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Abstract Nonproportional (NP) strain hardening is caused by multiaxial load histories that induce variable
principal stress/strain directions, activating cross-slip bands in several directions, due to the associated rotation
of the maximum shear planes. This effect increases the strain-hardening behavior observed under proportional
loads, thosewith fixed principal directions, andmust be considered inmultiaxial fatigue calculations, especially
for materials with low stacking fault energy, such as austenitic stainless steels. NP hardening depends on the
material and on the shape of the multiaxial load history path in a stress or strain diagram as well. It can be
evaluated by a nonproportionality factor FNP that varies from zero, for a proportional load history, to one, for a
90◦ out-of-phase tension–torsion loading with the same normal and effective shear amplitudes. Originally, FNP
was estimated from the aspect ratio of a convex enclosure that contains the load history path, such as an ellipse
or a prismatic enclosure, but such convex enclosure estimates can lead to poor predictions of FNP. Another
approach consists on evaluating the shape of the six-dimensional (6D) path described by the six normal and
shear components of the stress tensor, where the stress path contour is interpreted as a homogeneous wire with
unit mass. The moment of inertia (MOI) tensor of this hypothetical wire is then calculated and used to estimate
FNP. The use of 6D stress paths to estimate FNP is questionable, since 6D formulations implicitly include
the effect of the hydrostatic stress, while NP hardening is caused by the deviatoric plastic straining, not by
stresses alone or by their hydrostatic component. In this work, the NP factor FNP of a multiaxial load history
is estimated from the eigenvalues of the MOI tensor of the plastic strain path, which are associated with the
accumulated plastic straining in the principal directions defined by the associated eigenvectors. The presented
formulation assumes free-surface conditions, but allows a surface pressure, covering the conditions of most
critical points, which indeed are located on free surfaces. Experimental results for 14 different tension–torsion
multiaxial histories prove the effectiveness of the proposed method.
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1 Introduction

Proportional multiaxial loadings cause isotropic strain-hardening effects that may cyclically harden or soften
the material. Nonproportional (NP) multiaxial loadings, on the other hand, besides isotropic strain-hardening
effects, may cause an additional effect called NP hardening, cross-hardening, or simply additional strain
hardening. This effect depends on the multiaxial load history, by a nonproportionality factor FNP, and on
the material, by an NP or additional hardening constant αNP, where 0 ≤ αNP ≤ 1. Typically, the NP strain-
hardening effect is high in austenitic stainless steels at room temperature (e.g., αNP ∼= 1 for the 316 stainless
steel under high plastic strain levels), medium in most carbon steels (αNP ∼= 0.3 for a 1045 steel), and low in
aluminum alloys (αNP ∼= 0 for Al 7075). Table 1 shows typical values of αNP for some metals.

Microstructurally, NP strain hardening is related to stacking faults, which are local regions of incorrect
stacking of crystal planes [5,6]. Figure 1 shows stacking fault examples for HCP (hexagonal close-packed)
and for FCC (face-centered cubic) lattices. HCP lattices superimpose the various atomic planes following
a double sequence like ab–ab–ab. The stacking fault in the HCP lattice from Fig. 1(top) is caused by the
plane arranged in the c configuration, causing an interruption of the stacking sequence of the crystal structure,
which becomes ab–ab–abc–ab–ab. FCC lattices, on the other hand, which usually follow a triple sequence
abc–abc–abc, may present stacking faults from the local absence of such c configuration, as shown in the
sequence abc–abc–ab–abc in Fig. 1(bottom). Such faults cause the HCP lattice to become locally FCC in the
abc plane sequence, while the FCC lattice locally becomes HCP in the ab region. These planar defects cause
crystal lattice incompatibilities that prevent or impair dislocations from switching gliding planes, and thus
affect their strain-hardening behavior.

Each of these crystallization faults is associated with a stacking fault energy (SFE) necessary to generate
them, measured per unit area in J/m2. Materials with low SFE can very easily develop large stacking faults.
For instance, the FCC lattice of 316 stainless steels requires only 25mJ per m2 to generate them. Screw
dislocations associated with plastic straining cannot easily cross-slip across such large stacking faults, even
under relatively high stresses, due to the crystal lattice incompatibility. Hence, the slip bands generated by
proportional loadings tend to remain planar. However, in the presence of NP loads, the changes in the principal

Table 1 Additional hardening coefficients αNP for several materials [1–4]

Material αNP

316 stainless 0.75–1.0
304 stainless 0.5–1.0
304 stainless (650 ◦C) 0.3–0.4
SGV410 0.39
1045 steel 0.3
430 stainless 0.28
Inconel 718, S25C 0.2
Al 6061-T6 0.2
OFHC copper 0.16–0.3
42 CrMo steel 0.15
1% Cr Mo-V, En15R steel 0.14
Al 1100, Al 7075 0.0

Fig. 1 HCP and FCC lattices with stacking faults
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Fig. 2 In-phase, 90◦ out-of-phase and 180◦ out-of-phase tension–torsion histories

direction finally allow the activation of cross-slip bands in all directions. An increase in the hardening effect
with respect to proportional loadings is thus expected, caused by the change in direction of the maximum shear
planes, resulting in an additional hardening coefficient αNP >> 0.

On the other hand, stacking faults are rarely seen in materials with high SFE, such as in most aluminum
alloys, which typically require more than 200mJ per m2 to generate them. Without the obstruction caused by
stacking faults, the screw dislocations may easily cross-slip even under proportional loadings, since the many
slip systems are able to well distribute the deformation in all possible directions in 3D. Slips of dislocations
are wavy, changing their glide planes easily, even for uniaxial histories. Therefore, since cross-slip bands
already happen naturally even under proportional loadings, NP histories do not cause any significant increase
in strain hardening, and thus αNP ∼= 0. Note, however, that αNP depends not only on the material and on its
microstructure, but also on the strain amplitudes involved in the load history [7–9]. In general, lower amplitudes
are associated with lower αNP.

When NP hardening is significant, NP multiaxial load histories can produce fatigue lives that are much
lower than the ones induced by proportional histories with the same strain range �ε, since this hardening
increases the corresponding �σ range. Conversely, for materials with large additional hardening αNP under
stress-controlled loads, the fatigue lives are much longer under multiaxial NP loads than under proportional
loads with the same stress range �σ , due to the lower range �ε necessary to achieve this �σ .

Note, however, that NP histories can decrease fatigue lives even in the absence of NP hardening. Most
multiaxial fatigue damage models agree that damage depends both on an equivalent shear range �εeq (or
equivalent stress range �σeq for high-cycle fatigue) and on the mean stress σ⊥m (or maximum σ⊥max) per-
pendicular to the microcrack plane. An NP history with out-of-phase normal and shear strain ranges �ε and
�γ can have a much higher �εeq than a proportional history with same �ε and �γ , as predicted by most
convex enclosure methods, as well as by the MOI method for estimating equivalent ranges [10], decreasing
fatigue lives independently of the NP hardening effect, as verified in [8]. Additionally, NP hardening can also
affect lives due to the σ⊥max term: NP hardening would cause a strain-controlled loading to increase its σ⊥max
and thus further decrease the consequent fatigue lives. Conversely, as discussed before, for stress-controlled
problems, NP hardening would cause a decrease in�εeq for a given�σ⊥, increasing fatigue lives. In summary,
NP effects are not trivial to predict without proper modeling.

In general, NP strain hardening can be modeled using the same Ramberg–Osgood hardening exponent hc
from the cyclic uniaxial σ − ε curve and using a new hardening coefficient HNP = Hc·(1 + αNP·FNP), where
Hc is the cyclic strain-hardening coefficient calibrated under uniaxial conditions. Note that NP hardening can
multiply Hc by a factor as high as 2, when both αNP = 1 and FNP = 1.

To account for NP strain-hardening effects, it is necessary to not only measure αNP but also correctly
evaluate the NP factor FNP associated with the multiaxial load history. The NP factor depends solely on the
shape of the multiaxial load history path [11]. The largest NP factor, associated with FNP = 1, happens for
a 90◦ out-of-phase tension–torsion loading with same normal and effective shear amplitudes, as illustrated in
Fig. 2(middle), which generates a circle in the vonMises σ ×τ ·√3 stress diagram, see Fig. 3(middle), or in the
ε × γ /

√
3 strain diagram. Note that proportional multiaxial histories, which are associated with straight paths

that cross the origin of the vonMises stress or strain diagram as shown in Fig. 3(left), do not causeNPhardening.

2 Nonproportionality factor estimates

The nonproportionality factor FNP has been traditionally estimated from the aspect ratio of the convex enclosure
that contains the multiaxial load history path. For instance, for zero-mean loads, FNP is usually estimated from
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Fig. 3 Definition of the nonproportionality factor FNP for proportional (left), 90◦ out-of-phase (middle), and general tension–
torsion stress histories (right) [1]

Fig. 4 In-phase tension–torsion stress paths that result in proportional histories for paths A and B and in an NP history for C

the aspect ratio b/a of an ellipse that encloses the stress path, where a and b(b ≤ a) are the ellipse semi-axes;
see Fig. 3(right). Therefore, in-phase and 180◦ out-of-phase loadings (see Fig. 2),which always result in straight
stress paths that cross the stress diagram origin, are also always proportional (thus having FNP = 0) under
zero-mean loads; see Fig. 3(left). Sinusoidal 90◦ out-of-phase tension–torsion loadings with equal amplitudes
for σx and τxy

√
3 result in circular load paths, so they induce a FNP = b/a = 1, as expected; see Fig. 3(middle).

Figure 3(right) shows the enclosing ellipse of a general periodic tension–torsion history, associated with an
NP factor 0 ≤ FNP ≤ 1.

Note that the general periodic tension–torsion load path exemplified in Fig. 3(right) is a combination of an
outer and an inner loop that result in two different loading cycles per period, and therefore it can be classified
as a variable amplitude loading (VAL) history. On the other hand, periodic paths consisting of just one cycle
per period, such as the proportional and 90◦ out-of-phase NP examples from Fig. 3, are classified as constant
amplitude loading (CAL) histories. Naturally, any nonperiodic and nonmonotonic path eventually results in a
VAL history.

Note as well that in-phase or 180◦ out-of-phase loads can result in NP histories, as shown in Fig. 4 for the
straight path C , which has a variable τxy(t)/σx (t) ratio (where t stands for time), and thus variable principal
directions. But the straight path B, which is also in-phase with a nonzero-mean load, induces a proportional
load history because it maintains a fixed τxy(t)/σx (t) ratio. The in-phase path A is also proportional, with a
zero-mean load. Note that in-phase or out-of-phase biaxial histories induced by perpendicular normal loads
(instead of tension–torsion) are always proportional, because they have constant principal stress directions
(aligned with the load directions). So, multiaxial fatigue testing machines that use biaxial load frames with two
perpendicular jacks cannot induce NP loads, and thus they are not as versatile as machines with tension–torsion
frames.

However, as discussed in [10], convex enclosure estimates such as FNP = b/a from the ellipse that encloses
the load path can lead to poor predictions of FNP. Moreover, the previous examples are simple, since they
involve load histories with only two stress components. For a general six-dimensional (6D) stress history, FNP
estimates need to consider the path of all six stress components σx , σy , σz , τxy , τxz , and τyz .

Besides the methods based on convex enclosures, other empirical methods have been proposed to estimate
FNP, classified as phenomenological estimates [9]. Kanazawa et al. [12] estimated FNP as a rotation factor,
defined by the ratio between the maximum shear strain range and the shear strain range at 45◦ from the
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Fig. 5 Principal strain path that leads to a constant angle ξ(t), exemplifying the inadequacy of Itoh’s method for general 3D–6D
multiaxial histories

maximum shear plane. This factor correctly tends to the limits FNP = 0 for proportional loadings and FNP = 1
for 90◦ out-of-phase strain histories. However, it fails to correctly compute FNP for more complex-shaped load
history paths, as experimentally verified in [9].

Itoh et al. [3] estimated FNP using an integral definition along periodic strain paths:

FNP = π

2T εI max

∫ T

0
εI (t) · | sin ξ(t)| · dt (1)

where εI (t) is the absolute value of the maximum principal strain at each instant t, εI max is the maximum
value of εI (t) along the entire path, ξ(t) is the angle between the principal directions associated with εI (t) and
εI max, and T is the time period of the multiaxial load path. Similar to Kanazawa’s idea, Itoh’s method also tries
to compute FNP from changes in the principal strain direction, but Itoh’s more general integral formulation
allows the analysis of arbitrarily shaped multiaxial load history paths.

Albeit Itoh’s original method from [3] provides reasonable FNP predictions for simple 2D (e.g., tension–
torsion) histories, it should not be applied to more general 3D to 6D histories, since it is based on a scalar
measure, the angle ξ(t), which is not enough to represent all possible variations of the principal strain direction
in 3D. For instance, if the directions of εI (t) along a load path describe a cone with symmetry axis in the
direction of εI max, as shown in Fig. 5, then ξ(t) would be constant and equal to half the cone apex angle,
regardless of the chosen path. However, constant amplitude or 90◦ out-of-phase cycles could result in the
same ξ(t) and εI (t) histories, wrongfully calculating the same FNP for both cases. Instead of using the scalar
measure ξ(t), the direction of εI (t) would need to be defined by a vector of at least two elements to be able to
distinguish between these load paths. As a result, even though Itoh’s method has been formulated in a general
3D or 6D space [4], its estimates are not robust if the history is not 2D, as shown in the above counterexample.

Moreover, the definition of Itoh’s method in the time domain is not appropriate to describe transient
elastoplastic effects, which depend on the accumulated plastic strain, but not on time. Itoh’s integral must
assume a constant plastic strain rate to eliminate its time dependence. Finally, such approach is not appropriate
even for 2D load paths when significant viscous or strain-rate effects are involved in the damage process, like
when creep damage cannot be neglected for modeling purposes.

These issues were addressed in an improved version from Itoh et al. [4], where FNP is calculated by a line
integration along the 6D multiaxial loading path, using the loading amplitude and two angles related to the
principal direction change. Using two angles instead of one, it is possible to overcome issues, for example, with
the path from Fig. 5, correctly describing the 3D nature of the principal strain space. Moreover, by replacing
time integration with path integration, time independence is guaranteed in the calculation, as expected in the
absence of significant viscous effects.

To calculate FNP for more general 6D load paths, Bishop [13] introduced a 6× 6 inertia tensor termed the
rectangular moment of inertia (RMOI) of the stress path, which can be expressed using Voigt-Mandel’s [14]
6D stress representation �σ by

Iσ ≡ (1/pσ ) ·
∫

(�σ − �σm) · (�σ − �σm)T · |d�σ | (2)
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where |d�σ | is the Euclidean norm of the 6D stress increment d�σ , and the mean component �σm and path
perimeter pσ are also integrated along the 6D stress path, calculated from

�σm ≡ (1/pσ ) ·
∫

�σ · |d�σ | and pσ ≡
∫

|d�σ |. (3)

TheRMOI stress tensormeasures the distribution of the stress path, relative to itsmean, about the coordinate
planes. Bishop proposed that FNP could be estimated from the two largest eigenvectors λσ1 and λσ2 of
Iσ (λσ1 ≥ λσ2) by

FNP = √
λσ2/λσ1. (4)

Note that the normalization factor 1/pσ was not included in Bishop’s original definition of Iσ , but it has
been introduced here to simplify its comparison with the MOI method. Despite being more general than Itoh’s
method, Bishop’s RMOI approach also has several limitations [11]:

(i) it is formulated in a stress space, instead of a plastic strain space, which would be more appropriate to
describe a plasticity-induced effect such as NP hardening;

(ii) it uses a stress or strain formulation instead of a deviatoric one; hence, it implicitly assumes that the
hydrostatic component might influence FNP, which is not true for materials with pressure-insensitive
yield behavior, like most metallic alloys in which the plastic behavior can be well described by von
Mises; and

(iii) it calculates the moments of inertia relative to the mean component of the multiaxial load path, which is
not able to describe the variation in principal directions, instead of relative to the origin of the stress or
strain diagram.

Therefore, the FNP estimate should be instead formulated in a plastic strain space, to be independent of
the mean or hydrostatic components of stresses and strains. Thus, to eliminate any dependence of FNP on
hydrostatic components, the load history should be represented in a deviatoric stress or strain space, since they
are not influenced by the hydrostatic components of the load path.

Nevertheless, several FNP estimates are still based on diagrams involving a single normal component σx
or εx and a single shear component τxy or γxy , which could lead to very large errors, instead of incorporating
the contribution, for example, of σy or εy .

3 The moment of inertia (MOI) FNP estimate

Themoment of inertia (MOI)methodwas originally proposed by the authors in [10] to estimate path-equivalent
stress and strain ranges and mean components. It was later extended in [11] to estimate FNP in general 6D NP
load histories, to compensate for the limitations in Itoh’s, Bishop’s, and other similar FNP estimates. In this
work, this general 6D formulation is reduced to a simpler computationally efficient 3D formulation assuming
free-surface conditions, which can properly describe the conditions at the crack initiation location of most
structural components.

The MOI method for FNP has been originally defined in the 5D Euclidean deviatoric plastic strain space
E5p, which represents the plastic strain tensor using a 5D vector �e′

pl defined by:

{ �e′
pl ≡ [ e1pl e2pl e3pl e4pl e5pl ]T, e1pl ≡ εxpl − (εypl + εzpl)/2,

e2pl ≡ (εypl − εzpl)
√
3
2 , e3pl ≡ γxypl

√
3
2 , e4pl ≡ γxzpl

√
3
2 , e5pl ≡ γyzpl

√
3
2 .

(5)

There are several motivations to prefer the 5D projection �e′
pl of the plastic strain space to calculate FNP, over

stress or strain spaces, as discussed in [11]. This deviatoric space is appropriate to define an integral equation to
estimate FNP, because, contrary to Bishop’s method [13], it is independent of the hydrostatic components. Note
that this �e′

pl vector is equal to the 5D representation of the plastic strains proposed by Tanaka [15] multiplied
by 3/2:

�e′
pl = 3

2
·
[
expl

expl+2eypl√
3

γxypl√
3

γxzpl√
3

γyzpl√
3

]T
︸ ︷︷ ︸

Tanaka′s 5D deviatoric space

(6)
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Fig. 6 Plastic strain path in the e1pl × e3pl = (3/2) · (εxpl × γxypl/
√
3) diagram for a 2D tension–torsion history

since the deviatoric identity expl + eypl + ezpl = 0 implies that eypl − ezpl = expl + 2eypl.
Therefore, the presented 5D deviatoric formulation is highly recommended to solve 6D multiaxial stress-

strain problems, due to its reduced computational cost without compromising accuracy, since the 5D results are
exactly the same as the 6D ones in incremental plasticity calculations. Moreover, the 5D formulation separates
deviatoric and hydrostatic components, guaranteeing that plastic incompressibility is not violated even after
several discrete integration steps in an incremental plasticity formulation.

To calculate the directions suffering the largest plastic strain magnitudes, the plastic strain path in its E5p
space is imagined as a homogeneous wire with unit mass; see Fig. 6. The moments of inertia of such unit
mass wire with respect to the deviatoric space origin are related to how much the plastic path stretches in each
considered direction. Therefore, such moments of inertia could be correlated with how much accumulated
plastic straining there is in such a direction.

The MOI method to estimate FNP is reviewed next in its generalized version for a 6D multiaxial history
containing all three normal and three shear components. First, the plastic strain path in all six directions must
be obtained, either from incremental plasticity calculations or frommeasurements of both stress and total strain
histories. The plastic strain path is then represented in the five-dimensional E5p space.

The MOI method follows a direct analogy with the moment of inertia tensor of a solid, as studied in classic
dynamics books. The plastic strain path is imagined as a homogeneous wire with unit mass, whose moments of
inertia define how much the path stretches along each individual direction. However, dynamics books usually
adopt the axial MOI (AMOI), the moment of inertia about a given axis, which is a measure of how much the
solid (the wire in our case) stretches in every other direction perpendicular to this axis. To calculate how much
the plastic strain path stretches along each individual direction, the 5 × 5 rectangular MOI (RMOI) matrix IOr
of the plastic strain path �e′

pl with respect to the diagram origin O is used instead. The RMOI gives the moments
of inertia about the planes (or hyperplanes) perpendicular to each considered direction, i.e., the distribution of
the stress path about the coordinate planes:

IOr = 1

p
·
∫

�e′
pl · �e′T

pl · dp = 1

p
·
∫

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e21pl e1pl · e2pl e1pl · e3pl e1pl · e4pl e1pl · e5pl
e2pl · e1pl e22pl e2pl · e3pl e2pl · e4pl e2pl · e5pl
e3pl · e1pl e3pl · e2pl e23pl e3pl · e4pl e3pl · e5pl
e4pl · e1pl e4pl · e2pl e4pl · e3pl e24pl e4pl · e5pl
e5pl · e1pl e5pl · e2pl e5pl · e3pl e5pl · e4pl e25pl

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

· dp (7)

where dp is the equivalent plastic strain increment and p is the accumulated plastic strain, which is proportional
to the perimeter of the plastic strain path in the E5p space, since

dp ≡ (2/3) · |d�e′
pl| and p ≡

∫
dp = (2/3) ·

∫
|d�e′

pl| = (2/3) · (perimeter). (8)

Tanaka [15] has shown that FNP has a transient behavior. For periodic variable amplitude loading (VAL)
with several cycles per period or for nonperiodic histories, the NP hardening evolution requires differential
equations and a polarization tensor to be computed. However, if the loading is periodic and each period consists
of one or just a few VAL cycles, then FNP converges to a constant steady-state value after the NP hardening
transient. In this case, the MOI method performs the integration from Eq. (7) along one full period to find IOr .
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The eigenvalues λp1, λp2, . . . , λp5 of IOr (ordered such that λp1 ≥ λp2 ≥ · · · ≥ λp5) are the scalar
RMOI values along the principal directions of the path, which are used to describe the nonproportionality
of the load history. They are a measure of the accumulated plastic strains along each principal direction of
the stress/strain state defined by the associated unit eigenvectors �vp1, �vp2, . . . , �vp5. These unit eigenvectors
constitute an orthonormal system, being mutually perpendicular due to the fact that IOr is symmetric. These
eigenvectors of the RMOI tensor represent the principal axes of the plastic strain path, which may be used as
a “reference frame” to define the out-of-phase extent of a load history by the combination of the associated
eigenvalues. Following this reasoning, the MOI method’s FNP estimate is defined as the square root of the
ratio between the two largest eigenvalues of the RMOI tensor IOr , i.e.,

FNP = √
λp2/λp1. (9)

For instance, in a proportional loading, the plastic strain path describes a straight segment that crosses the
diagram origin, analogous to a straight wire, which has only one nonzero principal RMOI λp1 > 0, while
λp2 = λp3 = λp4 = λp5 = 0, and thus FNP = 0, as expected. On the other hand, a circular history with
zero-mean stress has two equal and nonzero principal RMOI λp1 = λp2, giving FNP = 1, as expected for such
a 90◦ out-of-phase loading.

A 6D space could be used in Eq. (7) instead of the adopted 5D deviatoric subspace, but in this case
the plastic strain component along the hydrostatic direction would always be zero for pressure-insensitive
materials, those whose yield function does not depend on the hydrostatic component, such as von Mises, and
thus whose hydrostatic strains are always elastic. Therefore, a sixth eigenvalue λp6 equal to zero would always
be found in 6D, along a corresponding sixth eigenvector �vp6 in the hydrostatic direction. Since Eq. (9) is
independent of such a λp6, the MOI method would provide identical FNP estimates in both 6D and 5D. Thus,
the computationally efficient 5D formulation from Eq. (5) is preferred in the IOr definition.

However, Tanaka’s 5D deviatoric space adopted in this work, as seen in Eqs. (5–6), has an issue with biaxial
loadings without plastic shear strain components, wrongfully predicting FNP > 0. Such biaxial loadings,
usually tested in cruciform specimens, do not cause NP hardening because the principal directions do not
change, while the maximum absolute principal stress direction only changes by a factor of 90◦. Indeed, e.g.,
pure cyclic torsion does not cause NP hardening, even though such maximum absolute stress keeps changing
by 90◦ at every reversal. This issue with Tanaka’s NP hardening model has not been noticed in the literature
because the model has been verified for tension–torsion histories, but never checked against biaxial loadings
without shear.

Nevertheless, it is easy to detect such a biaxial case. For Tanaka’s model, the two largest eigenvalues of
its polarization tensor would be associated with eigenvalues almost entirely contained in the e1pl − e2pl plane,
which accounts for normal plastic strains, without significant components in the remaining e3pl, e4pl, and e5pl
shear directions. The same reasoning can be applied to the RMOI tensor from Eq. (7), where Eq. (9) would
only be applicable if the eigenvectors �vp1 and �vp2 (associated with the highest eigenvalues λp1 and λp2) are
not contained in the e1pl − e2pl plane, or nearly parallel to it. In this case, one ad hoc approach would be to
replace λp2 with λp3 in Eq. (9), which would be associated with an eigenvector �vp3 in the shear subspace
e3pl − e4pl − e5pl. In other words, if the two main plastic straining directions �vp1 and �vp2 are essentially
normal, FNP should be evaluated from the ratio between the highest shear eigenvalue λp3 and the highest
normal eigenvalue λp1 to account for their relative influence changing the principal directions.

A more general approach could somehow combine the first two rows and first two columns in Eq. (7) to
merge both normal terms and thus reduce the RMOI to a 4 × 4 matrix, whose eigenvalues could be used in
Eq. (9). But experimental measurements on a 3D multiaxial test machine, capable of independently applying
two normal and one shear stress histories, would be required to properly evaluate this proposal.

4 MOI FNP estimate under free-surface conditions

In this paper, the original 5D MOI formulation to estimate FNP is reduced to a computationally efficient 3D
formulation that is suitable to describe the multiaxial behavior of critical points under free-surface conditions,
the most common case in practical applications. Assuming the free surface normal to the z direction, the shear
strain components γxz and γyz are zero, and thus their plastic components are γxzpl = γyzpl = 0. It follows
that the five-dimensional E5p space can be reduced to a three-dimensional E3p plastic strain space, defined
using the 3D vector �e′′

pl given by
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{ �e′′
pl ≡ [ e1pl e2pl e3pl ]T, e1pl ≡ εxpl − (εypl + εzpl)/2,

e2pl ≡ (εypl − εzpl)
√
3
2 , e3pl ≡ γxypl

√
3
2 .

(10)

The free-surface plastic strain εzpl is in general not equal to zero, due to plastic Poisson effects and the
plastic incompressibility condition εxpl + εypl + εzpl = 0. This linear dependence condition is automatically
satisfied in the above 3D formulation, and it is also the reason why four plastic strain components (εxpl, εypl,
εzpl, and γxypl) can be represented in a 3D (instead of 4D) formulation.

It is not uncommon to find incremental plasticity formulations using 4, 6, or even 9 (redundant) components
to describe plastic straining under free-surface conditions, which not only decreases computational efficiency,
but also might allow discrete plastic strain increments �εxpl + �εypl + �εzpl �= 0 due to the accumulation of
numerical errors in implicit numerical integration schemes. The 3D formulation proposed here, on the other
hand, could be used in plasticity calculations under free-surface conditions without any problems involving
violation of plastic incompressibility. Moreover, this 3D formulation in E3p significantly simplifies the use
of the MOI method to estimate FNP. After obtaining the successive values of the 3D plastic strain vector �e′′

pl

along the history, this path is integrated to obtain a 3 × 3 version of the RMOI tensor IOr , given by

IOr = 1

p
·
∫

�e′′
pl · �e′′T

pl · dp = 1

p
·
∫ ⎡

⎢⎣
e21pl e1pl · e2pl e1pl · e3pl

e2pl · e1pl e22pl e2pl · e3pl
e3pl · e1pl e3pl · e2pl e23pl

⎤
⎥⎦ · dp (11)

where dp ≡ (2/3) · |d�e′′
pl| and p ≡ ∫

dp = (2/3) · ∫ |d�e′′
pl| = (2/3) · (perimeter). The FNP estimate is then

obtained from Eq. (9) and the two largest eigenvalues from IOr . As mentioned before, be careful with biaxial
normal histories without significant shear components, where the two largest eigenvalues λp1 and λp2 would
be associated with normal plastic strains. Without significant shear (i.e., λp3 ∼= 0 if in this case), such biaxial
normal plastic strains would not cause variation of the principal directions (except for 90◦ changes of their
maximum absolute direction), and thus FNP should tend to zero. If the eigenvalue λp3 is mainly associated
with the shear component and λp3 > 0, then it should be used instead in the numerator of Eq. (9).

For a tension–torsion history in an un-notched specimen, it is possible to further reduce the plastic strain
formulation to a 2D space. Under histories of tensile σx and shear τxy , a symmetry argument in y and z shows
that e2pl ≡ (εypl − εzpl)

√
3/2 = 0. Therefore, an even simpler two-dimensional E2p plastic strain space can

be proposed, defined using the 2D vector �e′′′
pl given by

�e′′′
pl ≡ [ e1pl e3pl ]T, e1pl ≡ εxpl − (εypl + εzpl)/2, e3pl ≡ γxypl

√
3/2. (12)

Analogous to the 3D case, it is possible to define a 2 × 2 version of IOr , given by

IOr = 1

p
·
∫

�e′′′
pl · �e′′′T

pl · dp = 1

p
·
∫ [

e21pl e1pl · e3pl
e3pl · e1pl e23pl

]
· dp (13)

where dp ≡ (2/3) · |d�e′′′
pl | and p ≡ ∫

dp = (2/3) · ∫ |d�e′′′
pl | = (2/3) · (perimeter). Note that both eigenvalues

from IOr are then used in Eq. (9) to estimate FNP.
The RMOI tensor IOr can also be numerically calculated for polygonal load history paths used in computa-

tional implementations with discrete finite increments. If �e′′
pl is the 3D plastic strain vector in the E3p space at

each calculation step and if ��e′′
pl is the associated finite plastic strain increment, then the RMOI integral from

Eq. (11) can be estimated from a summation based on Simpson’s rule,

IOr ∼= 1

6p
·
∑ [

�e′′
pl�e′′T

pl + (�e′′
pl + ��e′′

pl)(�e′′
pl + ��e′′

pl)
T + 4 · (�e′′

pl + ��e′′
pl/2)(�e′′

pl + ��e′′
pl/2)

T
]

· �p, (14)

where the discrete increment �p and the accumulated plastic strain p are given by

�p ≡ (2/3) · |��e′′
pl| and p =

∑
�p. (15)

The above discrete implementation can also be applied to the 2D tension–torsion formulation of plastic
strains, replacing �e′′

pl and ��e′′
pl by �e′′′

pl and ��e′′′
pl in Eqs. (14–15).
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Fig. 7 Calculation of FNP from the 2D version of the MOI method for proportional, circular, elliptical, and rectangular plastic
strain paths in the e1pl × e3pl diagram. Note that for a tension–torsion history, this diagram is proportional to εxpl × γxypl/

√
3

The proposed approach is evaluated by FNP estimates for some simple tension–torsion plastic strain his-
tories, using the proposed 2D MOI formulation. A proportional elastoplastic tension–torsion history always
results in a plastic strain path described by a straight segment going through the origin O of the e1pl × e3pl
diagram; see Fig. 7a. If this straight segment has length L (thus, the plastic strain path has perimeter 2L) and
makes a constant angle ψe with the e1pl axis, then the accumulated plastic strain p and the associated RMOI
tensor for a full cycle become

p = 2

3
· (2L) = 4L

3
and IOr = 1

12

[
L2 cos2 ψe L2 sinψe cosψe

L2 sinψe cosψe L2 sin2 ψe

]
(16)

whose eigenvalues λp1 = L2/12 and λp2 = 0 result in FNP = √
λp2/λp1 = 0, as expected.

Consider now the 90◦ out-of-phase 2D tension–torsion history fromFig. 7b. Fromsymmetry considerations,
a tension–torsion load history that describes a circular path in the total strain diagram e1×e3 should also describe
a circle in the e1pl × e3pl plastic strain diagram. If L is the diameter of such a circle, it follows for a full cycle
that

p = 2

3
· (πL) = 2πL

3
and IOr =

[
L2/8 0

0 L2/8

]
(17)

whose equal eigenvalues λp1 = λp2 = L2/8 result in FNP = √
λp2/λp1 = 1, as expected.

The elliptical path from Fig. 7c does not have an analytical expression for IOr ; however, a numerical
integration results in FNP = √

λp2/λp1 ∼= b/a with a 6.4% RMS error for ratios 0 < b/a ≤ 1. This FNP
estimate is coherent with the convex enclosure estimate from Fig. 3.

However, convex enclosuremethods have amajor limitation: They cannot tell apart convex from nonconvex
paths that share the same enclosure. The MOI method, on the other hand, considers the shape of the entire
multiaxial load path in the integral calculation, better describing the nonproportionality of the load history.

Finally, consider the plastic strain history from Fig. 7d, which describes a rectangle centered at the origin
of the e1pl × e3pl diagram with sides 2a and 2b(a ≥ b). From Eq. (15), the accumulated plastic strain for
each full cycle is p = 2/3 · (4a + 4b), where (4a + 4b)is the rectangle perimeter. The RMOI IOr is the sum
of the tensors IOhr and IOvr , associated, respectively, with the two horizontal and two vertical path segments.
Each of the two horizontal path segments has a constant e23pl = b2 and e1pl varying between −a and a with an
equivalent plastic strain variation �ph = (2/3) · (2a) = 4a/3, while each of the two vertical segments has a
constant e21pl = a2 and e3pl varying between −b and b with �pv = (2/3) · (2b) = 4b/3. It follows that

IOr = IOhr + IOvr = 2 · �ρh

p
·
[
a2/3 0

0 b2

]
+ 2 · �ρv

p
·
[
a2 0

0 b2/3

]

= 1

a + b
·
[
ba2 + a3/3 0

0 ab2 + b3/3

]
, (18)

and, since b ≤ a, the eigenvalues of IOr result in the estimate

FNP =
√

λp2

λp1
=

√
ab2 + b3/3

ba2 + a3/3
= b

a
·
√

3 + b/a

1 + 3 · b/a . (19)



Multiaxial stress or strain histories 3097

The extreme values of the above estimate are coherent with experimental data, predicting FNP = 0 for
a proportional loading with b/a = 0, and FNP = 1 for a square loading path with b/a = 1, whose convex
enclosure would be a circle and thus confirm the estimate FNP = 1.

Finally, even though both MOI and Bishop’s methods estimate FNP using somewhat similar integrals and
eigenvalue expressions, their results are quite different, since the former uses the principal RMOI of deviatoric
plastic strain paths with respect to the origin O , while the latter uses the principal RMOI of the stress paths
with respect to their mean component.

5 Experimental evaluation of FNP predictions

There are no commercial testing machines capable of independently applying six stress components to a test
specimen; therefore, it would not be easy to experimentally evaluate the effectiveness of the 6D FNP predictions
for general multiaxial loading conditions. Nevertheless, the evaluation of the 3D and 2D-based predictions of
FNP can be performed using tension–torsion experiments and simulations. The evolution of the vonMises stress
from tension–torsion experiments can be compared with the corresponding von Mises value of an incremental
plasticity simulation without considering NP hardening. The ratio between these values should describe the
evolution of the (1 + αNPFNP) term. Once the material parameter αNP is calibrated, the evolution FNP can be
“experimentally measured” in an iterative process involving numerical simulations with different FNP until
finding the one that minimizes the root-mean-square error between the predicted and experimental stress paths
(for a given strain history).

Figure 8 exemplifies this routine, for 90◦ out-of-phase tension–torsion experiments. For a given strain
history describing circular paths in the εx × γxy/

√
3 diagram, the experimentally measured resulting stresses

are plotted in a σx × τxy
√
3 diagram, from which the evolution of the von Mises stress

√
σ 2
x + 3τ 2xy with the

accumulated plastic strain p is obtained. An incremental plasticity simulation is then performed on the given
strain history, calculating the stress evolution without considering NP hardening. Then, the ratio between the
vonMises stresses between the experiments and simulations estimates the evolution of the (1+αNPFNP) term,
used to calibrate the evolution of FNP for a given (previously calibrated) αNP. The obtained FNP is used again
in a new incremental plasticity simulation to check whether the calculated path agrees with the experimental
path within a desired calibration tolerance. If they still differ, then the ratio between the von Mises stresses
from the experiments and simulations is once again calculated to fine-tune the value of FNP. This process
continues until FNP is “calibrated” within a desired tolerance.

Experimental tension–torsion measurements from Itoh et al. [3] and Kida et al. [16] are used to evaluate
Bishop’s estimate and the presented 2D version of the MOI method to calculate FNP. The experiments were

Fig. 8 LeftApplied 90◦ out-of-phase tension–torsion strains in the εx ×γxy/
√
3 diagram; right resulting stresses in the σx ×τxy

√
3

diagram obtained from 316L-steel simulations neglecting NP hardening (solid line) and from experiments (dashed curve)
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Fig. 9 Strain paths εx × γxy/
√
3 used in the experimental validation of the FNP predictions

performed in a 304 stainless steel with Young’s modulus E = 200GPa, shear modulus G = 82MPa, uniaxial
cyclic hardening coefficient Hc = 670MPa and exponent hc = 0.125, and additional hardening coefficient
αNP = 0.9. Fourteen periodic histories are studied, represented by the strain paths ε ×γxy/

√
3 shown in Fig. 9

for Cases 0 through 13. The normal strain range �ε of all studied experimental data is fixed near 0.8%, to
avoid issues with the strain amplitude dependence of αNP.

The associated plastic strain history in each case is evaluated from incremental plasticity calculations using
Jiang–Sehitoglu’s nonlinear kinematic model [17]. The material parameters are calibrated from uniaxial data
using the procedure described in [18], neglecting transient ratcheting effects. NP hardening is considered in
the model by continuously changing the generalized plastic modulus coefficients c(i) [17] from each hardening
surface i , by the equation

c(i)(p) = c(i) · [HNP(p)/Hc]1/hc, HNP(p) = Hc · [1 + αNP · FNP(p)]︸ ︷︷ ︸
NP evolution

(20)

where Hc and hc are Ramberg–Osgood’s uniaxial cyclic hardening coefficient and exponent, HNP(p) is the
current Ramberg–Osgood coefficient considering NP hardening, and p is the accumulated plastic strain.

For each strain-controlled loading Case 0 through 13, the incremental plasticity code is iteratively executed
for several candidate values of FNP, until the root-mean-square (RMS) error between the calculated and the
measured strain paths in the σ × τ

√
3 diagram is minimized. The value of FNP that minimizes the RMS error

for each of the 14 paths is assumed to be the experimentally measured NP factor, which is compared in Fig. 10
with the predictions from Bishop and the 2D version of the MOI method. As shown in the figure, the MOI
method predicts better values for FNP than Bishop’s method, which overestimates roughly by a factor of 2 or
more the NP factors of load histories with low values 0 < FNP < 0.5 such as Cases 6, 7, and 11, confirming
the calculations from [11] that used the original 5DMOI formulation. Moreover, Itoh’s method underestimates
FNP for cross- and star-shaped load histories, as shown in Cases 1–4 in Fig. 10.

6 Conclusions

TheMOImethod is able to predict the nonproportionality factor FNP of periodicmultiaxial histories, evaluating
the out-of-phase extent of a loading history based on the eigenvalues of the rectangular moment of inertia of
the plastic strain path. This measure of FNP is independent of the particular choice of the coordinate system,
being invariant under coordinate transformations. Contrary to convex enclosure methods, the MOI method
accounts for the contribution of every single segment of the load path, dealing with arbitrarily shaped histories
without losing information about their shape. The MOI calculation is applicable to both constant and variable
amplitude loading, as long as it is periodic and the steady-state value of FNP does not vary significantly along
each period (which is usually the case in most practical periodic load histories).
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Fig. 10 Experimentally measured and predicted FNP from the MOI, Itoh’s and Bishop’s methods for Cases 0 through 13, for a
304 stainless steel at strain range levels near 0.8%. Note that the proportional Cases 0 and 5 result in zero NP factors

Under free-surface conditions, the proposed 3D and 2D versions of the MOI method exactly reproduce
the 5D MOI predictions, with a lower computational cost. The 3D formulation for free surfaces is simpler
and more computationally efficient than the 5D and 6D formulations, also with the advantage of guaranteeing
plastic strain incompressibility, a major numerical issue in many 6D simulators. To quantitatively evaluate
the efficiency of the 3D formulation, the relative computational times of all incremental plasticity simulations
from this paper were evaluated, all of them including Tanaka’s NP and Jiang’s nonlinear kinematic hardening
models. Compared to the computational times using a 6D formulation, on average the 5D formulation only
took 47% of the total time, the 3D took 40%, and a further reduced 2D model (useful, for example, for
tension–torsion histories) took only 33%. Experimental results demonstrated the effectiveness of the proposed
approach.
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