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Notches induce localized stress concentration effects that can affect many failure mechanisms, in
particular the initiation and growth of short cracks under fatigue loads, significantly reducing the
strength of structural components under service loads. To decrease such nocive effects, notches are
usually designed with as large as possible circular arc tips, even though it has long been recognized this
is not the best solution to minimize such problems. Indeed, notches with properly shaped variable tip
radii can have a much smaller deleterious influence on fatigue strength, but such optimized notches still
are not routinely used in structural design. In fact, not even standard fatigue specimens specify them.
Nevertheless, such improved notches can be a very good design option to augment the strength of
structural components, since they barely affect their global dimensions or weight. Moreover, nowadays
they can be economically built due to the widespread availability of CNC machine tools. After comparing
the improvements achievable by some classic variable radii receipts, two simple and robust numerical
routines developed to optimize notch shapes for components that work under general multiaxial loading
conditions are presented and evaluated.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Most structural components must have brusque geometric
transition details such as holes, slots, grooves, corners, shoulders,
keyways, splines, threads, welded joints, or similar localized
undercuts or even reinforcements, which can be generically called
notches. Such notches are usually required for operational, struc-
tural, or manufacturing reasons, or else to decrease weight, so they
are in fact a practical need. However, if not properly designed they
can much perturb the local stress and strain fields around them,
locally increasing or concentrating the nominal stresses that would
otherwise act at their sites if their effects were negligible. Such
localized stress concentration effects depend on the notch geome-
try and on the loading conditions, and can much decrease the
actual component strength. Under higher loads they depend as
well on the load level and on the material hardening behavior,
since local yielding and other non-linear deformation mechanisms
affect the notch tip stresses and the stress gradients around them.
In simple yet very common linear elastic (LE) problems, local
effects on notch-tip stresses can be quantified by a material-
independent stress concentration factor (SCF) defined by

Kt ¼ rmax=rn ð1Þ

where rmax is the maximum stress acting at the notch tip and rn is
the nominal stresses that would act there if the notch had no effect
on the stress field that surrounds it.

Like all LE parameters, Kt are unique values that can be cata-
loged and then used to solve many important notch problems in
structural engineering. They are particularly useful for designing
against fatigue crack initiation, for example. However, to properly
describe notch effects in elastoplastic analyses, or in multiaxial
loading problems, or in anisotropic materials, or even to consider
3D effects in simple uniaxial LE cases (e.g. when the notch tip
radius is in the order of or smaller than the component thickness),
it is necessary to separate stress from strain concentration effects.
In such cases, different stress and strain concentration factors
may be defined by Kr = rmax/rn and Ke = emax/en, respectively, as
discussed elsewhere [1,2].

Pioneer analytical solutions for LE SCF were obtained by Kirsch
in 1898 [3], who studied the effect of a circular hole in a tensioned
infinite plate, and by Inglis in 1913 [4], who solved the similar
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elliptical hole problem. Since then, a few analytical and many other
numerical and experimental Kt values have been obtained for
countless notch geometries. However, most of them by modeling
the notches as if they could be properly described by a 2D approx-
imation, solving the stress analysis problem assuming LE plane
stress (pl–r) or eventually plane strain (pl–e) conditions around
their tips. Peterson is a traditional SCF catalog [5], although mostly
restricted to plane and axisymmetric LE solutions, whereas Savin
[6] is a classical reference for analytical SCF solutions.

A traditional procedure to decrease Kt-effects is to round notch
tips using as large as possible circular arcs. This design rule is
clearly justified by the classic Inglis’ solution for elliptical notches
[4], which in the simplest uniaxial case leads to

Kt ¼ 1þ 2a=b ¼ 1þ 2
pða=qÞ ð2Þ

where a and b are the semi-axes of the elliptical hole in an infinite
plate loaded by a normal nominal stress perpendicular to a, and
q = b2/a is its smallest radius, which occur at the extreme of its 2a
axis, so at the points that can be called the elliptical notch tips.

However, although outside the scope of this work, it is impor-
tant to emphasize that Kt values are not sufficient to quantify all
notch-induced stress concentration effects. In fact, both the maxi-
mum stresses at the notch tips and the stress gradients around
them can significantly affect the actual resistances and conse-
quently the operational lives of structural components. The stress
gradient is the main responsible for notch sensitivity under fatigue
and under EAC conditions, so very sharp notches are not as bad as
it could be anticipated from their very high Kt values because they
have very sharp gradients as well, as discussed elsewhere [7,8].
Anyway, to decrease deleterious effects that can be introduced
by sharp notches in structural components, their tips are usually
rounded or blunted by circular arcs. The larger such tips radii are
the better, meaning the more they tend to alleviate all stress con-
centration effects induced by the notches. Such facts are well
known, and all structural engineers and wise technicians specify
generous rounding radii for their notch tips.

Less well known is the fact that circular arcs decrease but do not
minimize stress concentration effects around notch tips. Even
though this problem has been recognized for a long time, notches
with variable radius tips properly optimized to minimize their
detrimental influence on the strength of structural components
still are not as widely used in engineering designs as they should
be. Indeed, albeit efficient receipts for improving notch profiles
have been proposed in the early 1930s, the usual practice still is
to specify notches with as large as possible constant radius tips,
probably because they can be easily fabricated in traditional
manually-operated machine tools. To enhance this argument, it
can be pointed out that not even standard fatigue crack initiation
test specimens are specified with optimized notches to connect
their uniform test section to the larger heads required to grip them
[9–12]. Indeed, the generous constant radius notch tips used to
significantly alleviate their stress concentration effects do not
minimize them. Since such notches locally concentrate stresses
and strains around their roots, they may localize the crack
initiation point, invalidating in this way the test results, or at least
increasing their already intrinsically high dispersion.

On the other hand, natural structural members such as tree
branches and bones have learned by evolution to add material
where it is needed, so their notches have variable instead of the
fixed radii usually specified to smooth engineering notch tips
[13–17]. Since notches with properly specified variable tip radius
can have much lower SCF than those obtainable by fixed notch root
radii of similar size, such improved notches can be a very good
design option to increase fatigue strengths with almost no side
effects on the global dimensions or on the weight of most struc-
tural components. Moreover, properly optimized notches are
now more useful than ever, as nowadays they can be economically
specified and manufactured due to the widespread availability of
finite elements (FE) codes to calculate and of computer controlled
machine tools to fabricate them. These smart design practices can
be much cheaper and wiser substitutes for expensive high-
performance materials or for major reinforcements in components
that tend to fail under service loads.

The aim of this note is first to compare the efficiency of both
traditional and modern receipts to design better notch tip profiles,
and then to analyze the SCF improvements achievable by optimiz-
ing the variable tip radii of notches for uniaxial and multiaxial load
applications, using the FE method. To optimize the notches, a
simple gradientless optimization method, based on the idea of
iteratively adding material where it is needed and removing it
where it is superfluous, is proposed and implemented using a
self-adaptive remeshing scheme that can be easily adapted to be
compatible with most commercial finite element (FE) codes. This
technique is used to improve the notches of push–pull, rotary
bending, alternated bending, and multiaxial tension–torsion fatigue
test specimens, as well as the shape of a tension–torsion load cell,
but it can be equally used to optimize any other notch problem.
Finally, a more powerful notch-tip optimization method that also
considers gradient effects around them is described and evaluated.

2. Notch improvement fundamentals

Peterson [5] says that notches tips with variable radii have long
been intuitively used on old cast components, and lists some early
works in this area that can still be used as very good design
practices. He mentions for instance Baud’s fillet for tension loads
proposed in 1934, based on the shape of the laminar stream of
an ideal frictionless liquid flowing by gravity from a large tank with
a hole at the bottom, as shown in Fig. 1(left). The analytical
solution for this problem generates a transition region whose coor-
dinates are given by:

x ¼ ð2d=pÞ � sin2ðh=2Þ and y ¼ 2 � log½tanðh=2þ p=4Þ � sin h� ð3Þ
To improve the fatigue strength of shafts, Thum and Bautz’s

proposed also in 1934 an improved notch shape for bending and
torsion loads, which they claimed could even eliminate the notch
deleterious effect on fatigue lives, as also mentioned in [5]. The
proportions of these two improved fillet shapes are listed in
Table 1, and the listed values are used in Fig. 1(right) to plot their
actual shapes in scale. Moreover, if y is the coordinate along the
shaft axis, df is its diameter along the fillet profile, and d is its
smallest diameter, Baud’s and Thum and Bautz’s improved fillets
can be fitted within less than 0.12% rms error by Eqs. (4) and (5),
which can be easily programmed e.g. in CNC lathes:

df

d
¼ 1þ ðy=dÞ2 � 4 � y=dþ 3:7

29 � y=dþ 6
if y=d < 1:45; otherwise df ffi dðfor tensionÞ ð4Þ

df

d
¼ 1þ y=dþ 0:0068

68ðy=dÞ3 þ 33ðy=dÞ2 þ 3:3y=dþ 0:014
;

y=d P 0ðfor bending or torsionÞ ð5Þ
Peterson mentions as well two other old ideas for improving

notch profiles: 15–20� tapered fillets with smoothed ends for shaft
shoulders proposed by Morgenbrod in 1939, and Grodzinski’s
graphical recipe for shoulder fillets proposed in 1941, which
divides the shoulder space in equally spaced intervals, and then
orderly joins them by straight lines, as sketched in Fig. 2. These
intervals should be larger in the smaller side of the shoulder sec-
tion, as illustrated in the figure, and the final notch shape should
be smoothed to remove the kinks between the line segments.



Fig. 3. Natural notches usually do not have a constant radius tip, as nature knows
better how to minimize stress concentration by adding material where it is needed.

Fig. 1. (left) Baud’s fillet for tension loads based on a hydrodynamic analogy; (right) Baud’s and Thum-Bautz’s variable radius shoulder fillets to minimize Kt effects for tension
and for bending or torsion loads, drawn in scale from Table 1 points.

Fig. 2. Grodzinski’s variable radius improved shoulder fillets, generated by first
dividing their limits in the same number of equally spaced intervals, with larger
intervals in the smaller diameter side, and then by orderly joining them by straight
lines.

Table 1
Improved fillets for round bars loaded in tension, torsion (T), or bending (B).

y/d 0.000 0.002 0.005 0.010 0.020 0.040 0.060 0.080 0.100 0.150 0.200
df/d for tension 1.636 1.610 1.594 1.572 1.537 1.483 1.440 1.405 1.374 1.310 1.260
df/d for T or B 1.475 1.420 1.377 1.336 1.287 1.230 1.193 1.166 1.145 1.107 1.082

y/d 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.300 1.600 1
df/d for tension 1.187 1.134 1.096 1.070 1.051 1.037 1.027 1.019 1.007 1.004 1.000
df/d for T or B 1.052 1.035 1.026 1.021 1.018 1.015 1.012 1.010 1.005 1.003 1.000
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Unlike usual engineering components, natural structural mem-
bers like tree branches and bones typically growwith variable radii
notches to minimize the unavoidable stress concentration effects
associated with their connections, as illustrated in Fig. 3. Heywood
[14] and Mattheck [15,16] study the natural SCF reduction pro-
cesses in deeper detail. Mattheck and Burkhardt proposed [17] in
1990 a simple procedure for improving notch shapes based on
the apparent self-growth mechanism of tree branches. Realizing
that force lines are bent by the notches, they assume stress concen-
tration effects are due to the superposition of local bending stres-
ses on the tensile stresses that would act there. Thus, they assume
their SCF can be decreased by shaping their contour to substitute
bent force lines around their borders by stretched ones, the main
idea behind the ‘‘method of tensile triangles” for improving the
notch geometry, as schematized in Fig. 4.

So, according to Mattheck, sharp corner-like notches can be
reinforced by a tensile triangle to reduce its local stresses, creating
two new notches with less dangerous larger angles, and be further
streamlined starting with a 45� rectangular triangle and them suc-
cessively adding obtuse isosceles triangles to reinforce the weaker
notch side, as shown in Fig. 4. The second triangle departs from the
middle of the first one, the third from the middle of the second, and
so on. The more triangles, the smaller is the Kt of the improved
notch. After smoothing the kinks between the reinforcing triangles,
this simple graphical construction generates a near optimum notch
contour, a claim verified by FE analyses, see Fig. 5 [16]. Moreover,
this notch shape can be scaled to fit space limitations, since it is
dimension-independent. Tensile triangles can also be used to
remove unloaded material in un-notched regions, saving weight
without compromising the structure strength.

An even simpler improved shape for shoulder fillet tips is to use
one eight instead of one quart of a circular arc to round them, start-
ing their 45� junction at the larger side of the shoulder. Tensile
triangles and 1/8 circular arcs are particularly useful in practice,
since they can be easily built in CNC machine tools. Lacking better
information, these simple receipts probably can also be used to
improve notch shapes designed for multi-axial loading conditions.
However, for non-symmetric loads, the improved notch tip profile
should not be symmetric. Instead it should be properly adjusted
according to the load ratio, so that the deepest notch point should
be shifted towards the less loaded substructure as illustrated in
Fig. 6, which is schematically drawn based on the method of tensile
triangles. Natural structures follow this rule, and the deepest



Fig. 4. Mattheck’s tensile triangle method to improve notch profiles.

Fig. 5. Improved shoulder with 3 tensile triangles at a corner side, starting from a 45� rectangular triangle; photoelastic fringes of a quart-circular and of such an improved
notch; and FE results quantifying its efficiency (adapted from [15]).

Fig. 6. Symmetrical loads require symmetrical notches, but asymmetrical loads
need asymmetrical notches, with more material added to their most loaded
branches.
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points of their notches indicate for which load ratio they have been
designed for (or rather evolved to).

Fig. 7 shows the stress concentration effects induced on the
stress distribution along a shoulder fillet on a flat bar pulled by a
centered tensile load, calculated by a refined FE analysis, for the
improved variable tip radii fillets proposed by Mattheck, Grodzin-
ski, and Baud, and also for the traditional 1/4 of a circle tip used for
comparison purposes. In view of their efficacy to reduce stress con-
centration effects, it is quite surprising to see such variable radii
improved fillets neglected by many modern designers. Indeed, if
correctly applied, they can considerably decrease the Kt values
and, consequently, increase the fatigue lives of structural compo-
nents at a very attractive cost.

3. Basic shape optimization procedures to reduce stress
concentration effects

Lansard points out in his 1954 work that improved progressive
curvature fillets with near constant stresses along their tip profile
can even reduce their Kt to unit if their tips are large enough,



Fig. 7. The stress distribution along improved variable radius fillets illustrates well the advantages of using such notch shapes instead of the traditional 1/4 of a circle
shoulder.

Fig. 8. Flowchart of the spline-based gradientless optimization method.

Fig. 9. Simple gradientless optimization method to improve the fillet shape in a flat
bar subjected to a remotely uniform tensile loading.
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eliminating in this way their detrimental stress concentration
effects. This claim indicates that optimum notch tip profiles should
be designed to maintain the stresses as fixed as possible along
them [13], adding material were it is needed and removing it were
the stresses are too low, simulating in this way the ideal natural
growth behavior.
Many studies on notch shape optimization algorithms based on
different approaches confirm this claim. For example, Sonmez
based his optimization process on a stochastic algorithm called
the direct search simulated annealing, which relies on a thermody-
namic analogy to search for the lowest energy state, looking for a
fillet tip boundary shape that results in a minimum tangential
stress [18–20]. Das et al. used evolutionary structural optimization
(ESO) algorithms that slowly remove unloaded material to arrive at
the optimum notch tip shape [21]. A photoelastic model of a notch
shape optimized by Schnack from an initially semicircular root
shown in Ref. [22] is a particularly interesting visual proof that
illustrates well how this process can indeed induce an almost uni-
form tangential stress distribution along the notch boundary.
Finally, Meneghetti et al. [23] have recently extended the peak
stress method (PSM) for fatigue design of welded joints consider-
ing complex 3D FE models. According to the authors, this method
is based on the property that the ratio between the mode I notch
intensity factor and the linear elastic opening peak stress, evalu-
ated at the crack tip by the FE method (as well as the ratio between
the mode II stress intensity factor and the sliding peak stress),
depends only on the type and on the size of the elements adopted
in the discretization. Therefore, the PSM method can be combined
with 3D FE models to become an efficient computational tool to
assess the fatigue strength of joints with complex geometries.

3.1. Gradientless strategies

Among the many optimization strategies, the gradientless
algorithm is a particularly interesting numerical technique for
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minimizing SCFs. Its idea is simple and intuitive: it iteratively adds
material where the stresses are higher than desired, and removes it
where the stresses are too low, looking for as uniform as possible
tangential or Mises stresses along the entire notch tip profile
[24–27]. Moreover, since the gradientless strategy does not use
stress derivatives, it simplifies the shape optimization process
because its numerical implementation is intrinsically robust.
Indeed, in the simple algorithm developed for this work, the notch
boundary is modeled by cubic splines, defined by control points
distributed along its profile. The optimal tip shape is achieved iter-
atively by moving such control points to simulate how notches
grow in natural structures by using material where it is really
needed, as depicted in the gradientless algorithm flow chart pre-
sented in Fig. 8.

For example, Fig. 9 shows a notched flat bar loaded under pure
tension, with an initially variable stress distribution along its
shoulder fillet profile. This spline-based gradientless optimization
method seeks for a constant tangential stress along the notch
boundary, changing its shape by moving its control points accord-
ing to the simple equation presented in the figure. The movement
Fig. 10. Flowchart of the spline-base
di of each control depends on its tangential stress ri, and on a ref-
erence stress rref at point A, which is fixed. A factor j may be used
to accelerate this iterative optimization process, which repeatedly
calculates the stress at each control point in a finite element (FE)
environment and compares it with the desired reference stress. If
it is lower, material is removed from that point (by moving it by
a negative small step di); if it is higher, material is added to it.

3.2. Gradient strategies

On the other hand, several optimization methods, based on
sensitivity analysis, for minimizing the stress concentration along
a design boundary have been presented in the literature [28–30].
Although the computation of gradients (i.e. stress derivatives)
may be an expensive task for problems with large number of
variables, the overall computational cost is usually reduced when
gradient information is introduced into the optimization process.

The computational efficiency of optimization algorithms used
for finding optimal boundary shapes is highly dependent on the
representation of the boundary. Hence, geometric modeling plays
d gradient optimization method.
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an important role in shape optimization processes. SCF minimiza-
tion problems are in particular highly sensitive to the choice of
appropriate design variables to model the notch tip boundary
curve. Many researchers define the coordinates of the boundary
nodes in the FE mesh as the design variables [24,25]. Depending
on the level of mesh refinement, this approach may require a large
number of design variables and constraints, increasing in this way
the computational cost. Moreover, it is necessary to smooth the
nodal movements since nodal stresses are very sensitive to the
position of neighboring boundary nodes, especially for refined
meshes.

To overcome this problem in practice, well-known methods for
geometric representation of the design boundary, based on para-
metric splines curves, are often used. For instance, a reduced num-
ber of control points (when compared to the number of boundary
nodes) is distributed along the boundary profile [27]. The optimal
shape is achieved by moving such control points according to each
step of the optimization algorithm, as illustrated in the flow chart
depicted in Fig. 10. In this work we propose a gradient-based shape
optimization method for minimizing SCF defined as:

Min f ðxÞ; x 2 Rn

Subjected to : gjðxÞ 6 0; j ¼ 1; . . . ;m

xLi 6 xi 6 xUi ; i ¼ 1; . . . ;n

8><
>:

ð6Þ

where f(x) is the objective function, x is the vector of n design vari-
ables, gj(x) is the j-th inequality constraint, xiL and xi

U are the box
constraints, and m is the number of inequality constraints. The
objective function is defined as the least-squares function given by:

f ðxÞ ¼
X

½riðxÞ � rref �2; i ¼ 1; . . . ;n ð7Þ

where ri is the tangential stress (or the Mises stress) at the i-th
spline control point and rref is a reference stress value. The design
variables are the coordinates of each spline control point. As
pointed out by Carbonari et al. [30], since the optimization
algorithm moves each point in the normal direction to the spline
curve, only x (or y) coordinates are chosen, which reduces the size
of the optimization problem.

Fig. 11 shows a notched flat bar loaded under pure tension, with
an initially variable stress distribution along its shoulder fillet pro-
file. The proposed spline-based gradient optimization method is an
Fig. 11. Gradient-based optimization method to improve the fillet shape in a flat
bar subjected to a remotely uniform tensile loading.
iterative process that aims to minimize the stress distribution
along the notch boundary by changing the position of the spline
control points until the stress distribution is constant (or near
constant), within a prescribed numerical tolerance. For each step
of the optimization algorithm a FE analysis is performed and the
stresses are evaluated at each control point. The stresses, as well
as their derivatives with respect to the design variables, are then
used by the optimization algorithm to define the new shape of
the design boundary. To avoid numerical oscillations during the
shape optimization process, Carbonari et al. [30] suggest the
introduction of some constraints:

x1 P xmin

xi � xj�1 P e; j ¼ 2; . . . ;n� 1
xn 6 xmax

8><
>:

ð8Þ

where e is a given small number, x are the design variables, and xmin

and xmax are the prescribed lower and upper bounds for the design
variables, respectively, as illustrated in Fig. 11.

The sensitivity of the objective function, with respect to the
design variables, is obtained numerically by means of the finite dif-
ference method, i.e.:

@f ðxÞ=@xi ¼ ½f ðx1; x2; . . . ; xi þrx; . . . ; xnÞ � f ðxÞ�=rx ð9Þ
where rx is a numerical perturbation usually taken as a small per-
centage of the initial spline length (e.g. rx = 0.01 Ls, where Ls is the
approximated spline length) [30].

This optimization problem is solved here using the well-known
Sequential Linear Programming (SLP) algorithm [31]. To obtain
feasible solutions in each optimization process step, and also to
prevent the linear approximations to the problem to become
unbounded, especially for under-constrained problems, a moving
limit strategy is usually required by the SLP algorithm. It consists
of defining box constraints for each design variable. The amplitude
of the moving limits (d) is also defined here as a fraction of the
initial spline length (e.g., d = 0.2 Ls) and is usually decreased as
the solution of the approximated linear problem is achieved at
each step. Finally, the complete gradient-based shape optimization
problem proposed here can be expressed in a standard form as:

Min f ðxÞ ¼ P ½riðxÞ � rref �2; i ¼ 1; . . . ;n
subjected to : �x1 þ xmin 6 0

xj�1 � xj þ e 6 0; j ¼ 2; . . . ;n� 1
xn � xmax 6 0
xLi 6 xi 6 xUi ; i ¼ 1; . . .n

8>>>>>><
>>>>>>:

ð10Þ
Fig. 12. Spline control points and corresponding boundary curve.



Fig. 13. Graphical interpretation of the linearized optimization problem (adapted from [31]).

Fig. 14. Moving limits and sequence of the linearized solutions (adapted from [31]).
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To better understand the main steps of the proposed SLP
gradient-based algorithm, consider a simplified version of the
problem shown in Fig. 11, where only two design variables (x1,
x2) are used to represent the boundary shape, as illustrated in
Fig. 12. For a given set of design variables a spline curve (usually
defined as a smooth polynomial piece-wise function) y = /(x) is
used to describe the boundary shape.

Let x0 be an initial guess for the design variables (i.e., initial
position of the control points). The first step of the SLP algorithm
consists of linearizing the objective and constraint functions of
the original optimization problem by means of the first-order
Taylor series expansions. Eq. (6) can be rewritten as:

Min FðxÞ ffi f ðx0Þ � ðx� x0Þ
Subjected to : GjðxÞ ffi gjðx0Þ þ rgjðx0Þ � ðx� x0Þ 6 0; j ¼ 1; . . .m

xLi 6 xi þ ðxi � x0iÞ 6 xUi i ¼ 1; . . . ;n

8><
>:

ð11Þ
where F(x) and Gj(x) are the linear approximations about x0 of
functions f(x) and gj(x), respectively, and ‘‘�” is a dot product
notation.

Eq. (11) now represent a linear programming problem which
can be solved by any algorithm, for example: Simplex or Interior
Point Methods [31,32]. Fig. 13 shows a graphical interpretation
of the linearized solution for the two variable optimization prob-
lem proposed in Fig. 12. As mentioned before, in order to pre-
vent the linearized solution to be unfeasible (or unbounded in
some situations) moving limits (or box constraints) are intro-
duced in the linear approximation, as illustrated in Fig. 14.
Finally, during the optimization process the amplitudes of the
moving limits are reduced such that the approximated solution
can be obtained as close as possible to the solution of the orig-
inal problem. Each approximated solution (x0,x1, . . . ,xi, . . .) corre-
sponds to a different spline curve (boundary shape) until
convergence is achieved.



Fig. 15. Fatigue test specimens.

Table 2
Dimensions of the studied fatigue TS (see ASTM standards for details).

TS dimensions (in mm) I II III IV V

L Length of the straight test section 76.2 63.5 19.05 42 10.16
q Original (circular) notch radius 203.2 203.2 50.8 89.6 3.18
D Circular test section diameter 25.4 – 6.35 28 –
w Rectangular test section width – 25.4 – – 6.35
C Gripping head diameter/width 50.8 n/a 12.7 44.8 12.7
B Gripping head length 60 60 19.05 56 10
d Inner diameter (of the tubular TS) – – – 24 –
t Thickness – n/a – 2 –

Fig. 16. Mises stress along the original and the improved fillets boundaries.
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4. Optimized fatigue test specimens

As mentioned before, some standard fatigue testing specimens
(TSs) do not have optimized notch shapes. Most of them have quite
low SCFs, but which can be decreased by improving their notch
profiles. Moreover, some have surprisingly high Kt, which should
be improved. So, a good illustration of the spline-based gradient-
less optimization method usefulness for generating better notch
profiles in practical applications is to use it to reduce even more
Fig. 17. Final finite element meshes generated by the spline-based gradient optimization
made alternated bending fatigue specimen.

Fig. 18. Mises stress distribution around the varia
the SCF of standard push–pull and rotating bending fatigue test
specimens, and also to improve the standard tension–torsion TS,
as well as a custom-made alternated bending TS especially
designed for making fatigue crack initiation tests in relatively thin
sheets of a high strength steel, see Fig. 15 and Table 2.

Types I–IV are traditional ASTM TSs [9–12], whereas TS type V is
an unconventional flat specimen designed to be used in an especial
four-point alternated bending fixture. All such fatigue TSs use an
originally circular arc notch tip profile to connect their uniform test
method for type I–IV standard ASTM fatigue test specimens and for type V custom

ble radii fillets of the optimized fatigue TSs.
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section to the larger heads needed to grip them, with generous
radii that significantly decrease, but do not minimize their SCF.
All such TSs were modeled in ANSYS APDL 12 assuming plane
stress conditions and using triangular FE with six nodes and twelve
degrees of freedom, but the schema depicted in Fig. 8 flow chart
would work in any other FE code. Due to their symmetry condi-
tions, only one quarter of the TS need to be modeled. TS type I
and III are cylindrical and axisymmetric; type II has a rectangular
symmetric section; type IV has a tubular profile axisymmetric
about the y-axis; and type V has a rectangular profile anti-
symmetric about the y-axis for its bending load conditions.

In particular, too many type V alternated-bending TSs with an
original rounded notch tips were initiating fatigue cracks at their
tip roots under actual test conditions, invalidating in this way
Fig. 19. Stress distribution along the bou

Fig. 20. Stress distribution along the boundary of the improved variable radii shou

Fig. 21. SCF and required length of original and im
those tests results, a quite annoying problem partially due to the
high notch-sensitivity of the tested high-strength steel. But after
the notch tip profile of those specimens was optimized, this prob-
lem was completely eliminated and no other specimen broke near
the notch root, a good illustration of how useful such procedures
can be in real life.

Fig. 16 shows the original and the improved Mises stress plots
along the notch profiles of the various fatigue test specimens stud-
ied here, calculated by FE models. Specimens type I–III already had
very small SCF, but note how the original stress profile is variable
along their circular arc tips, whereas the variable notch radii
resulting from the gradient optimization process lead to a much
more uniform stress distribution. On the other hand, specimen
type IV, the standard shape for tension–torsion fatigue tests,
ndary of circular arc shoulder fillets.

lder fillets, for various initially quart-circular notch tips with 0.25 6 q/w 6 8.

proved TS type II with originally circular arc.
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originally had a surprisingly high Kt value, which was much
improved by the optimization process. This improved shape is
now being successfully used in the multiaxial fatigue tests made
by our research group, see e.g. [33], so we can recommend it. This
indicates that the ASTM tension–torsion standard should probably
be reviewed. Moreover, the crack localization problem observed
when testing standard TS type V was solved by this process.

Fig. 17 shows the final FE meshes automatically generated by
this optimization process, and Fig. 18 shows the Mises stress distri-
bution obtained along the entire optimized specimens (notice how
uniform they turn out to be along the notch profile).

To better understand how a circular arc notch tip with a gener-
ous rounding radius compares with an optimized variable radii
profile for reducing the SCF of a given TS, Fig. 19 compares 7 differ-
ent circular arc shoulder fillets, in order to show how the q/w ratio
affects the SCF of TS similar to the type II push–pull specimen
shown in Fig. 15, but with a smaller C/w = 1.5 ratio. As shown in
Fig. 19, the SCF induced by a shoulder fillet with a relatively small
circular arc with q/w = 0.25 reaches a SCF value Kt ffi 1.8. As the q/w
ratio increases, this Kt value reduces considerably, until it almost
reaches a unit value when q/w ffi 8, which explains why ASTM
specified this ratio as its standard fillet radius.
Fig. 22. Original load cell design, with a q

Fig. 23. Mises stress distribution along the
However, although traditional circular arc shoulder fillets may
achieve quite low SCF values, they are far from the best choice.
Indeed, assuming a fixed gage length, as the constant radius of
the TS fillet increases, the required overall TS length (RL) also
increases. Longer TS require more material, but their main problem
is to be less buckle-resistant than shorter specimens with
improved shoulders with equally low SCF values, a major problem
in push–pull fatigue tests. When such limitations are important,
both the gradientless and the gradient algorithms may be used
with geometrical constraints, such as the given maximum length.
Fig. 20 shows the stress distribution along the improved shoulders
for the flat TS shown in Fig. 19, with C/w = 1.5 and original (fixed)
q/w ratios also ranging from 0.25 to 8. As expected, the notch opti-
mization process is more efficient for reducing the high SCF of
notches with low q/w ratios, since for high q/w values the initial
SCF is already low to start with. However, even in such cases, the
spline-based gradientless optimization algorithm leads to fillets
with an almost uniform tangential stresses along their variable
radii boundary.

To close this study, Fig. 21 compares the original and the
improved TS type II SCFs for initial circular notches with
0.25 6 q/w 6 8, as well as the required TS length RL as a function
= 75 mm circular arc notch tip profile.

original quart-circular notch profiles.
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of the q/w ratio of the original TS. These optimization procedures
may be particularly efficient if applied to similarly notched struc-
tural components when their q/w ratios are low due to space lim-
itations, an important practical problem. In such cases, it may be
more interesting or even mandatory to find an economical and fea-
sible improved geometry for the new notch profile respecting the
original space limitations, instead of searching for a globally
optimum solution that would imply in a redesign of the entire
component. Indeed, Fig. 21 shows that it is possible to find an
improved fillet profile that leads to both a reduced SCF and to a
smaller length for a TS type II with originally circular arc shoulder
fillets. For example, for an initial circular arc fillet with q/w = 1.5
the SCF of the improved shoulder reduces from Kt ffi 1.22 to
Kt ffi 1.1 with a required TS length of RL ffi 215 mm, whereas a
circular arc shoulder fillet would require q/wffi 2.6 and RLffi 228mm
to achieve the same SCF value.

5. Optimization of the fillets of a tension–torsion load cell

Another practical application further illustrates the usefulness
of the proposed spline-based gradientless notch optimization pro-
cess: the design of a compact tubular tension–torsion load cell
Fig. 24. Mises stress distribution along the improved load cell, with its notch

Fig. 25. Original and optimized fillets for
schematized in Fig. 22. This load cell was designed to work in a
custom-made electromechanical multiaxial axial–torsional fatigue
testing machine under combined fatigue axial (push–pull) loads
with amplitudes up to P = 200 kN and torsion loads with ampli-
tudes up to T = 1300 N m. The load cell had a fixed axial size and
was designed to measure the axial and the torsional loads using
conventional strain gages wired in separated Wheatstone bridges.
Its original design used large circular arc shoulder fillets with
q = 75 mm, but its FE analysis showed that although its torsion
SCF was acceptable, KtT = 1.07, despite this large notch tip radius
its tension SCF was quite high, KtP = 1.61. The stress distributions
induced by the axial and by the torsional loads along the original
notch tip profile are illustrated in Fig. 23. The problem with this
original design is that the too high axial SCF value was leading to
a relatively short fatigue crack initiation life within its required
reliability, a certainly not acceptable feature for the application
in question.

So, the very same spline-based gradient shape optimization
procedure described above was used to reduce the SCFs of the
tubular tension–torsion load cell fillets, maintaining its overall
length. An axisymmetric model was created and the fillet profile
was iteratively changed, according to the proposed algorithm. After
profile optimized within the restriction of maintaining its overall length.

the tubular tension–torsion load cell.
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this shape iterative optimization process, the new fillet geometry
reduced the tension SCF to KtP = 1.23 and the torsion one to
KtT = 1.035, solving the fatigue life problem without significantly
increasing the tension–torsion load cell weight or even its cost,
since it had to be machined on a CNC lathe anyway, see Fig. 24.
The original and the optimized fillets are schematized in Fig. 25.
Note that the optimized profile in fact reduced the material used
in the fillet region, a non-intuitive result.

6. Conclusions

To maintain uniform tangential stress distributions along the
notch tip boundaries is the way to minimize their stress concentra-
tion values, decreasing their deleterious effects that are especially
prejudicial for fatigue applications. However, to obtain such uni-
form stress profiles it is necessary to design the notches with a
variable tip profile, instead of the circular arc used in most engi-
neering structures to smooth their notch tips. Following this idea,
iterative SCF gradientless and gradient-based optimization algo-
rithms were developed and implemented in a finite element envi-
ronment. The basic idea of this optimization technique is to use
splines to model any notch tip profile and iteratively change the
position of the spline control points until the stress distribution
is constant (or near constant), according to a prescribed numerical
tolerance. This is a very efficient way of significantly improving the
notch shapes by minimizing their SCF, a much useful feature
especially suitable to improve the intrinsic fatigue resistance of
structural components that must be designed with large section
reductions or with size limitations. To show how useful this simple
but powerful notch optimization algorithm can be in practice, it
was applied to propose better profiles for standard fatigue test
specimens, as well as to improve the design of a tension–torsion
multiaxial load cell that had a length limit, which despite its large
notch tip radii still was susceptible to fatigue failures, but it can
equally be used with virtually any structural component.
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