constant, while isotropic and NP
hardening effects are accounted for by changing the generalized
plastic modulus coefficients pi (instead of the Dri). Therefore, in
this formulation where the yield surface radius r1 = S is assumed
constant and thus dS = 0, the 5D consistency condition from Eq.

(18) simplifies to d~s0T �~n0 ¼ d~b0T �~n0. Since the backstress increment

d~b0 consists of the sum of the various backstress component incre-

ments d~b0 ¼ d~b0
1 þ d~b0

2 þ � � � þ d~b0
M , where each one has been

defined in Eq. (6) as d~b0
i ¼ pi �~v 0

i � dp, it follows that the consistency

condition d~s0T �~n0 ¼ d~b0T �~n0 gives

d~s0T �~n0 ¼ d~b0T �~n0 ¼ p1 �~v 0T
1 �~n0 þ p2 �~v 0T

2 �~n0 þ � � � þ pM �~v 0T
M �~n0� � � dp

ð19Þ
In this formulation with surface radii ri assumed constant, the val-
ues of pi are initially calibrated to each surface using e.g. the mono-
tonic stress–strain curve, and then corrected at every load cycle
assuming they are directly proportional to the isotropic or NP hard-
ening factors. For instance, after uniaxial isotropic hardening stabi-
lization, every pi would be multiplied by the SYc/SY ratio between the
cyclic and monotonic yield strengths. In this way, it would be pos-
sible to assume constant yield and hardening surface radii without
altering the stress–strain predictions.

The plastic flow rule in the proposed 5D deviatoric representa-
tion gives

d~e0pl ¼
1
P
� d~s0T �~n0� � �~n0 ) d~s0T �~n0 ¼ P � d~e0Tpl �~n0|fflfflfflffl{zfflfflfflffl}

ð3=2Þ�dp

) P ¼ 2
3
� d~s

0T �~n0

dp

ð20Þ
Therefore, the generalized plastic modulus P needed to compute
plastic straining can be expressed as a function of ~v 0

i (as it would
be expected for any ‘‘coupled formulation” [15]) through

P ¼ ð2=3Þ � p1 �~v 0T
1 þ p2 �~v 0T

2 þ � � � þ pM �~v 0T
M

� � �~n0 ð21Þ
The projections ~v 0T

i �~n0 of the generalized surface translation
directions from Eq. (7) are given by

~v 0T
i �~n0 ¼ Dri � v�

i �m�
i � ci � ½di þ ð1� diÞ� �~b0T

i �~n0

¼ Dri � v�
i �m�

i � ci �~b0T
i �~n0 ð22Þ
which, when combined to Eq. (21), allow the calculation of the asso-
ciated generalized plastic modulus

P ¼ ð2=3Þ �
XM
i¼1

pi � Dri � v�
i �m�

i � ci �~b0T
i �~n0

� 	
ð23Þ

For a given 5D stress increment d~s0 ¼ A � d~r, such P could then be
used in the 5D version of the Prandtl–Reuss flow rule in Eq. (5) to
obtain the total strain increment

d~e0 ¼ d~eel þ d~e0pl ¼
d~s0

2G
þ 1
P

d~s0T �~n0� � �~n0 ð24Þ

On the other hand, for a given 5D total strain increment d~e0 ¼ A � d~e,
the 5D inverse problem could be solved (after some algebraic
manipulation) by

d~s0 ¼ 2G � d~e0 � 2G � 2G
2Gþ P

d~e0T �~n0

 �

�~n0 ð25Þ

After the entire stress or strain incremental integration in the
computationally-efficient 5D spaces, the corresponding 6D values
could be retrieved from the transformations described in Part I of
this work:

~r ¼ ð2=3ÞAT �~s0 þ~rh

~e ¼ ð2=3ÞAT �~e0 þ~eh

(
ð26Þ

where the linear elastic hydrostatic components (assuming
pressure-insensitive materials such as most metals) are easily cal-
culated from the elastic relation ~rh ¼ 3K �~eh, where K = E/[3�
(1 � 2m)] is the bulk modulus of the material.

5. Isotropic and NP hardening formulation in 5D

Isotropic and non-proportional (NP) hardening transients could
also be incorporated into the proposed 5D formulation, through
the varying values of the generalized plastic modulus coefficients
pi from each yield and hardening surface. From the Voce isotropic
law and Tanaka’s NP hardening equations [5], the values of pi could
be calculated as a function of the accumulated plastic strain
p � R dp from

piðpÞ ¼ pci � 1þ aNP � FNPðpÞ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NP evolution

þðpmi � pciÞ � e�hrc �p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
isotropic evolution

ð27Þ

where pmi and pci are the pi coefficients calibrated respectively
under uniaxial monotonic and cyclic conditions, hrc is the
material-dependent isotropic hardening rate, aNP is the material-
dependent additional hardening coefficient (with 0 6 aNP 6 1), and
FNP(p) is the load-path-dependent non-proportionality factor (with
0 6 FNP(p) 6 1).

The FNP(p) values are obtained in Tanaka’s model [5] from a
5 � 5 polarization tensor [PT], whose evolution is given by

½dPT � ¼ ~n0 �~n0T � ½PT �
� � � hrT � dp ð28Þ

where hrT is the material-dependent polarization rate and ~n0 is the
unit plastic straining direction in the proposed E5p plastic strain
space. From Tanaka’s original model, it can be shown that the evo-
lution equation of FNP(p) is given by

dFNPðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 � j½PT � �~n0j2

tr ½PT �T � ½PT �
� 	

vuut � FNPðpÞ

2
64

3
75 � hrNP � dp ð29Þ

where tr(.) is the trace function, and hrNP is the material-dependent
NP hardening rate. Note that histories under free-surface conditions
could adopt 3D or 2D sub-spaces of the defined 5D spaces, where



Fig. 5. Tubular specimen mounted in an MTS tension–torsion machine, showing
the axial/torsional extensometer.
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Tanaka’s tensor would be represented respectively as 3 � 3 or 2 � 2
matrices, greatly reducing computational cost while evaluating
Eq. (28) at every cycle. This is another major advantage of the 5D
incremental plasticity formulation proposed in this work.

6. Notch formulation in 5D

The presented 5D spaces could also consider notch effects,
without having to deal with 6D or tensor formulations. Two major
5D notch approaches could be followed: Pseudo-Material and
Incremental Neuber/Molski–Glinka. Their application to the 5D
formulation is discussed next.

6.1. Pseudo-material approach in 5D

For a given nominal stress history, the Pseudo-Material
approach [27] could be used in 5D through the calibration of the
generalized plastic modulus coefficients pi to a fictitious material
(a pseudo-material) with stress–strain behavior given by a nominal
stress � notch strain curve, calculated under uniaxial conditions
from a strain concentration rule such as Neuber or Molski–Glinka
[28]. The 5D incremental plasticity formulation calibrated to this
pseudo-material would then be used to calculate the notch-root
strain history from the given multiaxial nominal stresses. After
the entire notch strain history is obtained, the 5D incremental plas-
ticity formulation is applied once more, but calibrated to the actual
material properties (not the pseudo-material properties) to find
the multiaxial notch stresses from the previously calculated multi-
axial notch strains.

Conversely, for a given nominal strain history, a pseudo-
material would be calibrated with stress–strain behavior given
by a notch stress � nominal strain curve, calculated from a uniaxial
model such as Neuber or Molski–Glinka. The notch-root stresses
would then be calculated in the 5D formulation from the given
nominal strains using the pseudo-material properties. The notch
stress history is then input to a 5D incremental algorithm cali-
brated to the actual material properties, to find the corresponding
multiaxial notch strains.

6.2. Incremental Neuber or Molski–Glinka

The original Neuber rule was derived for prismatic bodies
loaded in pure shear, stating an equivalence between distortional
strain energy densities, without including dilatational energies
(which are zero under pure shear). Since Neuber’s original relation
did not include the dilatational strain energy density, Neuber’s rule
should assume that the total distortional strain energy density is
constant for the pseudo and notch stress–strain curves [29]. There-
fore, Neuber’s incremental rule [30] adopts an equivalence of devi-
atoric stress and strain products, eliminating the influence of the
hydrostatic components. Using the 6D-to-5D transformations
defined in Part I of this work, it can be shown that Neuber’s incre-
mental rule can be represented in the proposed 5D formulation
simply from

si � dei þ ei � dsi ¼ ~si � d~ei þ ~ei � d~si ð5D Incremental NeuberÞ ð30Þ
for i = 1, 2, . . ., 5, where ~si and ~ei are pseudo-values calculated (e.g. in
a Finite Element program) assuming linear-elastic conditions, and si
and ei are the associated elastoplastic notch-root values. Molski–
Glinka’s rule [28] could also be used in an incremental deviatoric
way in the proposed 5D formulation resulting, for i = 1, 2, . . ., 5, in

si � dei ¼ ~si � d~ei ð5D Incremental Molski� GlinkaÞ ð31Þ
One inconvenience of this approach (either in the original 6D or in
the proposed 5D versions) is that it requires the solution of a set of
equations such as the ones from Eq. (30) or (31), which can be com-
putationally costly in an implicit integration formulation.

Finally, a Modified Boundary Condition approach [31] could
also be followed, easily adaptable to the proposed 5D formulation
since a single strain energy equation is required, with the remain-
ing equations coming from assumptions on the ratios of pseudo
and notch components.
7. Experimental validation

The proposed 5D incremental plasticity formulation has been
implemented in the ViDa 3D software [32] to predict multiaxial
elastoplastic stress–strain relations. Isotropic, non-proportional
(NP), and all presented non-linear kinematic hardening models
were simulated in the 5D formulation for various representative
loading paths. The numerical robustness of the algorithm was ver-
ified using the same model in both stress and strain control, as rec-
ommended in [33], i.e. the stress history is calculated in the code
from a given strain history, and then the computed stresses are
used as input to the same code to predict the original strain his-
tory, with negligible errors of the order of the computation resolu-
tion. A large number of conducted simulations using unbalanced
load histories confirmed all conclusions summarized in Table 3
about the characteristics of different kinematic hardening models.

For the experimental verification, simulations were performed
using the proposed generalized surface translation rule from Eqs.
(7) and (8), calibrated to describe Jiang–Sehitoglu’s model. To
improve the calculation accuracy, the backstress was divided into
10 additive components, following Chaboche’s idea [13], with
stress increments at each integration step limited to only 2 MPa.
Jiang–Sehitoglu’s material parameters were calibrated from uniax-
ial data using the procedure described in [23].

Tension–torsion experiments were performed on tubular
annealed 316L stainless steel specimens in an MTS 809.25 testing
machine, see Fig. 5. The cyclic properties of this steel were
obtained from uniaxial tests. Engineering stresses and strains were
measured using a load/torque cell and the MTS 632.68 axial/tor-
sional extensometer.

One of the experimented strain-controlled tension–torsion tests
adopted strain paths describing a square pulse in the ex � cxy/

p
3

strain diagram, see Fig. 6. The predicted and measured stress
paths after isotropic and NP hardening stabilization show good
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Fig. 6. Stress path predictions from the proposed formulation for a strain-controlled square pulse on a tension–torsion 316L steel tubular specimen, showing a good
experimental agreement in the presence of significant mean stress relaxation.
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agreement even in the presence of significant mean stress
relaxation, as it can be observed from the low resulting mean stres-
ses in the almost symmetrical stress paths, despite the high
applied mean strains. The same calibrated parameters from the
proposed generalized surface translation rule were later used to
predict multiaxial ratcheting under stress control, also showing a
very good experimental agreement. These results confirm that
ratcheting and mean stress relaxation are indeed two aspects of
the same phenomenon, which become evident respectively under
stress and strain control.

To evaluate the ability of the proposed formulation to predict as
well uniaxial ratcheting, uniaxial tension–compression experi-
ments were performed on cylindrical specimens made of 1020
steel with yield strength 365 MPa and ultimate strength
542 MPa. An unbalanced history between �200 and 350 MPa was
imposed under stress control, with a mean stress component that
induced uniaxial ratcheting, see Fig. 7. As shown in the figure, by
adopting a calibration that describes Jiang–Sehitoglu’s kinematic
hardening model, the proposed formulation is able to predict the
xσσ

xε1020 steel

Fig. 7. Uniaxial ratcheting predictions from the proposed formulation for a 1020
steel cylindrical specimen, showing the predicted and measured uniaxial loops after
1, 10, 30, 50, 70 and 100 cycles.
ratcheting rate decay observed in the first 100 cycles of such unbal-
anced loading.

Note that all tension–torsion simulations were performed in 2D
sub-spaces of the proposed 5D stress and strain spaces, signifi-
cantly decreasing computational cost, especially since both isotro-
pic and NP hardening transients were considered. The simulations
were repeated adopting a traditional 6D incremental plasticity
formulation, resulting in the exact same path predictions but with
a computational time about 100% higher than the one spent using
the proposed formulation. Therefore, the proposed 5D framework
is recommended due to its significantly lower computational cost,
without any loss in calculation accuracy while considering isotro-
pic and NP hardening transients, non-linear kinematic hardening,
and notch effects.

8. Conclusions

In this work, an incremental plasticity formulation was
proposed, entirely represented in efficient reduced-order five-
dimensional (5D) stress and strain spaces. A generalized surface
translation equation was proposed in 5D, from which all main
non-linear kinematic (NLK) hardening models are a special case.
The proposed 5D formulation can be easily transformed into 3D,
2D, or 1D representations of stresses and strains, to most efficiently
calculate the stress–strain behavior under free-surface, tension–
torsion, or uniaxial conditions, respectively. Such representations
in lower dimensions could reduce in more than half the computa-
tional cost of incremental plasticity calculations, without altering
the resulting predictions. Experiments with 316L and 1020 steel
specimens confirmed the efficiency of the proposed framework
to compute ratcheting and mean stress relaxation, which can have
important effects on fatigue lives due to premature exhaustion of
the material ductility and to changes in mean and maximum
stresses.
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