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The calculation of elastoplastic strains from stress histories, or vice-versa, is an important computational
step in low-cycle fatigue analyses. This step is a challenging task for general multiaxial non-proportional
(NP) loading histories, where the principal stress directions are not constant, requiring 6D incremental
plasticity calculations to correlate the six stress with the six strain components considering plasticity
effects. However, a large number of multiaxial fatigue problems only involve combined tension and/or
bending and torsion loads, which are associated with only one normal and one shear stress component.
The use of a special 2D formulation, instead of 6D, can greatly simplify the necessary incremental plas-
ticity calculations for these practical problems. In this work, a new 2D tension–torsion incremental plas-
ticity formulation is introduced, integrating non-linear kinematic (NLK) hardening models and NP
hardening effects in a very efficient way, exactly reproducing tension–torsion calculations from more
general 6D models, but with less than one fifth of the computational cost. The proposed 2D approach
is validated by comparing NP strain-controlled tension–torsion experiments in 316L steel tubular spec-
imens, a material that presents significant NP hardening effects, with experimental and predicted stress
paths, calculated either with 6D or the proposed 2D formulation.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Most engineering applications involve either known stress or
strain histories, but not both. New components are normally
designed based on stress histories calculated or estimated from
measured or specified design loads, whereas advanced structural
integrity evaluations use strain histories properly measured in
the field under actual service conditions; since stresses cannot be
measured, they can only be calculated. However, most multiaxial
fatigue models require both the stress and the strain histories to
quantify the damage induced by the loading history.

Calculation of multiaxial stresses from given strains or
vice-versa is a trivial task if the load at the critical point is linear
elastic (LE), only requiring the application of Hooke’s law. But for
low-cycle fatigue calculations, where cyclic plasticity effects can
be very significant, incremental plasticity models are usually
needed to correlate multiaxial stresses and strains, especially
under variable amplitude (VA) non-proportional (NP) loadings.
Two approaches can be followed in these cases to estimate crack
initiation lives: performing global elastoplastic (EP) incremental
finite element (FE) calculations for the entire component along
the loading history, a computationally prohibitive task for VA load
histories with many cycles or events; or instead use a much sim-
pler global–local approach [1–5], where a single LE FE calculation
on the entire piece is performed for a static unit value of each
applied loading, followed by local incremental plasticity calcula-
tions at every load step only at the critical point(s), to correct for
plasticity effects.

The former approach requires global Finite Element (FE) calcu-
lations to evaluate the interaction among EP stresses and strains,
considering as well stress gradient effects near the critical point.
This global EP FE approach thus needs to adopt an incremental
plasticity formulation in every element of the mesh that represents
the studied structural component that suffers plastic strains. This
requirement is computationally very intensive, especially when
dealing with long loading histories, since it implies in having to
solve the EP FE problem for the entire piece for every load incre-
ment of every load cycle (or of every load event in complex VA
cases, where cycles cannot be identified).

The global–local approach, on the other hand, can be very
accurate and computationally much more efficient if carefully
performed, as described next. Consider a general case of N applied
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loads (which could be e.g. forces, moments, or displacements),
with time histories given by F1ðtÞ; F2ðtÞ, . . ., see Fig. 1. A constant
unit load F1ðtÞ ¼ 1 is imposed to the piece in a LE FE calculation,
to obtain the resulting six stress and strain components at the
critical point, which would constitute the LE stress and strain
influence factors Krx1;Kry1;Krz1;Krxy1;Krxz1;Kryz1;Kex1;Key1;Kez1;

Kexy1;Kexz1, and Keyz1, see Fig. 1. Another LE FE calculation with only
F2ðtÞ ¼ 1 would then obtain the associated stress and strain influ-
ence factors Krx2;Kry2, . . ., Keyz2, and so on. These factors can then
be organized into LE stress and strain influence matrices, as shown
in Fig. 1, which calculate the so-called pseudo-stresses and pseudo-
strains (represented with a tilde ‘‘�” mark, see Fig. 1), i.e. stresses
and strains assumed to be LE, even though they in general might
not be elastic and thus later require elastoplastic corrections.

These matrices are then used to compute the so-called pseudo-
stresses and pseudo-strains which, as mentioned above, are
fictitious quantities calculated assuming the material follows
Hooke’s law at the critical point of the piece. The pseudo-stresses
~~r and strains ~~e are obtained after multiplying the actual value of
the loadings F1ðtÞ; F2ðtÞ, . . ., at each instant t by their associated
LE influence factors, and adding them at the critical point using
the superposition principle.

If the critical point is not evident, then these matrices need to be
calibrated for each potential critical location. The potential location
that results in the highest accumulated multiaxial fatigue damage
is then the critical point where the crack is expected to initiate. The
direction of such a crack could also be calculated using the critical-
plane approach for all candidate planes at this critical point [6].

The resulting pseudo-histories ~~rðtÞ and ~~eðtÞ can deal with mul-
tiple in- or out-of-phase loading sources applied to the structural
component, but they are LE values that in general still require EP
corrections to reproduce the true stresses and strains at its critical
point. Indeed, in their LE form they can only be used in the absence
of significant macroscopic plasticity at the critical point, i.e. they
are only useful for high-cycle fatigue calculations that do not
involve residual stresses induced by eventual overloads. Other-
wise, a proper multiaxial incremental plasticity formulation must
be used to account for cyclic kinematic, isotropic, and NP harden-
ing effects in the EP stress/strain behavior, in general considering
notch stress and strain concentration effects [1–5]. However, the
involved calculations require the solution of a set of dozens of stiff
differential equations, a challenging task that prevents its wide-
spread use in engineering problems without the aid of advanced
and dedicated commercial fatigue software, thus involving costs
that are usually prohibitive for small companies.

In the following sections, a new simplified yet accurate
incremental plasticity formulation is fully developed for combined
Fig. 1. FE-calibrated linear elastic matrices correlating several applied scalar load historie
point.
tension–torsion problems, a very important practical case induced
by normal and/or bending and torsional loads in common
components such as shafts and beams. It is shown that the full
6D stress–strain problem does not need to be solved in such cases,
which can be managed using a 2D reduced-order formulation that
much simplifies its computer implementation and also reduces the
calculation time in more than 80%.

2. Tension–torsion hardening formulation

Tension–torsion incremental plasticity calculations are most
efficiently performed in a 2D stress space rx � sxy

p
3, where rx is

the normal and sxy
p
3 is the effective shear stress. The yield surface

is defined as the root locus of the stress states~s ¼ rx sxy
ffiffiffi
3

p� �T
(or

stress points, where T stands for transpose of a vector or matrix)
where the material starts to yield. Under tension–torsion, the yield
surface can be described as a circle in this diagram if the material
follows the von Mises criterion, since

~s ¼ rx sxy
ffiffiffi
3

p� �T ) Y ¼ j~sj2 � S2 ¼ r2
x þ 3s2xy

� �
� S2 ¼ 0 ð1Þ

where S is the current radius of the yield surface, e.g. the monotonic
yield strength SY for a tensile test or the cyclic yield strength SYc for
a cyclically-stabilized loading, and Y ¼ 0 is the yield function.

2.1. Kinematic hardening formulation

Loading a piece above its yield limit in one direction reduces (in
absolute value) its yield strength in the opposite direction, a phe-
nomenon known as the Bauschinger effect. For a tension–torsion
history, this effect can be represented as a translation of the yield
surface, whose center translates to a so-called backstress position

~b ¼ bx bxy

ffiffiffi
3

ph iT
, see Fig. 2 [7]. This backstress vector is the quan-

tity that stores the plastic memory effects required for kinematic
hardening calculations.

Assuming the normal stresses in the x direction, if the material
is isotropic and thus has symmetry in the y and z directions, then
its elastic (el) and plastic (pl) strain components can also be repre-
sented in 2D, by

~eel � ð1þ mÞ � exel
cxyel

2�ð1þmÞ
ffiffiffi
3

ph iT
and ~epl � 3

2
� expl

cxyplffiffi
3

p
h iT ð2Þ

where m is Poisson’s ratio, e stands for normal and c for shear
strains.

This efficient representation is a 2D strain sub-space from the
5D deviatoric space introduced in [8] and further detailed in [9].
s with the twelve resulting pseudo-stress and pseudo-strain histories at the critical



Fig. 2. Kinematic hardening in the x direction and the associated yield surface
translation in the rx � sxy

p
3 von Mises diagram.
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Fig. 3. Representation of the yield surface center in the rx � sxy
p
3 von Mises

diagram using M ¼ 3 backstress components.

306 H. Wu et al. / International Journal of Fatigue 91 (2016) 304–312
This definition of the 2D elastic strain simplifies Hooke’s law to a
much more convenient scalar relation:

~eel � ð1þ mÞ � exel
cxyel
2

ffiffiffi
3

ph iT
¼ rx

E=ð1þmÞ
sxy
2G

ffiffiffi
3

ph iT
¼ ~s

2G
) ~eel ¼

~s
2G

ð3Þ

where E is Young’s modulus and G � E/(2 + 2mÞ is the shear modu-
lus. The 2D plastic strain ~epl can then be obtained from the 2D ~eel
by replacing the elastic Poisson ratio m with 0.5. Another advantage
of these 2D strain spaces is that their norm is proportional to the
elastic and plastic parts of the associated von Mises strain.

Note however that, in notch tips or in complex geometries with
different transversal constraint factors in the y and z directions, it is
possible to have ey – ez or non-zero ry – rz under plane-strain
states even for isotropic materials. Such problems require instead
an incremental plasticity formulation with higher dimension to
describe their multiaxial re behavior. Despite this limitation, the
2D formulation presented in this work is perfectly suitable for sim-
ulating the behavior e.g. of tubular tension–torsion test specimens,
the most adopted geometry for evaluating multiaxial properties of
materials [7], providing a valuable tool to simulate and analyze the
behavior of materials with a much lower computational cost than
higher dimension models.

Infinitesimal plastic strain increments d~epl can be correlated
with infinitesimal stress increments d~s using the Prandtl–Reuss
rule

d~epl ¼ 1
P
� ðd~sT �~nÞ �~n ð4Þ

where P is the current generalized plastic modulus, and ~n is the
normal unit vector perpendicular to the yield surface Y ¼ 0 at the
current stress state, calculated from

~n ¼ ð~s�~bÞ=S; if j~s�~bj ¼ S ð5Þ
Clearly, if the current stress state is elastic, then it is inside the

yield surface, thus j~s�~bj < S and the normal unit vector (which is
only used during plastic straining) is not defined.

The two main attributes of a kinematic hardening model are to
compute the evolution of the center of the yield surface, i.e. the

evolution of the backstress ~b, and to compute the current value
of the plastic modulus P. There are several models to calculate
the current value of P and of the infinitesimal yield surface

translation d~b during plastic straining, which can be divided into
three main classes: Mróz-multi-surface [10,11], two-surface
[12,13], and non-linear [14] kinematic hardening models. Mróz-
multi-surface models result in a multi-linear description of the
stress–strain curve, where P is assumed as piecewise constant; this
linearity prevents such models to correctly predict complex
(although not unusual) plasticity effects such as ratcheting and
mean stress relaxation, which can be very important in practical
applications [15]. Non-linear kinematic (NLK) hardening models
solve this issue, adopting non-linear equations to describe the evo-
lution of P, therefore their (more general) formulation is the one
adopted in this work. Two-surface models combine elements of
both NLK and Mróz-multi-surface kinematic hardening models,
however their description of plastic memory is limited and not
recommended for complex variable amplitude (VA) histories com-
monly found in fatigue.

The original NLK model, proposed by Armstrong and Frederick
[16], uses non-linear equations to calculate the incremental trans-

lation d~b of the yield surface at every load step, however its plastic
memory capabilities are too limited to be applied to more complex
VA loading. Chaboche [17] improved their model, indirectly
introducing some multi-surface elements into the NLK models,
using a better non-linear formulation instead of the simplistic
Mróz-multi-linear approach. Chaboche assumed that the yield sur-

face center ~b at every load step can be represented as a sum of M

backstress components ~bi (i = 1, 2, . . ., M), see Fig. 3, thus

~b �~b1 þ~b2 þ � � � þ~bM ð6Þ
Each backstress component ~bi is associated with a saturation

value Dri that limits the maximum value of its norm, thus

j~bij 6 Dri. A zero norm is related to an unhardened material state
with high generalized plastic modulus P (indeed, note that a purely
elastic state would have P ! 1), while a saturated norm

j~bij ¼ Dri represents a hardened state with much lower P (con-
versely, a plastic collapse condition with ~epl ! 1 would have

P ! 0). Moreover, each ~bi is also associated with a generalized
plastic modulus coefficient pi, used in the calculation of the current
value of P through

P ¼ ð2=3Þ � p1 �~vT
1 þ p2 �~vT

2 þ � � � þ pM �~vT
M

� � �~n ð7Þ

where ~n has been defined in Eq. (5) and ~v i are translation direction
vectors for each surface that depend on the adopted NLK model.

Eq. (7) satisfies the consistency condition, which prevents the
current stress state ~s from moving outside the yield surface

(i.e. prevents the impossible configuration j~s�~bj > SÞ, as long as

the infinitesimal translations d~bi of the backstress components ~bi

are such that

d~bi ¼ pi �~v i � dp; if j~bij< Dri ðunsaturated condition for~biÞ
0; if j~bij ¼ Dri ðsaturated condition for~biÞ

(
; i¼ 1;2; . . . ;M

ð8Þ

where dp � ð2=3Þ � jd~eplj is the equivalent plastic strain increment,
which from Eq. (4) results in
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dp ¼ ð2=3Þ � ðd~sT �~nÞ=P ð9Þ
Using the above notation, the only difference among the main

NLK models is the choice of the equation for the translation
direction vectors~v i. A generalized surface translation rule has been
proposed in a companion work [18]:

~v i ¼~n � Dri|fflfflffl{zfflfflffl}
Prager—
Ziegler

�v�
i �m�

i � ci �
"
di �~bi|fflffl{zfflffl}
dynamic
recovery

þ ð1� diÞ � ~bT
i �~n

� �
�~n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

radial
return

#
ð10Þ

where the scalar functions v�
i and m�

i are defined as

vi� � j~bij
Dri

 !vi

and mi� �
~bT
i �~n=j~bij

h imi
; if ~bT

i �~n > 0

0; if ~bT
i �~n 6 0 and mi – 0

ðor 1 if mi ¼ 0Þ

8>><
>>: ð11Þ

where vi;mi, ci, and di are adjustable ratcheting parameters for each
backstress component.

These versatile equations can reproduce Chaboche’s model [17]
if vi ¼ ci ¼ di ¼ 1 and mi ¼ 0; Jiang–Sehitoglu’s model [19,20] for
ci ¼ di ¼ 1;mi ¼ 0 and adjustable 0 < vi < 1; Ohno-Wang II [21]
for ci ¼ di ¼ mi ¼ 1 and adjustable 0 < vi < 1; Delobelle’s [22]
for vi ¼ mi ¼ 0 and adjustable 0 < ci < 1 and 0 < di < 1; Burlet–
Cailletaud’s model [23] for vi ¼ di ¼ mi ¼ 0 and adjustable
0 < ci < 1; among others.

Replacing Eq. (10) into Eq. (7), the generalized plastic modulus
becomes

P ¼ ð2=3Þ �
XM
i¼1

pi �~vT
i �~n

¼ ð2=3Þ �
XM
i¼1

pi � Dri � v�
i �m�

i � ci �~bT
i �~n

� �
ð12Þ
Fig. 4. Measured and simulated stress–strain curves adopting 0.2%, 0.1% or 0.002%
plastic strain thresholds to define the yield surface (data for 316L stainless steel).
2.2. Isotropic and NP hardening formulation

Besides kinematic hardening, materials can suffer isotropic and
NP hardening effects [18]. Isotropic hardening (or softening)
accounts for the changes in the material yield strength associated
with the expansion (or the contraction) of the yield surface under
cyclic loading, while it gradually changes from the monotonic
radius S ¼ SY to the cyclic radius S ¼ SYc . Non-proportional (NP)
hardening accounts for the increase in the material yield strength
associated with the expansion of the yield surface caused by NP
multiaxial loading histories in sensitive materials like austenitic
stainless steels, increasing its radius towards a target value
SYc � ð1aNP � FNPÞ, where 0 6 FNP 6 1 is a load-path-dependent NP
hardening factor, while 0 6 aNP 6 1 is the material-dependent
additional hardening coefficient.

In this work, instead of changing the yield surface radius,
isotropic and NP hardening effects are accounted for by gradually
changing the generalized plastic modulus coefficients pi, while
keeping constant the yield surface radius and all saturation values
Dri. This approach is much simpler to implement in a computer
code, because a varying yield surface radius would result in a more
complex consistency condition. Moreover, this approach results in
essentially the same stress–strain predictions as the ones with
varying radius, as long as the yield surface is defined for a low
plastic strain level.

Moreover, since in the NLK formulations the material behavior
inside the yield surface is assumed linear elastic, in their imple-
mentations it is recommended to adopt a much smaller yield
surface than the one associated with the traditional monotonic
or cyclic yield strengths arbitrarily defined at a 0.2% plastic strain
level, using a value like 0.02% or even 0.002% for the plastic strain
threshold to avoid a discontinuous derivative in the calculated
stress–strain hysteresis loops. Such smaller yield surfaces can be
regarded as a practical elastic limit for the material. Fig. 4 shows
measured and simulated stress–strain curves for 316L. The use of
a 0.002% threshold allows for a very good calibration of the
material stress–strain behavior. On the other hand, incremental
plasticity simulations with the yield surface defined for 0.1% or
0.2% levels forces a purely elastic behavior even beyond 370 MPa,
making it impossible to accurately describe the stress–strain curve
for stresses close to the yield strength. In cyclic plasticity simula-
tions, such a detaching from the actual stress–strain curve can
accumulate significant numeric errors.

In the formulation proposed in this work, to account for isotro-
pic and NP hardening, the generalized plastic modulus coefficients
piðpÞ evolve from their initial values pið0Þ (from a virgin material)
through the equation

piðpÞ ¼ pið0Þ � f½1þ aNP � FNPðpÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NP evolution

þðSY=SYc � 1Þ � e�hrc �p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
isotropic evolution

g1=hc ð13Þ

where p � R dp is the accumulated plastic strain, hrc is an isotropic
hardening rate (typically between 0.5 and 50 for metals), hc is
Ramberg–Osgood’s exponent, and the scalar function FNPðpÞ is the
transient value of the load-path-dependent NP factor at every load
step.

To compute Eq. (13) for tension–torsion histories, the evolution
of FNPðpÞ is calculated using a 2D version of Tanaka’s NP hardening
model [24], adopting a symmetric 2 � 2 (instead of the usual 5 � 5)
polarization tensor ½PT �, initially equal to zero and with an evolu-
tion equation dictated by the tensor hardening rate hrT through

½dPT � ¼ ð~n �~nT � ½PT �Þ � hrT � dp; where ½PT � �
Pr Prs
Prs Ps


 �
ð14Þ

If the current plastic straining direction is defined as
~n � nr ns½ �T , then the scalar evolution equations for the elements
from ½PT � can be written as

dPr ¼ n2
r � Pr

� � � hrT � dp; dPs ¼ n2
s � Ps

� � � hrT � dp and
dPrs ¼ ðnrns � PrsÞ � hrT � dp ð15Þ

Then, from the above 2D formulation, it is possible to show that
Tanaka’s NP hardening model results in an evolution equation for
the transient NP factor FNPðpÞ given by
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dFNPðpÞ ¼ ½FNPt � FNPðpÞ� � hrNP � dp;

FNPt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P2

rn2
s þ 2P2

rs þ 2P2
sn2

r � 4PrsðPr þ PsÞnrns
P2
r þ 2P2

rs þ P2
s

s
ð16Þ

where hrNP is a NP hardening rate that dictates how fast the yield
surface radius changes from its current value to its NP-hardened
target value FNPt .

In practice it is recommended to calibrate Tanaka’s hardening
rates hrT and hrNP satisfying the restriction hrT 6 hrNP 6 2:5 � hrT ,
to avoid predicting a transient FNPðpÞ greater than 1.0, as verified
from extensive simulations.

2.3. Strain-rate, temperature and creep effects on hardening

The presented hardening models assume quasi-static loading
histories under temperatures much lower than the material melt-
ing point. However, strain-rate effects must be considered for very
fast loadings, e.g. to model the hardness increase observed during
an impact, or stress relaxation under long constant strain steps.
Such viscoplastic strain-rate effects can be relevant in metallic
structures. High temperature can activate as well creep mecha-
nisms, resulting in an increase in inelastic deformation even under
constant loads. For austenitic stainless steels such as 304L, such a
deformation under constant loads may even happen at room tem-
perature [25].

Creep and strain-rate effects are somewhat related, but for met-
als they can be conveniently separated by the order of magnitude
of the associated strain rates [14]: viscoplastic creep mechanisms
are usually associated with creep strain rates between 10�8=s
and 10�4=s, while strain-rate effects become relevant for metals
typically above 10�4=s.

Several models have been proposed to incorporate strain-rate
and temperature effects into the hardening behavior. One of the
simplest is the popular Johnson–Cook’s (J–C) model [26]. For a
given uniaxial plastic strain rate _expl � dexpl=dt applied undermono-
tonic conditions at a fixed temperature H, J–C’s model predicts a
dynamically-corrected stress

rxdyn ¼ rx � f1þ aJC � lnðj _expl j= _p0Þg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
strain-rate hardening factor

� f1� ½ðH�H0Þ=ðHf �H0Þ�mJCg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
thermal softening factor

ð17Þ
where rx is the associated stress under quasi-static conditions
(calculated e.g. using Ramberg–Osgood’s equation or any rate-
independent incremental plasticity model) obtained at a reference
temperature H0 (usually set as room temperature), and aJC ;mJC ,
Hf , and _p0 are material constants: aJC is the strain-rate hardening
coefficient, mJC is the thermal softening exponent, Hf is the melting
temperature, and _p0 is the quasi-static plastic strain rate below
which dynamic effects are negligible, usually assumed
_p0 ¼ 2 � 10�3=s for metals.

In this work, J–C’s uniaxial model is assumed valid for
multiaxial loadings, using the equivalent plastic strain rate
_p � dp=dt, where dp is the previously-defined equivalent plastic
strain increment. Under uniaxial conditions, it follows that
dp ¼ jdexpl j, therefore _p ¼ j _expl j, allowing the definition of dynamic
(rate-dependent) generalized plastic modulus coefficients pdyni

ðpÞ

pdyni
ðpÞ ¼ piðpÞ � f1þaJC � lnð _p= _p0Þg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

strain-rate hardening factor

� f1� ½ðH�H0Þ=ðHf �H0Þ�mJCg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
thermal softening factor

ð18Þ
Therefore, strain-rate and temperature effects on strain harden-

ing could be considered in incremental plasticity calculations by
simply replacing the quasi-static piðpÞ from Eq. (13) with the
dynamic pdyni
ðpÞ. For quasi-static loadings ð _p < _p0Þ, the above

expression must be evaluated assuming _p ¼ _p0. It is important to
emphasize that, for uniaxial loadings, this incremental formulation
would exactly reproduce J–C’s uniaxial model. However, its gener-
alization to multiaxial loadings is just an approximation, and it
should be verified with proper multiaxial tests under high strain
rates, which is not the main focus of this work.

The incorporation of time-dependent creep in incremental plas-
ticity models is a more challenging problem than the consideration
of strain-rate effects [25]. One approach involves the so-called
unified viscoplasticity (or unified hardening) approach, which
assumes that all plastic and creep strains can be represented
altogether in the same inelastic strain variable, being able to predict
the coupled influence of creep strains on the strain-hardening
behavior of the material. On the other hand, the non-unified vis-
coplasticity approach assumes a partition between plasticity and
creep, i.e. plastic and creep strains are treated independently. These
two approaches are beyond the scope of this work, but they are
extensively discussed in [14].
3. State-space representation of the tension–torsion
formulation

The set of differential equations presented in Eqs. (4)–(16) is
usually stiff, i.e. some states can vary orders of magnitude faster
than others, requiring very efficient numerical integration schemes
with adjustable step increments to solve them. The numerical
approach proposed in this work uses Gear’s method for solving stiff
systems of differential equations [27].

To apply Gear’s method, a state-space representation of all
presented incremental plasticity equations is adopted, including
kinematic, isotropic, and NP hardening transient equations. In this
representation, the stress and strain states, aswell as all internal vari-

ables from the material, are represented in a single state vector ~X,
whose evolution is described by first-order differential equations. If
Mbackstresscomponentsarechosen torepresent thematerialbehav-
ior (with M typically greater than 4 for more refined calculations),

then the state variable~X from the proposed tension–torsion formula-
tion becomes a (column) vector with 2M þ 9 elements, namely

~X ¼ ~sT ~eT p Pr Ps Prs FNP
~bT
1

~bT
2 . . . ~bT

M

� �T ð19Þ

where the 2 � 1 vectors~s and~e �~eel þ~epl store the tension–torsion
input/output stresses and strains, the scalar p is the current accumu-
lated plastic strain, the next four elements store internal variables
needed to predict the NP hardening evolution from Tanaka’s model,
and the last 2M elements store plasticmemory from kinematic hard-
ening through M two-dimensional backstress components.

For any given stress history,~s is treated as a time input~sðtÞ from
which~eðtÞ is calculated, and vice-versa for any given strain history.
Note that the elastic and plastic strain components ~eel and ~epl do

not need to be individually stored in the state variable ~X, because
under tension–torsion they can be promptly computed at each
simulation instant t from the relations exel ¼ rx=E, expl ¼ ex � exel,
cxyel ¼ sxy=G, and cxypl ¼ cxy � cxyel. Moreover, the assumed y� z
symmetry allows the calculation of the remaining strain and stress
components from eyel ¼ ezel ¼ �mexel and eypl ¼ ezpl ¼ �0:5 � exel,
where under free-surface conditions ry ¼ rz ¼ sxz ¼ syz ¼ 0 and
cxz ¼ cyz ¼ 0. To solve the initial value problem using Gear’s
method [27], the state evolution must then be written in the form

d~X=dt ¼~f ð~X; tÞ ð20Þ

where t stands for time, and ~f ð~X; tÞ is a non-linear vector function
with 2M þ 9 elements as well.
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For time-independent plasticity, this t parameter can be
regarded not as an actual time, but instead just as an index used
to account for the load history sequence assuming a data sampling
rate with a constant unit frequency, supposing it uses e.g. a fixed
1 s interval between samples. So, if~eð503Þ and~eð504Þ are measured
strains from two consecutive data samples number 503 and 504,
then the rate d~eðtÞ=dt can be linearly estimated for all ‘‘instants”
503 s 6 t < 504 s from the difference ½~eð504Þ �~eð503Þ�. However,
if time-dependent models had been included in the simulation to
account e.g. for creep, strain-rate, or other viscous effects, then this
parameter twould need to correspond to the actual time from each
measured state.

At each integration step, the current backstress is calculated

through ~b �~b1 þ~b2 þ . . .þ~bM , to obtain the normal vector
~n ¼ ð~s�~bÞ=S � nr ns½ �T . If the norm of ~n is equal to 1.0 (within
some very small numerical tolerance, e.g. 10�10Þ and the stress
state is trying to move outside of the yield surface (i.e. d~sT �~n > 0
under stress control or d~eT �~n > 0 under strain control), then
plastic straining is currently under way. In this case, the current

plastic straining direction ~n � nr ns½ �T can be used to calculate
the generalized plastic modulus coefficients piðpÞ from Eq. (13),
to then obtain the current generalized plastic modulus

P ¼ ð2=3Þ �PM
i¼1piðpÞ � Dri � v�

i �m�
i � ci �~bT

i �~n
� �

, in addition to the

current target value FNPt of the NP factor using Eq. (16), resulting
in the state-space equation
d~X ¼

d~s

d~e

dp

dPr
dPs
dPrs
dFNP

d~b1

d~b2

..

.

d~bM

2
66666666666666666666664

3
77777777777777777777775

¼

d~sðtÞ or 2G � d~e� 2G � ½d~eT �~n � 2G=ð2Gþ PÞ� �~n
d~s=ð2GÞ þ ðd~sT �~nÞ �~n=P or d~eðtÞ
ð2=3Þ � ðd~sT �~nÞ=P
n2
r � Pr

� � � hrT � dp
n2
s � Ps

� � � hrT � dp
nrns � Prsð Þ � hrT � dp
ðFNPt � FNPÞ � hrNP � dp
p1 � ~n � Dr1 � v�

1 �m�
1 � c1 � ½d1 �~b1 þ ð1� d1Þ � ~bT

1 �~n
� �

�~n�
n o

� dp

p2 � ~n � Dr2 � v�
2 �m�

2 � c2 � ½d2 �~b2 þ ð1� d2Þ � ~bT
2 �~n

� �
�~n�

n o
� dp

..

.

pM � ~n � DrM � v�
M �m�

M � cM � ½dM �~bM þ ð1� dMÞ � ~bT
M �~n

� �
�~n�

n o
� dp

2
66666666666666666666666664

3
77777777777777777777777775

ð21Þ
For a known stress history, the given rates d~sðtÞ=dt are used in
the first row of Eq. (21), while the corresponding d~eðtÞ=dt are
obtained as shown in the second row on the left, calculated from
Eq. (4) and Hooke’s law. If the tension–torsion loading is instead
under strain control, then the given rates d~eðtÞ=dt are used in the
second row of Eq. (21), while the corresponding d~sðtÞ=dt are
obtained as shown in the first row on the right, calculated from
the inverse stress–strain problem.

On the other hand, if the current norm of ~n is smaller than 1.0
(within some very small numerical tolerance), or if the stress state
is trying to move inside the yield surface (i.e. in an elastic unload-
ing state with d~sT �~n < 0 or even d~eT �~n < 0Þ, then the stress/strain

increment is purely elastic, and all ~f ð~X; tÞ terms from Eq. (21)
become zero since in this case P ! 1 and dp =0, except for the first
two rows, which become Hooke’s law d~s ¼ 2G � d~e and
d~e ¼ d~s=ð2GÞ, respectively. Once Eq. (20) has been defined for both
elastic and elastoplastic conditions, it can be numerically inte-
grated using Gear’s method [27] to calculate the evolution of the
state ~X along the t parameter, given the initial condition ~Xð0Þ,
which should be null for a virgin specimen.
4. Experimental results

To verify the prediction capabilities of the presented numerical
framework, tension–torsion experiments have been performed on
annealed tubular 316L stainless steel specimens in a servo-
hydraulic multiaxial testing machine, shown in Fig. 5. A thin wall
of 1.5 mm is usually adopted in tubular specimens, to avoid having
to deal with stress gradient effects across the thickness. But, since
some experiments in this work involve large compression strains,
the minimum wall thickness is increased from 1.5 to 2.0 mm to
avoid buckling. On the critical section, the tubular specimen has
external and internal diameters dext ¼ 16 mm and dint ¼ 12 mm.
Engineering stresses and strains are calculated from load and
torque measurements made by the machine load cells and from
an axial/torsional extensometer, and then converted to true
stresses and strains. The engineering shear stresses include the
elastoplastic gradient correction recommended by ASTM E2207-
08 [28].

The cyclic properties of this 316L steel are obtained from
uniaxial tests, resulting in fitted Ramberg–Osgood uniaxial cyclic
hardening coefficient Hc = 74 MPa and exponent hc ¼ :123,
with Young’s modulus E = 193 GPa, Poisson ratio m = 0.3, and
G = E/(2 + 2m) ffi 74 GPa. To improve the calculation accuracy, the
backstress is divided into M ¼ 5 additive components, following
Chaboche’s idea [17]. Jiang–Sehitoglu’s kinematic hardening model
[19] is adopted, using its ci ¼ di ¼ 1, mi ¼ 0, and the parameter cal-
ibration procedure described in [20]: for a chosen set of general-
ized plastic modulus coefficients pi = {6176,786,100,12.7,1.62}
MPa, the resulting saturation values for the backstress components
become Dri ffi {66,85,109,141,217} MPa. No significant strain-rate
or creep effects were identified in the experiments, therefore they
were not included in the adopted formulation.

Uniaxial ratcheting experiments are used to calibrate the
adjustable exponents Xi needed in Jiang–Sehitoglu’s model, using
an RMS fit with respect to the corresponding simulations. Such a
calibration is a computationally-intensive and exhaustive ad hoc
task, requiring each uniaxial ratcheting experiment to be simulated
several times until the measured and simulated hysteresis loops
coincide within some tolerable RMS error. The presented 2D
formulation is particularly most valuable in this calibration proce-
dure, since it allows each simulation to be performed much faster
than using a 6D approach.



Fig. 5. Tension–torsion testing machine and extensometer mounted on a tubular
specimen.
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The adopted calibration procedure initially sets all ratcheting
exponents Xi as equal to 1.0, which would reproduce Chaboche’s
original NLK model. For the adopted M ¼ 5, this results in an initial
guess Xi = {1,1,1,1,1} for the M ratcheting calibration parameters.
The uniaxial ratcheting experiments involve tension–compression
loadings on the tubular specimens with significant mean compo-
nent. It has been observed that the first exponent X1 controls the
ratcheting behavior for lower stress ranges Drx, in which case
the outer hardening surfaces are barely activated. Therefore, it is
calibrated first, for uniaxial ratcheting histories with such low val-
ues of Drx. If the simulation overpredicts the ratcheting effect with
respect to the measurements, then the value of X1 is increased by
some chosen calculation percentage, e.g. 10%, otherwise it is
decreased, until the RMS error between the simulation and mea-
sured hysteresis loops is reduced to an acceptable threshold.
Notice that Chaboche’s Xi ¼ 1 usually overpredicts ratcheting
effects, while Xi ! 1 predicts no ratcheting, so usual calibrated
exponents are such that 1 6 Xi < 1.

Once X1 is calibrated, uniaxial ratcheting tests with increased
Drx are then used to iteratively calibrate X2, and so on, until X5

is calibrated from tests with large Drx. The chosen Drx level for
each calibration step must be larger than the diameter of the hard-
ening surface associated with each Xi, to guarantee this surface has
been significantly activated. For the studied 316L stainless steel,
the calibrated exponents resulted in Xi = {1,1,2.9,3,4}, which were
able to calibrate the uniaxial ratcheting experiments within an
RMS error in the resulting strains of less than 0.0012 = 0.12%, as
Fig. 6. Measured (light markers) and fitted (dark lines) rx � ex hysteresis loops from s
450 MPa.
seen in Fig. 6 for loops with rmax = 450 MPa and rmin = �300 MPa,
thus with Drx = 750 MPa.

After calibrating the incremental plasticity model, strain-
controlled tension–torsion load cycles were applied to (different)
tubular specimens, for non-proportional 90� out-of-phase circular
strain paths, see Fig. 7(left). These circular paths are particularly
challenging because they involve high NP hardening effects and
transients, as well as several neutral loading steps where the stress
path follows the perimeter of the yield surface (thus d~sT �~n ¼ 0Þ,
which is a known configuration for numerical instability. An
additional hardening coefficient aNP ¼ 0:86 is then iteratively
calibrated from the measured circular paths to minimize the RMS
errors between simulated and measured strain paths. NP harden-
ing rates are also calibrated in the same way, resulting in
hrNP ¼ 1:3 for an assumed hrT ¼ hrNP/2, giving hrT ¼ 0:65.

From the calibrated values, and approximating
2G ffi 148,000 MPa, the state-space equation for this annealed
316L steel under a strain-controlled condition with given infinites-
imal d~eðtÞ increments becomes, for a general elastoplastic step,

d~X¼

d~s

d~e

dp

dPr
dPs
dPrs
dFNP

d~b1

d~b2

d~b3

d~b4

d~b5

2
6666666666666666666666664

3
7777777777777777777777775

¼

148;000 �d~e�148;000 � ½d~eT �~n �148;000=
ð148;000þPÞ� �~n

d~eðtÞ
ð2=3Þ � ðd~sT �~nÞ=P
n2
r�Pr

� � �0:65 �dp
n2
s�Ps

� � �0:65 �dp
ðnrns�PrsÞ �0:65 �dp
ðFNPt �FNPÞ �1:3 �dp
6176 � f~n �66�ðj~b1j=66Þ

1 �~b1g �dp
786 � f~n �85�ðj~b2j=85Þ

1 �~b2g �dp
100 � f~n �109�ðj~b3j=109Þ

2:9 �~b3g �dp
12:7 � f~n �141�ðj~b4j=141Þ

3 �~b4g �dp
1:62 � f~n �217�ðj~b5j=217Þ

4 �~b5g �dp

2
666666666666666666666666666664

3
777777777777777777777777777775

ð22Þ

where ~b �~b1 þ~b2 þ � � � þ~bM;~n ¼ ð~s�~bÞ=S � nr ns½ �T , and

P ¼ 2
3
� 6176 � 66� j~b1j

66
�~bT

1 �~n
" #

þ 786 � 85� j~b2j
85

�~bT
2 �~n

" #(

þ 100 � 109� j~b3j
109

 !2:9

�~bT
3 �~n

2
4

3
5þþ12:7 � 141� j~b4j

141

 !3

�~bT
4 �~n

2
4

3
5

þ 1:62 � 217 � j~b5j
217

 !4

�~bT
5 �~n

2
4

3
5
9=
; � ½1þ 0:86 � FNP �

1
0:123 � dp ð23Þ
tress-controlled uniaxial ratcheting experiments with stresses between �300 and



Fig. 7. Left: circular ex � cxy=
p
3 strain paths applied to the tension–torsion tubular specimens with amplitudes 0.2%, 0.4%, 0.6%, 0.8% and 1.0%; Right: resulting rx � sxy

p
3

stress paths experimentally measured (light lines) and predicted using the simulator (dark lines).

Fig. 9. Resulting rx � sxy
p
3 stress paths wrongfully predicted using the simulator

neglecting NP hardening effects (dark lines), and the actual experimentally
measured paths (light lines).

Fig. 8. Normal and shear hysteresis loops from applied circular tension–torsion strain histories, either experimentally measured (light lines) or predicted using the simulator
(dark lines).
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assuming generalized plastic modulus coefficients piðpÞ that only
consider the NP transient, while for simplicity ignoring the isotropic
hardening transient (i.e. setting hrc ! 1), thus

piðpÞ ¼ pið0Þ � ½1þ 0:86 � FNP�1=0:123 ð24Þ
When Eq. (22) is simulated using Gear’s method [27] with a

very refined relative precision 10�6 and absolute precision 10�9,
the applied circular tension–torsion strain paths result in the stress
paths from Fig. 7(right), showing a very reasonable agreement with
experimental results. Fig. 8 plots the corresponding normal and
shear hysteresis loops. Note that both kinematic and NP hardening
transients are captured by the implemented incremental plasticity
simulation, and that the NP hardening effect cannot be neglected,
as shown in Fig. 9.

The presented simulation from Figs. 7 and 8 involves 94,473
input strain points, taking in the proposed numerical framework
1509 s (about 25 min) to be computed in an i7-3770 CPU at
3.4 GHz with 16 GB RAM memory. To evaluate the numeric
efficiency of the proposed 2D approach, an identical incremental
plasticity simulation (for the same 94,473 points) is performed,
but using a 6D (instead of 2D) stress–strain formulation. Even if
the same efficient Gear’s method is used to solve the equations,
the 6D simulation takes 8650 s (over 144 min) to be computed in
the same CPU, i.e. about 5.7 times longer.
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Fig. 10. Residual error in the expl þ eypl þ ezpl summation for the 6D incremental
plasticity formulation, whose stability to avoid violating plastic strain incompress-
ibility adds computational cost.
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The traditional 6D incremental plasticity formulation is slower
due to its higher dimension, since for the adoptedM ¼ 5 backstress

components it would imply in a state variable ~X with 6M þ 29 = 59
instead of 2M + 9 = 19 elements (i.e. it would require the solution
of a set of 59 instead of 19 stiff differential equations). Moreover,
the 6D formulation does not guarantee plastic strain incompress-
ibility, therefore numerical errors could wrongfully result in a
sum of plastic strains expl þ eypl þ ezpl different than zero. Gear’s
method is able to keep this summation error below the chosen
absolute precision 10�9, see Fig. 10, but at a high computational
cost. The proposed 2D formulation, on the other hand, automati-
cally and exactly satisfies plastic strain incompressibility because
it adopts eypl ¼ ezpl ¼ �0:5exel and thus expl þ eypl þ ezpl ¼ 0, saving
considerable computational time.

5. Conclusions

In this work, a computationally-efficient 2D tension–torsion
incremental plasticity formulation was introduced, integrating
non-linear kinematic (NLK), isotropic, and NP hardening effects,
with the possible introduction of strain-rate and temperature
effects as well. The proposed approach is able to exactly reproduce
most modern NLK models, such as Chaboche’s, Jiang–Sehitoglu’s,
Ohno-Wang II, and Delobelle’s, among several others. Besides
reducing the state dimension and the number of required differen-
tial equations by a factor of at least 3, the 2D formulation also auto-
matically and exactly satisfies the plastic strain incompressibility
condition, resulting in a reduction of the computational cost and
time by a factor of at least 5. Non-proportional tension–torsion
experiments with 316L steel tubular specimens validated the
proposed approach.
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