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Amplitude filters are a most important tool in practical fatigue analyses to manage their computational
cost when, as usual, the measured load history is noisy, oversampled, too long, and/or contains too many
non-damaging low-amplitude cycles or events. To reduce the calculation burden, such filters should not
only eliminate noise and remove redundant oversampled data from the measured signal, but also neglect
small amplitudes that do not cause fatigue damage. The veteran racetrack filter can perform all such tasks
efficiently, however it is limited to uniaxial load histories. Multiaxial filtering techniques have been pro-
posed in the past, however they fail to identify the most damaging events in several non-proportional
histories, in addition to losing information on the load path shape. In this work, a new, fast, and efficient
multiaxial version of the traditional racetrack filter is proposed to solve these issues, synchronously fil-
tering complex loading histories while preserving all their significant reversals and equivalent ranges,
and their load path shape as well, a most important feature for multiaxial fatigue analyses. Six and
three-dimensional versions of the filter are proposed, respectively for invariant-based and critical-
plane damage calculation approaches. The method allows not only the proper filtering of stress/strain
histories at a given material point, but also of any history of multi-dimensional quantities such as forces,
moments, and/or displacements acting at different points of a structure. The filter efficiency is evaluated
from tension–torsion experiments in 316L stainless steel tubular specimens with challenging
non-proportional path shapes.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Most service strain or load histories measured in practice have
non-damaging low-amplitude events and non-negligible noise
levels that introduce many irrelevant peak and valley events in
the signal, which should not be considered in fatigue analyses. In
fact, under real field conditions, these irrelevant events can be sev-
eral orders of magnitude more frequent than the actual damaging
events contained in the measured signal, a major practical problem
when such signals must be used for structural integrity
evaluations.

Frequency filters that can remove high-frequency noise are not
appropriate for fatigue calculations, because they distort the signal
and usually change the values of the load peaks and valleys, which
are the main responsible for fatigue damage in rate-independent
problems, where viscous effects can be ignored in the material
behavior. Therefore, instead of frequency filters, amplitude fil-
ters are required instead in these cases to remove noise while
preserving the values and the order of the significant peaks and
valleys of the strain or load history, regardless of time or frequency
associated with them.

Load input filters have been proposed in the past to eliminate
some of such undesirable events, since they much increase the
numeric burden in fatigue analyses. In fact, they may even eventu-
ally render such analyses impracticable. However, so far there is no
filtering procedure that can be considered a really appropriate tool
to solve such important problems in practical fatigue damage cal-
culations under multiaxial variable amplitude loading (VAL) condi-
tions. This paper aims to help solving this situation, generalizing
the racetrack idea that has been successfully used to solve uniaxial
problems since the 1970’s [1].

Uniaxial amplitude filters can be directly implemented in the
cycle counting algorithm, usually based on the rainflow method
[2–4]. The implementation of such an amplitude filter is rather
simple if applied to the output of the cycle counting method, since
it only requires the elimination of the counted amplitudes below a
certain non-damaging threshold level, with or without considering
mean/maximum stress effects.

However, the main advantage of such amplitude filters is to sig-
nificantly decrease computational time, removing from the load
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history noise and redundant data, as well as irrelevant non-
damaging events, before counting them. In other words, they can
only be useful in practice if the filtering process is efficiently per-
formed before analyzing the fatigue damage caused by the load his-
tory. This is especially true for multiaxial VAL fatigue calculations
based on the critical plane approach [5], which need rainflow
counts of every projected history from every candidate plane. From
the computational point of view such critical plane routines are
intrinsically expensive, but nevertheless they are needed when
modeling multiaxial fatigue damage in materials that tend to initi-
ate a single dominant crack at critical points, like most metallic
alloys.

In addition, the original rainflow procedure can only be started
after the entire load history is known, increasing even more the
computational cost as well as computer memory requirements,
which can be quite significant for very long histories. Computa-
tional cost can be dramatically reduced with ‘‘real-time” rainflow
algorithms, such as the pioneer Martin–Topper–Sinclair’s 1971
method [6], which essentially reproduces in real time the uniaxial
rainflow algorithm as the load events are provided or measured.
Several other ‘‘real-time” rainflow implementations have been pro-
posed [7–11], which in essence are very similar to the original one
[12]. In all of them, an amplitude filter could be easily included in
the output step of the algorithm; but to decrease computational
cost when dealing with real signals, in practice this filter should
be applied before counting cycles, as discussed above.

The racetrack filter, originally proposed in [1] for uniaxial histo-
ries, can do that. It aims to eliminate from VAL histories small
amplitude load events that do not induce fatigue damage, before
applying any cycle counting method. In this way, the resulting con-
densed histories can accelerate both experiments and computa-
tions, focusing only on the few significant events that cause most
or all of the damage. This filter has been successfully applied for
managing practical uniaxial load histories, especially those mea-
sured by strain gages in actual field conditions, and is a well-
proven tool capable of removing noise and most non-damaging
events from real signals. Notice that this filter is only based on
the signal amplitude, without including mean/maximum stress
effects. Therefore, it is common practice in histories with tensile
mean stresses to choose filter amplitudes significantly lower than
the fatigue limit under zero stress ratio (R = 0).

However, the original racetrack filter unfortunately cannot be
used in multiaxial fatigue calculations, even though amplitude fil-
ters are much more needed in such cases to decrease their intrin-
sically high computational cost. In fact, to properly measure load
signals, it is necessary to oversample the digitalized data at a rate
high enough not to distort the signal (theoretically, at least at a
sampling frequency twice as high as the highest significant spec-
tral component of the signal, but usually at a much higher rate in
practice) [13]. Moreover, signals measured under real field condi-
tions are always contaminated by noise, which introduce hopefully
small but usually many irrelevant peaks and valleys that can make
fatigue analyses impractical if not properly removed beforehand.
Hence, the usual case in practical applications is to deal with over-
sampled data and noisy measurements.

A simplistic approach to decrease the number of points in over-
sampled multiaxial data would be to apply a peak/valley filter to
each and every component of the loading, to remove all data points
that are not peaks or valleys of any of their stress or strain compo-
nents. But this filtering practice cannot be safely used in non-
proportional (NP) multiaxial histories, for two reasons: first, the
path between two load reversals is needed to evaluate the path-
equivalent stress or strain ranges associated with each rainflow
count, e.g. using a convex enclosure method or the Moment of
Inertia (MOI) method [14]. Equivalent stress or strain ranges end
up underestimated if too many points in the load path are filtered
out. Thus, some points along the path should not be eliminated
from the load history, even if they do not constitute a load compo-
nent reversal.

The second reason against using a simplistic non-reversal filter
is because the reversal points obtained from a multiaxial rainflow
algorithm do not necessarily occur at the reversal of one of the
stress or strain components. For example, the relative von Mises
strain, used in the Wang–Brown [15] and Modified Wang–Brown
(MWB) [16] rainflow counts, may reach a peak value at a point that
is neither a maximum nor a minimum of any strain component.
But such most important points would be filtered out by a non-
reversal filtering algorithm, resulting in non-conservative fatigue
damage and life predictions.

One example of this simplistic filtering approach for multiaxial
histories is the ‘‘Peaks Procedure” from [17], which filters out all
events whose components are not peaks or valleys, potentially
eliminating important load points that could have the highest
von Mises stresses or strains in the load history, even though each
individual component was not maximized. In addition, this proce-
dure would store each and every event that constitutes a peak or
valley from any single component, which for noisy measurements
could result in no events at all being filtered out, even if the
unavoidable noise had very low amplitudes.

An appropriate multiaxial amplitude filter should thus consider
not only peaks and valleys, but also how a measured multiaxial
loading path deviates from its course, evaluated by some metric
such as the von Mises stress or strain. This fundamental feature
is needed to avoid filtering out important counting points from
multiaxial rainflow algorithms or significant paths that could affect
the calculation of an equivalent stress or strain range, since all
stress or strain components contribute altogether for the reversals
that can be eliminated. Finally, once the original VAL history is con-
densed into a smoother history by discarding small amplitude
ranges that cause negligible fatigue damage [18], as well as the
unavoidable noise e.g. from actual strain measurements, the calcu-
lation effort can be much decreased without compromising its
accuracy. Such filters are an almost indispensable tool for practical
fatigue analyses.

In the next section, the uniaxial racetrack algorithm is reviewed,
along with a physical peg-slot analogy that will be useful for the
multiaxial generalization proposed in this work.
2. Uniaxial racetrack filter

Fig. 1 illustrates the uniaxial racetrack filter [1,19], condensing
the original history from Fig. 1(a) into the history in Fig. 1(d), elim-
inating amplitudes smaller than a user-specified value r. Originally
inspired by slalom ski races, this amplitude filter idea is to draw a
racetrack of width 2r bounded by upper and lower fences that have
the same profile as the original history, see Fig. 1(b). Every time a
driver racing in this racetrack needs to change its direction a rever-
sal point is identified, as seen in Fig. 1(c) where the driver needs to
change twice its direction near points B and E, but not in points C
and D (which are filtered out), because there is no need to avoid
the fences associated with them.

Narrow tracks almost keep all the original reversals, while
wider ones filter out most of the original loading history. As exem-
plified in Fig. 1, the condensed (by the racetrack amplitude filter)
history does not change the order of the load events, an essential
feature to account for plasticity memory effects.

Besides the driver (or perhaps slalom skier) analogy, the race-
track problem can also be regarded as a problem involving a small
round peg P oscillating inside the slotted hole of a bar whose center
is the point O, see Fig. 2, with total range 2r. Initially, the peg and
slot centers are aligned with point A, see Fig. 2(a). In the figures,



Fig. 1. Example of a uniaxial racetrack, showing: (a) the original history; (b) the racetrack defined between the upper and lower fences; (c) the driver path from A to F; and (d)
the filtered history.

Fig. 2. The uniaxial racetrack filter is analogous to a peg oscillating while it follows the original history inside a bar with a slotted hole with center O and slot length 2r.
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the dark dashed line represents the path of point O, while the fil-
tered history only accounts for peg translations that effectively
dragged the slotted bar.

The peg initially moves up along the path AB, until reaching the
upper limit of the slotted bar, forcing the bar to move up until
reaching point B, see Fig. 2(b). The path BCD does not involve any
translation of the slotted bar, thus points C and D will be filtered
out, see Fig. 2(c). Then, both paths DE and EF involve slotted bar
translations, see Fig. 2(d) and (e). After the initial point A, only
the peg locations P at the end of a translation of the slotted bar
are stored in the filtered history ABEF, see Fig. 2(f). This nice way
of looking at the racetrack filter can be generalized for the multiax-
ial case as follows.

3. The Multiaxial Racetrack Filter (MRF)

Based on the uniaxial peg-slot analogy from the previous sec-
tion, a multiaxial generalization of the racetrack algorithm has
been introduced in [18] and is expanded and detailed here. This
Multiaxial Racetrack Filter (MRF) is based on a representation of
the stress or strain history in a six-dimensional (6D) space, along
with a user-defined filtering amplitude r (similar to the one
required for the 1D case). However, the proposed multiaxial
racetrack algorithm is not limited to filter amplitudes in stress or
strain histories at a single material point. It can also be applied
to histories containing any multi-dimensional physical quantities
whose norm needs to be filtered out using a user-specified
amplitude r, even if it includes data measured at different loca-
tions, as explained later in Section 7.

For the time being, assume that a small peg ~P is allowed to
move in this 6D stress or strain space. However, instead of being
restricted within a 1D slot, it is kept inside a 6D hypersphere of

center ~O and radius r. When the peg reaches the hypersphere sur-
face and tries to move out of it, both the peg and the hypersphere
translate altogether, similarly to the 1D slotted bar example. To
illustrate this idea, Fig. 3 shows a 2D tension–torsion example of
a hypersphere (reduced to a circle in this simple case) translation

caused by the peg movement from its current position ~Pi to the

next ~Piþ1, where ~ni is the current normal vector that defines the
surface translation direction (still to be determined), and bi, ai,
and di are distances (measured in stress or strain units) used in
the amplitude filtering algorithm.

Using the next peg location~Piþ1 from the load history, combined

with the current location ~Oi of the hypersphere center, and a
known translation direction ~ni, the values of the dimensions bi, ai,
and di can be calculated from
Fig. 3. Hypersphere translation along~ni , caused by a peg movement from~Pi to~Piþ1.
For this 2D tension–torsion example, the hypersphere simply becomes a circle.
b2
i ¼ ~Piþ1 �~Oi

� �T
� ~Piþ1 �~Oi

� �
; ai ¼ ~Piþ1 �~Oi

� �T
�~ni; and

d2
i ¼ b2

i � a2i ð1Þ
where the distance bi must be greater than the radius r to guarantee

that the next loading event ~Piþ1 is outside the current hypersphere,
otherwise there is no surface translation.

While ai P 0 and di 6 r, the next peg location ~Piþ1 can still be
located on the border of the hypersphere translated in the~ni direc-
tion, for a translation of the center to (see Fig. 3):

~Oiþ1 ¼ ~Oi þ ai �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � d2

i

q� �
�~ni ð2Þ

The algorithm continues for the next ~Piþ2, and so on. Fig. 4
shows two consecutive translations where the conditions ai P 0
and di 6 r are satisfied, allowing the hypersphere translation direc-

tion to remain constant, i.e. ~ni � ~ni�1. In this example, point ~Pi can
be filtered out, since it does not alter the translation direction dur-

ing the (multiaxial) load history path ~Pi�1
~Pi
~Piþ1. This filtering pro-

cess that happens while the hypersphere is translated is called here
dynamic filtering.

In the multiaxial racetrack algorithm, the first loading point
from the load history, located in the general case in the 6D stress

or strain space, defines the initial locations ~P1 of the peg and ~O1

of the hypersphere center, see Fig. 5. No hypersphere translation
happens while the peg moves inside it, therefore in this example

points~P2 through~Pi�1 are filtered out, in a process called here static
filtering (because it does not involve hypersphere translations), see
Fig. 5(a).

The translation direction ~ni must be defined when the peg
reaches for the first time the hypersphere border and tries to move
outside it. One of the simplest proposed translation direction rules
assumes the normal vector~ni is determined from the segment that

joins the current hypersphere center ~Oi and the next peg location
~Piþ1, i.e.

~ni ¼ ~Piþ1 �~Oi

� �.
bi ð3Þ

as seen in Fig. 5(a).
This simple rule has two advantages: (i) it is easy to calculate,

without requiring information about future points ~Piþ2, ~Piþ3, etc.;
and (ii) the value of ~ni does not have to be recalculated at every
load step, as in other improved rules for the translation direction
of the hypersphere center, discussed later on.

The only points (besides the initial ~P1) that are not filtered out
are the ones where some significant path kinking happens due to
di > r, and the ones where a load ‘‘reversal” forces a change of more
than 90� in the hypersphere translation direction, i.e. ~ni�1 �~ni < 0
and therefore ai < 0. In these kinking or reversal cases, the new
hypersphere translation direction could be determined by the pro-

posed rule ~ni ¼ ð~Piþ1 �~OiÞ=bi. The kinking and reversal criteria
could happen at the same time, see Fig. 5(b), where the path kinks

at ~Pi because ~Piþ1 has di > r (kinking criterion) as well as
~ni�1 �~ni < 0, and thus ai < 0 (reversal criterion). The hypersphere
center translation during a kinking and/or reversal of the load path
can be simply calculated by

~Oiþ1 ¼ ~Oi þ ðbi � rÞ �~ni ð4Þ

because the distance between ~Oi and ~Piþ1 is equal to bi, see Fig. 3.
The initial point and all kinking and/or reversal points then con-

stitute the filtered history. The reversal criterion ai < 0 keeps track
of abrupt changes in loading direction that might characterize a
‘‘peak” condition, while the kinking criterion di > r guarantees that



Fig. 4. Circle (or hypersphere) translations along ~ni � ~ni�1, caused by the path ~Pi�1
~Pi
~Piþ1. Note that dynamic filtering eliminates the point ~Pi from the load history because it

does not alter the hypersphere translation direction.

Fig. 5. Hypersphere location (a) during its first translation and (b) during a kinking of the load path.
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a significant curvature of the load path history between two points
is accounted for without assuming it is a straight line. Path curva-
ture is important in the calculation of path-equivalent stress and
strain ranges [14], because the use of a straight path could lead
to a non-conservative range calculation when compared to the
actual NP curved stress or strain path. Fig. 6 shows a flowchart
with all the procedures involved in the proposed MRF algorithm,
using the simple translation rule from Eq. (3). Note that it exactly

reproduces the classic uniaxial racetrack algorithm if ~P and ~O are
represented by scalars.
4. MRF tension–torsion example

Fig. 7(a) shows an example of a normal � effective shear stress
path obtained under tension–torsion, which can be used to exem-
plify the step-by-step application of the MRF algorithm. Fig. 7(b)
shows the filtered history for a given relatively large filter ampli-
tude r, where only four out of the sixteen original data points were
not filtered, significantly decreasing the computational cost of
multiaxial fatigue life calculations for this load history. In this
figure, the points that suffered static filtering are marked with an
�, while the dynamically-filtered ones are represented with trian-
gular markers.

Notice once again the immense practical importance of these
MRF amplitude filtering procedures. Indeed, since the calculation
of multiaxial fatigue damage accumulation is an intrinsically inten-
sive computational procedure, it is most important to eliminate
from the calculation effort all points that are not essential for its
result, i.e. all points that do not cause significant fatigue damage.

Fig. 7(c) compares the (dashed) original history with the filtered
one. The filtered data tends to the original one as the filter ampli-
tude r decreases, at the cost of increasing the number of unfiltered
points, see Fig. 7(d) and (e). In practice, a relatively large r value
can be initially chosen, and then decreased until the calculated
damage converges.

Fig. 7(f) shows outputs from the simplistic ‘‘Peaks Procedure”
proposed in [17], where only points that constitute the reversal
of at least one component are kept. The output from the original
history in (a) has very few filtered events, showing that the ‘‘Peaks
Procedure” is very inefficient when applied to noisy signals. On the

other hand, if applied to the already denoised path~P1
~P5

~P10
~P16 from

(b), the stress state ~P1 is inappropriately filtered out, since it is not



Fig. 6. Proposed MRF algorithm, with static and dynamically-filtered history resulting from the ~P output values, where ~n is the hypersphere translation direction.

Fig. 7. Multiaxial racetrack filter applied to a tension–torsion history path with 16 points, showing (a) the translating hyperspheres, (b) the static and dynamically-filtered
points (respectively marked as � and triangles), and the effect of decreasing the filter amplitude r, resulting in histories with (c) four, (d) seven, and (e) fourteen points; and (f)
the outputs using the simplistic ‘‘Peaks Procedure” proposed in [17] from the unfiltered (a) and filtered (b) histories.
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a reversal from any applied load component, even though it defines

with point ~P10 the highest von Mises range from the history (thus
probably the most damaging event). Such a ‘‘Peaks Procedure”

triangular output ~P5
~P10

~P16 also shown in Fig. 7(f) would probably
lead to non-conservative damage calculations not only for von
Mises invariant-based damage models, but also for models based

on the critical plane approach, since such an important state ~P1

would not be kept to consider its projected effect on each candi-
date plane. In summary, the ‘‘Peaks Procedure” is not efficient for
noisy signals and potentially non-conservative for denoised data.
5. Optimized translation direction for the MRF

The hypersphere translation direction ~ni ¼ ð~Piþ1 �~OiÞ=bi from
Eq. (3) is an arbitrary value that only takes into account a direction

trend of the next stress or strain point ~Piþ1. An optimized normal
unit direction ~n�

i to maximize the filter efficiency would be a func-

tion of not only the point ~Piþ1, but also of all further points

ð~Piþ2;~Piþ3; . . .Þ until the next kinking/reversal along the load path.
This issue becomes evident in Fig. 8(a), which shows a hyper-

sphere translation based solely on the direction of ~Piþ1, a non-



Fig. 8. Dynamic filtering process for hypersphere translations in (a) non-optimized ~ni ¼ ð~Piþ1 �~OiÞ=bi and (b) optimized ~n�
i directions.

H. Wu et al. / International Journal of Fatigue 87 (2016) 167–179 173
optimized choice that would force in this example a kink at ~Piþ3,

because ~Piþ4 ends up outside the translating hypersphere due to
its distance di+3 > r calculated for the ~ni direction. Fig. 8(b) shows
the same example for a translation in an optimized unit direction
~n�
i , which better reflects the direction trend of points ~Piþ1 through

~Piþ6, allowing all of them to be filtered out without kinking or
reversals because all di through di+5 (calculated for the~n�

i direction
instead of ~ni) are within the filter amplitude r. Such optimized
direction results in a more efficiently filtered history, i.e. with
fewer remaining points for the same filter amplitude r.

It is important to note that such ~n�
i must be recalculated

every time a new point is introduced. So, the initial value

of ~n�
i would only be based on ~Piþ1, and thus become equal to

~ni ¼ ð~Piþ1 �~OiÞ=bi. But as the next~Piþ2 is introduced, the optimized
~n�
i direction is updated based on both~Piþ1 and ~Piþ2. After introduc-

ing ~Piþ3, ~n�
i is updated based on ~Piþ1, ~Piþ2 and ~Piþ3, and so on.

So, the optimized translation direction ~n�
i in Fig. 8(b) has been

calculated after the introduction of ~Piþ6, based on all points ~Piþ1

through ~Piþ6. This ~n�
i is such that the maximum distance to the

translation line among di, di+1 . . ., di+5 is minimized, as seen in
the figure. In this way, the optimal direction ~n�

i (which changes
at every new loading input) prevents any of such distances from
becoming larger than the filter amplitude r, where a kinking would
need to occur from the condition di > r.

The optimization becomes a linear programming problem that
tries to find a straight line that minimizes the maximum distance
to the loading history points, known as the minimax regression
problem. The straight line associated with the resulting optimized
translation direction ~n�

i is the first order Chebyshev approximation
of the further loading path points before the next load path kink-

ing/reversal (~Piþ1 through ~Piþ6 in the example) that goes through

the current hypersphere center ð~OiÞ, which can be found using
the Remez exchange algorithm [20] detailed in [21]. The optimized
version of the proposed MRF can then be implemented from the
Fig. 6 flowchart by replacing the unit normal direction ~ni with
the optimized ~n�
i , which however must be recalculated every time

a new point is introduced in the filtering process.

For a given~Oi, the successive optimized directions~n�
i (calculated

after every new load point input) indeed maximize the number of
filtered points along the hypersphere translation, while respecting
the filter amplitude r. Notice however that the resulting output is
not necessarily a global optimum regarding filter efficiency,

because other optimized directions might lead to different ~Oi

locations, which by chance could end up resulting in a larger num-
ber of filtered points in the subsequent steps. Nevertheless, an
eventual global optimization of the filter would probably require
knowledge of the entire load history beforehand, while involving
computationally-intensive iterative searches for the filter output
with least number of points. Such a globally-optimized MRF would
probably result in only a small improvement of filter efficiency
over the ~n�

i approach, but with a much higher computational cost,
not required or practical for most engineering applications.
6. Stress and strain spaces and sub-spaces for the MRF

The proposed MRF can be applied to any stress or strain space,

for instance ½rx ry rz sxy sxz syz �T or ½ex ey ez cxy cxz cyz �T
for a general 6D history. To better correlate the relative
importance between normal and shear components, another pro-
posal could include effective shear stresses and strains, correlated

by von Mises’
ffiffiffi
3

p
factor: rx ry rz sxy

ffiffiffi
3

p
sxz

ffiffiffi
3

p
syz

ffiffiffi
3

p� �T
or

ex ey ez cxy=
ffiffiffi
3

p
cxz=

ffiffiffi
3

p
cyz=

ffiffiffi
3

ph iT
. In this way, the filter

amplitude r could better consider normal and shear components
for equivalent von Mises stresses and strains (assuming plastic
strains dominate over elastic ones for the strain space case, to
avoid having to deal with the elastic component of the Poisson
ratio).

However, the above 6D spaces mix deviatoric and hydrostatic
components, not providing a clear physical meaning of the filter
amplitude r. Alternatively, a given stress history could be



Fig. 9. The MRF could be applied to a history ofM imposed forces, moments, and/or
displacements F1(t), F2(t), . . ., FM(t) acting at various points of a structure, decreasing
the number of samples N to a much lower N0 without losing any significant
information.
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represented in a 6D stress space composed of a 5D deviatoric space
~s0 [22]

~s0 � rx � ðry þ rzÞ=2 ðry � rzÞ
ffiffiffi
3

p
=2 sxy

ffiffiffi
3

p
sxz

ffiffiffi
3

p
syz

ffiffiffi
3

p� �T
ð5Þ

with the sixth dimension equal to the hydrostatic stress component
rh multiplied by a scaling constant ah.

It is not difficult to prove that the norm of~s0 is equal to the von
Mises stress rMises, therefore all distances and filter amplitudes in
this 5D sub-space have a physical meaning: they are the relative
von Mises stresses [15], which would be equal to the von Mises
stress range DrMises for a straight path between two stress states.
In this way, for a constant rh, the filter amplitude r would incorpo-
rate a physical meaning, becoming a threshold DrMises below
which the stress history is filtered out. For a variable rh, the filter

amplitude would relate with the metric
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dr2

Mises þ ðah � DrhÞ2
q

from this proposed 6D space.
Furthermore, if the scaling constant ah is calibrated e.g.

proportionally to the fitting constants from Sines’ [23] or Cross-
land’s [24] stress-based damage models, then the distances in
the 6D space f~s0;ah � rhg could be roughly (but not exactly) propor-
tional to the respective damage parameters DsMises þ aS � rhmean or
DsMises þ aC � rhmax , respectively, where DrMises ¼ DsMises

ffiffiffi
3

p
. In this

way, the filter amplitude r would incorporate another physical
meaning, becoming a threshold damage parameter below which
the stress history is filtered out.

Analogously, a given strain history could be represented in the
6D space f~e0;ah � ehg, where eh is the hydrostatic strain and~e0 is the
5D deviatoric strain vector

~e0 � ex�ðeyþezÞ=2 ðey�ezÞ
ffiffiffi
3

p
=2 cxy

ffiffiffi
3

p
=2 cxz

ffiffiffi
3

p
=2 cyz

ffiffiffi
3

p
=2

h iT
ð6Þ

where ah would need to be calibrated from the adopted strain or
energy-based damage model.

Note however that, according to the critical plane approach [5],
it is the normal stress r\ perpendicular to the critical plane that
affects the damage induced by Ds (or by any other parameter
assumed as the cyclic damage driving force in the multiaxial fati-
gue damage model), not the hydrostatic component rh. Since r\

is not an invariant, a multiaxial filter including r\ in its stress
space would need to be evaluated for every candidate plane. Nev-
ertheless, the above 6D spaces could still be used in the critical
plane approach, as long as the chosen filter amplitude r is signifi-
cantly smaller than a threshold value associated with the fatigue
limit from any candidate plane, to avoid non-conservative results
from the elimination of damaging events.

Alternatively, the proposed MRF could be applied at each and
every candidate plane projection, to filter out non-damaging
events from each plane, using e.g. the 3D spaces

sA sB r?½ �T or cA cB e?½ �T ð7Þ
where the subscripts A and B represent both in-plane and out-of-
plane shear directions of a candidate plane, and\ stands for its nor-
mal direction.

Clearly, every candidate plane (at the critical point of the ana-
lyzed component) would involve a different MRF process and thus
different filtered loading points. These 3D spaces would be able to
filter out small non-damaging shear events (through the first two
components from each 3D space) and small non-damaging tensile
events (through the last one), becoming applicable to shear-based
damage models (such as Fatemi–Socie’s [25]), tensile-based dam-
age models (e.g. the multiaxial generalization of Smith–Watson–
Topper’s [26]), and even multiaxial models that combine shear
and normal damage [27–29]. Independently of the adopted 6D or
3D space, the MRF algorithm from Fig. 6 remains unchanged, con-
firming the generality of the proposed filtering method.

7. Generalization of the MRF to any physical space

The proposed MRF algorithm is not limited to stress or strain
histories at a single material point. It can also be applied to a his-
tory of any multi-dimensional physical quantity that must be syn-
chronously filtered according to its norm with an amplitude r, even
if it includes data measured at different locations. Such a general-
ized MRF version can have several practical engineering applica-
tions, as discussed next.

For instance, consider a complex load history induced by M
imposed forces, moments, and/or displacements F1(t), F2(t), . . .,
FM(t) applied at various points of a structure, as schematized in
Fig. 9. If such a complex loading history is measured during a time
interval 0 6 t 6 T using M force/torque/displacement sensors at a
high sampling rate, as usually needed to not distort the measured
signals, then a very large number N of sampled data points would
be captured and stored in a huge N �M matrix. Moreover, in prac-
tical applications the measured signals will always be contami-
nated by unavoidable noise, which much increase the number of
irrelevant peak and valleys in the data files, and thus the computa-
tional effort needed to analyze them if not properly filtered.

Indeed, just imagine that this sampled data will be used e.g. in
computationally-intensive Finite Element (FE) calculations. It is
highly desirable to reduce the N �M input data matrix to a much
lower and manageable N0 �M size, see Fig. 9, as long as no signif-
icant information is lost, meaning no potentially damaging event is
neglected. But it certainly does not make sense to apply a uniaxial
racetrack filter to each column of the data matrix, because the
resulting filtered history would lose synchronicity, since each col-
umn in general would filter out points from different instants and
lead to load columns with different number of points.

Instead, all force/moment/displacement inputs need to
be filtered altogether, a task that could be performed using the
proposed MRF algorithm adopting an M-dimensional space
[a1 � F1(t) a2 � F2(t) . . . aM � FM(t)]T, where a1, a2, . . ., aM are weights
that describe the relative importance among the M load history
components. This approach allows as well the mixing of different
physical quantities with different units into the same space. The
same algorithm from Fig. 6 can be adopted to solve this demanding
filter problem, however consideringM-dimensional (instead of 6D)
quantities and hyperspheres.

For instance, if for M = 3 inputs a force F1(t) = 1000 N is
assumed to have a roughly similar effect on a structure as a
moment F2(t) = 100 Nm or a displacement F3(t) = 0.01 m applied
at different locations, then a 3D space [a1 � F1(t) a2 � F2(t) a3 � F3(t)]T
could be used in the MRF algorithm with e.g. a1 = 1,



Fig. 10. Tension–torsion testing machine and extensometer mounted on a tubular
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a2 = 1000/100 = 10, and a3 = 1000/0.01 = 100,000. Moreover, if e.g.
force variations |DF1| < 50 N can be neglected, then the algorithm
could use the same filter amplitude r = a1 � |DF1| = 50 to filter out
all three load history quantities, since the load component weights
ai would take care of their relative importance, as well as of unit
conversions.

The calibration of the weight factors ai could be performed from
the linear elastic (LE) influence factors ki of each input force/
moment/displacement Fi(t) with respect to a chosen material
point. In such a calibration, a single LE FE calculation on the entire
structure or component is performed for a static unit value Fi = 1 of
each applied loading Fi. The LE influence factors that correlate each
unit load and the resulting stresses are then evaluated in each
direction at a chosen material point, usually a candidate critical
point such as a notch tip. Clearly, these influence factors ki are
not dimensionless and in fact may have different dimensions,
because they correlate local stresses or strains with e.g. forces,
moments, or displacements. The weight factors ai can then be
calibrated from a normalization based e.g. on the first value k1,
namely ai = ki/k1, for every i = 1, . . ., M.

As expected, every candidate critical point (or any other point of
interest) would have a different set of influence and weight factors,
since a given input Fi(t) could affect much more some points of the
structural component than others. To minimize computational
cost, a single representative set of weight factors could be chosen
for the entire component, allowing the MRF to be evaluated only
once, instead of once for every point of interest. Such a single set
could be calibrated from each largest (or perhaps average) influ-
ence factor ki among all points of interest of the structure. This sin-
gle set approach should provide a good cost-benefit for the
subsequent calculations, as long as the filter amplitude r is small
enough to avoid filtering out significant events from any of the
points of interest.

The value of the MRF amplitude r can also be iteratively
increased by the user until the number of rows N0 in the filtered
history is low enough to be used with some desired reduced com-
putational cost e.g. in a FE program.

Similarly, as very high filter amplitudes r lose information on
significant events of the original history (filtering out too many
data points), successive lower r-values could then be chosen to
assure convergence of the desired damage parameter.

8. Mean/maximum stress effects in the MRF

Mean/maximum stress effects can also be included in the MRF
algorithm, adopting a filter amplitude r that depends on the cur-
rent stress level. In this way, a small stress or strain amplitude
event could be filtered out if associated with a (non-damaging)
low-stress level, while another event with the same amplitude
could be preserved if happening under a (more damaging) high-
stress level. The variable value of r must be calculated in real time,
thus it cannot depend on peak or mean stresses along a load event,
because it would require cycle identification and information
about future events. Instead, mean/maximum stress effects are
modeled in the MRF in a simplified way, as a function of the cur-
rent (instantaneous) hydrostatic rh or normal r\ stress along the
load path, respectively for invariant-based [23,24] and critical-
plane models [25–29], where r\ is the projected normal stress per-
pendicular to the considered candidate plane.

For instance, for Crossland’s invariant-based model [24], the
stress history could be represented in the 5D deviatoric stress
space ~s0 (instead of the 6D space f~s0;ah � rhgÞ, while adopting a
rh-dependent variable filter amplitude

r ¼ DrMises=2 ¼ DsMises

ffiffiffi
3

p
=2 ¼ ðbC

ffiffiffi
3

p
Þ � ð3

ffiffiffi
3

p
aCÞ � rh ð8Þ
where bC and aC are Crossland’s material constants.
On the other hand, for e.g. Fatemi–Socie’s critical-plane model

[25], the projected shear strain history on the considered candidate
plane could be represented in the 2D strain space [cA cB]T, while
adopting a r\-dependent variable filter amplitude

r ¼ r0=ð1þ aFS � r?=SYcÞ ð9Þ
where r0 is a user-defined filter level based on a shear strain ampli-
tude, SYc is the cyclic yield strength, and aFS is Fatemi–Socie’s adjus-
table parameter.

In this way, the filter amplitude r becomes instantaneously
smaller for higher rh or r\ stress levels, to avoid filtering out dam-
aging events. Similar expressions for such a variable r can be
derived for other damage models.
9. Experimental results

To verify the efficiency of the proposed MRF procedures, ten-
sion–torsion experiments are performed on annealed tubular
316L stainless steel specimens in a multiaxial servo-hydraulic test-
ing machine, shown in Fig. 10. Since some experiments in this
work involve large compression strains, the minimum wall thick-
ness of the specimen is chosen as 2.0 mm to avoid local buckling.
On the critical section, the tubular specimen has external and
internal diameters dext = 16 mm and dint = 12 mm.

Engineering stresses and strains are calculated from load and
torque measurements made by the machine load cells and from
a commercial axial/torsional extensometer, and then converted
to true stresses and strains. The engineering shear stresses include
the elastoplastic gradient correction recommended by ASTM
E2207-08 [30], which is especially important in this relatively
thick-walled tubular specimen to deal with stress gradient effects
across its thickness. The cyclic properties of this 316L steel are
obtained from uniaxial tests, resulting in fitted Ramberg–Osgood
uniaxial cyclic hardening coefficient Hc = 874 MPa and exponent
hc = 0.123, with Young’s modulus E = 193 GPa, Poisson ratio
m = 0.3, and G = E/(2 + 2m) ffi 74 GPa.

The analyzed experiments consist of strain-controlled tension–
torsion load cycles applied to the tubular specimens, for a very
challenging NP strain paths proposed in [31], named here ‘‘Maltese
Cross” for their particular shape, see Fig. 11. As seen in this figure,
for a given normal strain amplitude ea, each period of the applied
normal-effective shear strain path ex � cxy/

p
3 follows the

sequence OABHAOCBDCOEDFEOGHFGO. Several load periods were
then applied to the same specimen successively for each of the
specimen.



Fig. 11. Applied ex � cxy/
p
3 strain paths on the same tension–torsion tubular

specimen, with successively applied amplitudes ea = 0.2%, 0.4%, 0.6% and 0.7%.
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chosen strain amplitudes ea = 0.2%, 0.4%, 0.6% and 0.7%. The result-
ing normal-effective shear stress path rx � sxy

p
3 is particularly

challenging, because it involves high NP hardening effects and
transients [22], as well as several reversal points (according to
the MWB multiaxial rainflow [16] or to critical-plane rainflow
methods [32]) that are not reversals of any stress component, see
Fig. 12.

Fig. 12 shows 119,939 experimentally measured data points, as
well as the MRF output (using the simpler non-optimized version
of the algorithm) for a chosen filter amplitude r = 7 MPa. Notice
in the figure how the 37,496 remaining points after the MRF can
almost exactly describe the original history, capturing not only
all reversal points but also the path shape, which is a most impor-
tant feature for equivalent range calculations.

Fig. 13 shows the outputs from the proposed filter and from the
‘‘Peaks Procedure” for the last loading period from Fig. 12. The
‘‘Peaks Procedure” significantly alters the shape of the loading path
due to the absence in the algorithm of a user-defined filter ampli-
tude, potentially resulting in non-conservative predictions from
adopting lower path-equivalent ranges. The ‘‘Peaks Procedure”
Fig. 12. Resulting rx � sxy
p
3 stress paths drawn from 119,939 experimentally measured

successively applied to the same tubular tension–torsion specimen), showing a very goo
(dark lines), for a filter amplitude r = 7 MPa.
was not worse in this case only because the ‘‘Maltese Cross” path
has very sharp and well-defined reversals, which become as well
the reversals of von Mises equivalent histories and of projected
components on candidate planes. For a more general loading his-

tory this is not as usual, as discussed before for Fig. 7, where ~P1

defined the highest von Mises range from the denoised path
~P1

~P5
~P10

~P16, despite not being a reversal from any applied stress
component.

Another alternative approach besides the ‘‘Peaks Procedure” is
the multidimensional wavelet transformation [33], which has
several applications in signal and image denoising. Despite
powerful, this approach is more computationally-intensive than
geometrically-based algorithms such as the MRF, and most impor-
tantly it usually acts to eliminate high-frequency signals. If such
high-frequency events are actual disturbances and not sensor
noise, then they should not be eliminated, because they could sig-
nificantly influence the location of load peaks/reversals/kinks and
associated path-equivalent ranges, thus affecting the predicted
fatigue life. In other words, the smoothening effect of any fre-
quency filter tends to lose information on the signal peaks, useful
to eliminate spikes in some applications, but inappropriate for fati-
gue calculations since it can eliminate important peaks and corners
in the load path. Instead, filters purely based on amplitude should
be used in fatigue, such as the MRF, at least for rate-independent
problems.

It is important to note that the MRF is only able to exactly detect
all load path corners if sufficiently small filter amplitudes are cho-
sen. Otherwise, the MRF might perform a shortcut on that corner,
however always within the chosen filter amplitude. As discussed
above, such corners are important due to the non-linear relation
between load ranges and fatigue damage, therefore they should
be preserved in the best possible way.

To evaluate the performance of the proposed MRF, filter ampli-
tudes r = 1, 2, 3, . . ., 15 MPa were successively applied to the stress
path from Fig. 12. Fig. 14 shows the number of remaining points
after the MRF for each chosen r. As expected, higher values of r fil-
ter out more loading events, resulting in fewer remaining points.
data points (light circular markers, from strain amplitudes 0.2%, 0.4%, 0.6% and 0.7%
d agreement in both ranges and shape with the MRF output with only 37,496 points



Fig. 13. Measured (� markers) and filtered (solid lines) rx � sxy
p
3 stress paths for the last period from Fig. 12, either using the MRF for a filter amplitude r = 7 MPa (left), or

using the ‘‘Peaks Procedure” proposed in [17] (right).

Fig. 14. Number of remaining points after applying the MRF to the stress history
from Fig. 12, as a function of the chosen filter amplitude r (in MPa).
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For this loading history, Fig. 14 suggests that filter amplitudes r
near 7 MPa might provide a good tradeoff between filtering effi-
ciency (filtering out about 2/3 of the original data points, down
from 119,939 to 37,496) and damage calculation accuracy (guaran-
teeing that no filtered stress range will be off from the original his-
tory more than 7 MPa).

Moreover, as seen in Fig. 13(left), for the 7 MPa filter amplitude
all corner points from the original path were preserved by the MRF
within 7 MPa, and the path shapes were almost exactly preserved,
resulting in the same multiaxial rainflow count (within 7 MPa for
each counted event) using the Modified Wang–Brown method
[16]. Even after including path-equivalent range calculations in
the damage model using surface enclosures [14], there was no sig-
nificant difference in the resulting calculated damage, since the
associated prismatic or elliptical enclosures are not sensitive at
all to small changes in the path shape, as long as the path corners
are well preserved.

Much lower filter amplitudes, such as r = 2 MPa, would not
cause any noticeable improvement in the calculated damage
(either from a MWB or a critical plane approach), however the
number of remaining points would still be high, 110,454 in this
case, much increasing computational cost. On the other hand, a
much higher r = 15 MPa would be able to reduce the original sam-
ple down to 18,924 points, however with a few noticeable paths
not very accurately reproduced by the filtered history.
In any case, for all filter amplitudes shown in Fig. 14, the pro-
posed MRF was able to identify the equivalent range of the most
damaging event (within the chosen filter amplitude), not missing
the most important reversal points for either MWB or critical plane
approaches. Such an exact match of the highest events is only not
observed for very high (coarse) filter amplitudes. Moreover, for all
remaining events, the MRF guaranteed that the filtered equivalent
ranges were never off from the original history more than the value
of the chosen filter amplitude r, as expected, even for high (coarse)
values of r. Notice once again that these encouraging results were
obtained using the non-optimized translation direction
~ni ¼ ð~Piþ1 �~OiÞ=bi; in an implementation using the optimized
translation direction ~n�

i , the MRF would be able to filter out even
more points for each given r, but at a higher computational cost
due to the need to apply the Remez exchange algorithm [20–21]
for every input point.

Each application of the MRF to the 119,939 points from the
measured history, in the non-optimized implementation, took only
about 0.7 s to run in the Matlab� environment in an i7-4790 CPU at
3.6 GHz with 16 GB RAM memory, a small value compared to the
time required for the associated damage computations, especially
in the critical plane approach. Therefore, the proposed MRF algo-
rithm is not only accurate, but also computationally efficient. For
instance, the entire sensitivity analysis from Fig. 14 took only
about 11 s to be calculated.

Notice however that the computer time for the MRF process
could be much higher if memory allocation for the filter output
is not performed in an efficient way within the programming envi-
ronment, a purely computational issue, but one that certainly can-
not be disregarded. For instance, an inefficient dynamic memory
allocation of the 37,496 output points from the chosen amplitude
r = 7 MPa could rise computer time from 0.7 s to 4.3 s, while for
the 110,454 output points from r = 2 MPa it could rise from 0.7 s
to 60.2 s.

Surely the ‘‘Peaks Procedure” is much faster (0.03 s instead of
0.7 s in the above example) since it only involves a single-pass
search along all loading points. However this does not justify its
use, since it can filter out highly-damaging loading states. The
impact on the accuracy of the calculated damage depends on the
adopted model. But its order of magnitude can be roughly esti-
mated for a simple square-shaped tension–torsion history, slightly
skewed such that the ‘‘Peaks Procedure” output is a triangle, as in
Fig. 7(f), with about half the area of the original square. In at least



Fig. 15. Strain paths ex � cxy/
p
3 with equal normal and effective shear ranges 0.8%,

which induce significantly different fatigue crack initiation lives (in number of
blocks) in tubular 304 stainless steel specimens [35].
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one of the candidate plane projections, the filtered normal or shear
range could be about half the unfiltered one. For a high-cycle
fatigue calculation assuming Wöhler’s exponent 11 (a median
value for steels [34]) and zero mean loads, the ‘‘Peaks Procedure”
would underestimate by a factor of up to 211 = 2048 the damage
of such a filtered range on certain candidate planes, potentially
missing the critical one. Such an unacceptable error could be
eliminated using the proposed MRF with an appropriate filter
amplitude, certainly worth the slightly higher computational time
(only 0.7–0.03 = 0.67 s for the 119,939-point case).

Less dramatic but still significant non-conservative errors
would arise from the ‘‘Peaks Procedure” in low-cycle fatigue, in
which loading ranges and fatigue damage are associated with
exponents much lower than 11, typically �1/c = �1/(�0.59) ffi 1.7
for steels [34], where c is Coffin–Manson’s plastic exponent. This
effect can be verified from Itoh’s [35] tension–torsion experiments
on three 304 stainless steel tubular specimens subjected to square,
diamond and cross-shaped tension–torsion strain histories, all of
them with normal strain ranges De ffi 0.8% equal to the effective
shear strain ranges Dc/

p
3 ffi 0.8%, see Fig. 15.

The square-shaped A–B–C–D–E–F–G–H–A path resulted in an
initiation life of N = 320 load blocks, while the diamond-
shaped A–C–E–G–A resulted in N = 710 and the cross-shaped
O–A–O–C–O–E–O–G–O in N = 2100 load blocks (which could also
be interpreted as 4200 cycles, if the cross was decomposed into
two perpendicular uniaxial paths, each with one cycle per period).
If e.g. due to measurement noise in the square path the magnitudes
of the strains at the centers A, C, E and G were slightly higher than
at the corners B, D, F, and H, then the ‘‘Peaks Procedure” would fil-
ter out these corners (since they would not constitute reversals of
any applied load component), resulting in the diamond path.

On the other hand, if in the cross path the unloading events did
not exactly reach the origin O as suggested in the figure, then such
unloadings would not constitute load reversals, and the ‘‘Peaks Pro-
cedure” would also result in the same diamond path A–C–E–G–A.
Therefore, the square and cross-shaped paths can be seen as limit
cases for the errors induced by the ‘‘Peaks Procedure” with respect
to the diamond path, which would predict the same diamond-
shaped filtered history and thus the same life in number of blocks.
As a result, even if the adopted damage model was able to exactly
predict the measured 710-block life of the diamond path, the
application of the ‘‘Peaks Procedure” would underestimate the
cross-path life by a factor of 2100/710 ffi 3, and non-conservatively
overestimate the square-path life by (710�320)/320 ffi 122%.
10. Conclusions

In this work, a multiaxial version of the racetrack filter
originally proposed in [18] was improved and optimized. It is
applicable to general non-proportional multiaxial histories, being
very fast and relatively simple to implement following the
provided flowchart, while exactly reproducing the original
racetrack filter for uniaxial histories. The proposed filter treats all
load events sequentially, therefore it preserves load order, an
important issue to correctly predict load sequence effects. Six-
dimensional stress and strain spaces have been proposed for dam-
age models based on invariants such as von Mises and hydrostatic
components. A 3D version of the filter has also been presented,
applicable for the critical plane approach. The proposed method
is very versatile, allowing the synchronous filtering of stress and
strain histories acting at a given material point, or of any history
of multi-dimensional quantities such as forces, moments, and/or
displacements acting at different points of a structure, with several
practical applications in engineering. The filter efficiency was
evaluated from tension–torsion experiments following complex
non-proportional histories, demonstrating its ability to quickly
and significantly condense the input history without losing
information on significant reversals, ranges or load path shapes.
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