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The evaluation of notch effects in low-cycle fatigue problems in general requires local plasticity calcula-
tions via the solution of a global Finite Element (FE) problem to obtain the cyclic elastoplastic (EP)
stresses and strains at the notch tip, as well as the stress gradient effects around it. Moreover, this EP
global FE approach needs to adopt an incremental plasticity formulation in every element of the studied
piece that suffers plastic strains. Besides being not trivial to implement, these calculations are computa-
tionally intensive, especially when dealing with long loading histories, since they imply in having to solve
the EP FE problem for the entire piece for every load increment of every load cycle. A much simpler
approach is to perform a single linear elastic (LE) FE calculation on the entire piece for a static unit value
of each applied loading, to find the stress and strain influence factors. The resulting LE values then require
EP corrections to reproduce the true stresses and strains at the critical point of the component. Thus, an
EP strain concentration rule must be assumed to estimate the actual notch-tip stresses and strains from
the LE values. Perhaps the most used concentration rules are the ones proposed by Neuber and Glinka,
which usually result in reasonable estimates in tension, especially under plane-stress conditions.
However, most implementations of Neuber’s and Glinka’s rules assume the nominal stresses (which
act away from the notch tip) are purely elastic, which can induce significant numeric errors even at stress
levels much below the yield strength. In this work, Neuber’s and Glinka’s rules are presented in a
formulation that assumes nominal stresses as EP instead of LE, highly improving the EP notch corrections,
even under gross yielding of the net section. EP FE simulations on thin and thick specimens are used to
verify the effectiveness of the proposed formulation, as well as to study 3D notch effects.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Linear elastic (LE) concentration factors Kt can be directly used
in stress analyses to multiply nominal stresses if the notch tip
remains elastic, but not if it yields under those loads. As the notch
yields, the elastoplastic (EP) stress concentration factor Kr � r/rn

tends to become lower while the corresponding EP strain concen-
tration factor Ke � e/en tends to become higher than Kt (maybe
except if the notch-tip radius is much smaller than the piece
thickness, when the linear strain concentration rule [1] would
predict up to Ke ffi Kt).

Moreover, strain-gages hardly ever can be bonded at notch tips,
due to access limitations. Even modern optical methods such as
digital image correlation are still not practical to measure service
strain histories at notch tips. In fact, these histories can almost
never be directly measured. They must instead be calculated from
measured nominal strain histories using suitable strain concentra-
tion rules, considering the cyclic hardening behavior of the
material at the notch tip.

Cyclic softening can present some modeling challenges in both
notched and un-notched pieces. Indeed, fatigue tests can become
unstable under load control if the material cyclically softens [2].
Since structural components usually work under imposed loads,
they may also face this problem. However, in most practical compo-
nents, cyclic yielding occurs only on the critical notch neighborhood,
which remains enclosed by elastic regions under service loads.
Hence, the small amount of material around their critical notch tips
that suffers EP fatigue damage and softens usually is contained by
the rest of the component, which works under LE conditions and
forces the notch tip to work under imposed De conditions.

In other words, as fatigue cracks nearly always start from notch
tips, the size of the region that cyclically yields usually is small
compared to structural component sizes. In these cases, the region
that suffers EP fatigue damage is contained within a much larger
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dominant LE field that surrounds and controls it, to maintain the
required strain compatibility in the whole component. This is
maybe the best justification to prefer eN over SN tests (when
testing small fatigue specimens).

It is thus a good practice to force strain histories De(t) on eN
specimens in order to check structural component life predictions.
However, to be reliable, these De(t) histories must be identical to
the strain histories that load their critical notch tips in service. In
fact, it is a truism to say that to verify eN predictions, DrDe loop
histories induced by service loads at critical points must be fully
reproduced in such eN tests. Despite evident, this warning must
nevertheless be emphasized, because to measure strains at critical
points is usually a difficult task, as discussed above. So, the usual
practice is to measure or to estimate the stress/strain histories
induced by the loading in convenient nominal points, to then use
them to calculate the critical strain histories using a strain concen-
tration rule, as schematized in Fig. 1. However, imprecise calcula-
tions obviously cannot be associated with reliable fatigue life
predictions. That is the reasonwhy it is so important to apply accurate
strain concentration rules in practical design applications.

For example, Neuber’s strain concentration rule [3] is usually
adopted assuming the nominal stresses are LE. But nominal stress
amplitudes may be associated with nominal plastic strains even if
they are lower than the cyclic yield strength SYc, as long as they are
above the elastic limit rE of the material, which usually is much
smaller than the monotonic SY or the cyclic SYc. Neglecting such
nominal plastic strains, i.e. assuming the nominal stresses follow
Hooke’s law and not e.g. Ramberg–Osgood, may result in large
errors in Neuber’s predictions.

Such errors are not algebraic, since they occur even if the
calculations are numerically correct. In fact, such errors are of a
completely different kind, since they are due to a classic eN
Fig. 1. Strain histories at the critical point must usually be calculated from the
nominal stress/strain histories using a strain concentration rule.
hypothesis limitation. Indeed, even though the assumption ‘‘Drn

is elastic” is traditionally used in most eN calculations, it does not
correctly reproduce the physics of the problem, unless rn is below
not only SY or SYc but also the much lower elastic limit rE of the
material. To avoid this conceptual (and numeric) error, it is neces-
sary to recognize that Drn is instead EP, as studied next.

2. Neuber’s strain concentration rule with elastoplastic nominal
stresses

To start with, writing Neuber’s rule as (Kt � Drn)2 =Dr � De � E is
an inconsistent practice even when Drn is elastic, because this
formulation uses two different equations to describe the same
material. Indeed, the usual practice of modeling Drn as LE to
calculate the nominal strain range Den by Hooke’s law, while at
the same time using Ramberg–Osgood (which does not recognize
purely elastic strains) to describe DrDe loops at the notch tip, is
at least inelegant even when Drn � 2SY.

Moreover, when the nominal stress Drn is EP, Neuber’s rule
clearly cannot be used in the simplified form (Kt � Drn)2 =
Dr � De � E. These problems must be modeled by a system of three
equations containing Neuber and two Ramberg–Osgood equations,
one to describe the DrDe loops at the notch tip, and the other to
model the nominal DrnDen loops:

K2
t ¼ DrDe=DrnDen

De ¼ ðDr=EÞ þ 2 Dr=2Hcð Þ1=hc

Den ¼ ðDrn=EÞ þ 2 Drn=2Hcð Þ1=hc

8>>><
>>>:

ð1Þ

where Hc and hc are Ramberg–Osgood’s cyclic hardening coefficient
and exponent, and E is Young’s modulus. Note that all stresses and
strains used in this work are true, not engineering values.

Contrary to what might be anticipated, this three-equation
system does not complicate too much fatigue life calculations. In
fact, the calculation technique is identical to the traditional one:
first obtain the notch-tip stress range Dr from the nominal EP
ranges Drn and Den, using Neuber and Ramberg–Osgood; then
the corresponding De range from Ramberg–Osgood again; and
finally the life N from Coffin–Manson or other suitable eN rule:

K2
t Dr2

n þ 2EDrn
Drn

2Hc

� �1=hc
" #

¼ Dr2 þ 2EDr Dr
2Hc

� �1=hc

) De ¼ Dr
E

þ 2 � Dr
2Hc

� �1=hc
¼ 2rc

E
2Nð Þb þ 2ec 2Nð Þc ð2Þ

To use Neuber’s system with the cyclic re (instead of the
hysteresis loop DrDe) curve, simply drop the D and the 2 factor
in Eq. (2) to obtain

K2
t r2

n þ Ern rn=Hcð Þ1=hc
h i

¼ r2 þ Er r=Hcð Þ1=hc ð3Þ

For instance, let’s use Neuber to estimate the life of a piece
made from a 1015 steel, knowing it has a notch with geometric
LE Kt = 2 and is loaded by Drn = 500 MPa. Substituting the 1015
mechanical properties into Eq. (2):

22 5002 þ 2 � 207;000
2 � 945ð Þ1=0:22

5001:22=0:22

" #

¼ Dr2 þ 5:30 � 10�10Dr5:55 ) Dr ¼ 671 ) De ¼ 2:13%

¼ 2 � 827
207;000

2Nð Þ�0:11 þ 2 � 0:95 � 2Nð Þ�0:64 ) N

¼ 743 cycles ð4Þ



Table 1
Maximum errors (always non-conservative!) among 517 steels for the LE Drn

predictions using Neuber’s system of equations, with respect to Neuber’s EP
formulation predictions, for Kt = 3 and several nominally LE ratios Drn/2SYc [4,5].

Drn/2SYc Maximum error in Dr (%) Maximum error in N (%)

0.1 5 27
0.3 11 102
0.5 15 202
0.8 21 411
1.0 23 2081
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Notice that since Drn = 500 > 2 � SYc = 482 MPa, the EP Eq. (2) is
mandatory in this problem. In fact, if Drn � 2 � SYc, it is (numeri-
cally) irrelevant to work with elastic or elastoplastic models, but
the difference between fatigue life predictions based on LE or EP
nominal stresses can be very large for higher load ranges. For
instance, let’s now compare the LE and EP fatigue life predictions
for the same 1015 steel piece above, considering:

1. Drn = 100 MPa� 2 � SYc: 2 � 100ð Þ2 ¼ Dr2
LE þ 5:3 � 10�10Dr5:55

LE ,
thus DrLE = 193.5 MPa, DeLE = 0.0966% and NLE = 1.2 � 108 cycles
(the life would be infinite by SN procedures), while by Eq. (2)
Dr = 194.1 MPa, DeEP = 0.0970% and NEP = 1.15 � 108 cycles.
Hence, for such a low nominal stress, the difference between
the LE and EP predictions is irrelevant.

2. Drn = 480 MPa ffi 2 � SYc: DrEP = 648 MPa, DeEP = 1.85% and
NEP = 958 cycles is the EP prediction, while the LE prediction
is DrLE = 525 MPa, DeLE = 0.85% and NLE = 4590 cycles. For this
higher load, the ratio NEP/NLE = 0.209 is not negligible at all.

Furthermore, the LE approximation of Neuber’s equation can
result in physically impossible predictions. For instance, let’s esti-
mate the residual stress left at the notch tip of a component with
Kt = 2.9 by the nominal stress history rn = {0? 800? 0} MPa
(away from the notch), assuming Ramberg–Osgood cyclic parame-
ters hc = 0.18 and Hc = 1280 MPa. If the stress r1 induced at the tip
by the nominal rn1 = 800 MPa is assumed LE, then by Neuber:

r2
1 þ 1:1 � 10�12r6:56

1 ¼ 2:9 � 800ð Þ2 ) r1 ¼ 700 MPa < rn?! ð5Þ
Even though this calculation is mathematically correct, its

prediction is clearly absurd, since the stress at the notch tip cannot
be smaller than the nominal stress. In other words, values Kr < 1
are meaningless and indicate the model used to calculate them is
based on wrong assumptions. On the other hand, when the first
load event rn1 is modeled as EP, the notch-tip stress is much more
reasonably estimated by:

K2
t
r2

n1

E
þ r1þ1=hc

n1

H1=hc
c

 !
¼ r2

1

E
þ r1þ1=hc

1

H1=hc
c

) r1 ¼ 1116 MPa ð6Þ

From this value, rres = r1 – Dr is obtained after calculating the
unloading loop range:

K2
t Dr2

n þ
2EDr1þ1=hc

n

2Hcð Þ1=hc

 !
¼ Dr2 þ 2EDr1þ1=hc

2Hcð Þ1=hc
) Dr ¼ 1256

) rres ¼ �140 MPa ð7Þ
These calculations make sense but, as they are based on estimated
Kr and Ke values, their accuracy can only be properly checked exper-
imentally, or else verified by suitable numeric modeling techniques.
However this is easier said than done, since neither such tests nor
EP FE calculations are trivial, so they cannot be afforded in most
practical applications.

3. Errors Induced by the linear elastic modeling of the nominal
stresses

The examples presented in the previous section justify a deeper
study of the errors that may be produced by the traditional practice
of modeling EP notch effects by Neuber and Ramberg–Osgood,
whereas assuming LE nominal stresses ifDrn < 2SY. Indeed, at least
from the logical point of view this practice is inconsistent, as the
material in the nominal and critical regions is the same, hence it
should be described by only one EP constitutive equation.

To evaluate the importance of this problem in real-life applica-
tions, notch tip stress ranges Dr and the corresponding lives N are
calculated for several geometric stress concentration factors Kt and
various nominal stress-to-cyclic-yield strength ratios Drn/2SYc,
using measured properties from 517 steels. The EP formulation
uses Eq. (2), while the LE assumes Hooke’s law for the nominal
stresses. As shown in Table 1, the LE Drn hypothesis can produce
severely non-conservative predictions compared to the EP formula-
tion, even for surprisingly small nominal stress ranges.

Moreover, Figs. 2–4 show that the LE formulation can produce
absurd predictions for large Drn/2SYc ratios, like Kr < 1) Dr <
Drn, or critical stress ranges at the notch tip smaller than the
nominal ranges, as observed in the previous section. On the other
hand, no such problems occur if the nominal ranges are modeled
as EP using Eq. (2). This equation predicts that both Kr and Ke tend
to constant values when the ratioDrn/2SYc grows, calculated neglect-
ing the Ramberg–Osgood elastic term at very large plastic strains.

The minimum value that the stress concentration factor Kr can
reach, according to the consistent EP formulation for the Neuber
system, occurs when the elastic ranges are negligible:

K2
t

2EDrðhcþ1Þ=hc
n

2Hcð Þ1=hc

" #
¼ 2EDrðhcþ1Þ=hc

2Hcð Þ1=hc
) Kr;min ¼ Dr

Drn
¼ K2hc=ð1þhcÞ

t ð8Þ

Since by Neuber’s rule K2
t ¼ KrKe, the maximum EP strain con-

centration factor calculated by it is Ke;max ¼K2
t =K

2hc=ð1þhcÞ
t ¼K2=ð1þhcÞ

t ,
see Fig. 5. Notice in Fig. 5 that the EP formulation adopts Kr and Ke

defined for EP nominal stresses and strains, while the LE formula-
tion defines them with respect to LE values. Hence, it is easy to
show that the Kr and Ke predicted by Neuber (if they are defined
based on EP nominal stresses and strains) should be limited by
the bounds:

K2hc=ð1þhcÞ
t 6 Kr 6 Kt

Kt 6 Ke 6 K2=ð1þhc Þ
t

(
ð9Þ

Notice that Eq. (9) is consistent with the limit case of a material that
does not strain harden, where hc ? 0. In this case, gross yielding of
the net section would make both nominal rn and notch-tip r
stresses become equal to the yield strength, making Kr = r/rn ? 1
in the imminence of plastic collapse, which is coherent with the

lower bound K2hc=ð1þhcÞ
t ¼ K0

t ¼ 1 from Eq. (9) for hc = 0.
Large Drn values are not so common in practice, since they are

usually associated with very short lives. Therefore, it might be jus-
tifiable to adopt Hooke’s law if Drn/2SYc � 1, if nominal stresses
are below the elastic limit of the material. Ramberg–Osgood’s
equation, on the other hand, is not able to consider a purely elastic
region, since it always assumes the presence of plastic strains.
Thus, Hooke’s law and Ramberg–Osgood are not equivalent even
in the elastic region. Modeling the nominal Drn by Hooke and
the notch Dr by Ramberg–Osgood is inconsistent, since it could
generate numeric errors in notch calculations, especially for low
values of Kt where both Drn and Dr would achieve similar values
but following different equations that would conflict. Even though
Ramberg–Osgood is an approximation that does not exactly
describe the purely elastic region, it should be used to model both
Drn and Dr to avoid numeric errors. Otherwise, if Drn is modeled
using Hooke’s law, then Dr should be represented by an



Fig. 2. LE and EP predictions for the maximum stress range Dr at a notch tip with
Kt = 3, for a very ductile SAE 1009 steel. Notice that for very high Dr/2SYc (nominal
stress range-to-cyclic yield strength) ratios the LE formulation predicts Dr < Drn,
which would mean that a notch could decrease the overall nominal stresses, a
nonsense.

Fig. 3. The errors errDr = (DrLE � DrEP)/DrEP in maximum stress ranges predicted
assuming the nominal ranges are LE are always non-conservative with respect to
the EP predictions. Moreover, these errors are not much dependent on the Kt value.

Fig. 4. For very hard quenched 1045 steels, the prediction errors induced by the LE
formulation for the Neuber system become almost irrelevant because, due to their
very low ductility, a notch with Kt = 3 would cause rupture under Drn/2SYc < 1.0.

Fig. 5. Unlike the usual LE rn formulation, which may lead to absurd predictions,
the EP rn formulation in Eq. (2) predicts that both the stress and the strain
concentration factors tend to limit values given by Eq. (9), at very high Drn/2SYc
ratios.
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elastoplastic equation that also includes a purely elastic region, as
opposed to Ramberg–Osgood’s. The key issue is to use coherent
equations for both nominal and notch regions, to avoid numeric
errors.
Note once again that Ramberg–Osgood may not always provide
an accurate representation of the stress–strain behavior, even in
the purely elastic region, where it always assumes the presence
of (very small) plastic strains. Even though Hooke’s law provides
a better description of the elastic part, its use mixed with
Ramberg–Osgood can lead to the previously presented errors.

But the numeric solution of eN equations is not more difficult
when Drn is also assumed following Ramberg–Osgood. Moreover,
gentle notches with Kt ffi 1 can have relatively long fatigue lives
even under large Drn, and in these cases it is not only possible
but also necessary to model the nominal range by Ramberg–
Osgood.

However, the EP modeling of nominal ranges involves more
complex issues. It is not trivial to calculate nominal EP stresses
and strains from a given load history in most practical cases.
Indeed, unlike prismatic beams under pure bending or circular
shafts under pure torsion, EP nominal strain distributions normally
are not known beforehand, so it is not possible to use them in
equilibrium equations to obtain the corresponding EP stresses.
There is no Neuber-like simple rule to contour this problem
relating maximum nominal stress and strains either. Moreover,
as EP nominal ranges induce memory effects, it is necessary to
simultaneously couple load sequence effects in nominal and in
notch-tip loops when modeling damage induced by variable
amplitude service loads. This is not a simple task. Finally, Neuber’s
rule may be not be the best estimate even under plane stress
conditions, as discussed next.

4. Glinka’s strain concentration rule with elastoplastic nominal
stresses

Some authors [1] claim that deep notch effects in thick pieces
(with t and a� q, where t is the piece thickness, a is the notch
depth, and q is its tip radius) may be better predicted by the linear
strain concentration rule, De = KtDen. In fact, this rule produced
the best results when applied to the critical damage model from
[6–10], which uses eN properties to predict fatigue crack propaga-
tion rates under dominantly plane-strain conditions, an indication
that supports such a claim.

Moreover, Molski and Glinka [11] affirmed Neuber’s rule esti-
mates can be too conservative even under plane stress conditions
(associated with t 6 q), and proposed an alternative strain concen-
tration estimate supposing the ratio ED/EDn between the strain
energies associated with notch-tip and with nominal stresses
and strains would not be altered by yielding. Therefore, for LE
materials, they assumed that
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ED ¼ R e0 rðeÞde ¼ r2

2E

EDn ¼
R e
0 rnðeÞde ¼ r2

n
2E

)
) Kt ¼ r

rn
¼

ffiffiffiffiffiffiffi
ED

EDn

s
ð10Þ

If the material follows Ramberg–Osgood, when the notch tip
yields under uniaxial loads its strain energy ED is then given by:

ED ¼
Z e

0
rðeÞde ¼ re�

Z r

0
eðrÞdr

¼ r2

E
þ r � r

H

h i1=h
�
Z r

0

r
E
þ r

H

h i1=h� �
dr ) ED

¼ r2

E
þ r � r

H

h i1=h
� r2

2E
þ h
1þ h

r
H

h ið1þhÞ=h

¼ r2

2E
þ r
1þ h

r
H

h i1=h
ð11Þ

where H and h are the monotonic Ramberg–Osgood coefficient and
exponent.

Assuming K2
t EDn ¼ ED, the so-called Glinka’s rule estimates the

EP stress r at the notch tip from its Kt and from the nominal stress
rn by:

K2
tr

2
n ¼ r2 þ 2Er

1þ h
r
H

h i1=h
ð12Þ

To apply Glinka’s rule to a material following the cyclic re
curve, it is enough to switch in the above equation the monotonic
Ramberg–Osgood parameters H and h with their cyclic counter-
parts Hc and hc. Finally, applying Glinka’s rule to a material follow-
ing the hysteresis loop DrDe curve, it is possible to write:

KtDrnð Þ2 ¼ Dr2 þ 4E

ð1þ hcÞ 2Hcð Þ1=hc
Drðhcþ1Þ=hc ð13Þ

As 4E/(1 + hc) < 2E, the elastoplastic stresses and strains
estimated by Glinka at notch tips are always smaller than those
estimated by Neuber, and larger than those estimated by the linear
strain concentration rule De = KtDen.

However, Eqs. (12) and (13) intrinsically assume the nominal
stresses are LE. As extensively discussed in the previous section
regarding Neuber’s rule, this hypothesis is only appropriate for
nominal stresses rn much lower than the cyclic yield strength SYc.
Otherwise, strain concentration rules should model both nominal
and notch-tip stress–strain relations using Ramberg–Osgood.
Under these conditions, Glinka’s rule applied to the cyclic re rule
and to the loop DrDe curve becomes then, respectively,

K2
t � r2

n þ
2Ern

1þ hc

rn

Hc

� �1=hc
 !

¼ r2 þ 2Er
1þ hc

r
Hc

� �1=hc

ð14Þ
Fig. 6. Symmetric half of the modeled 100 mm-thick double U-notch 3D tensile
specimen, along with the adopted FE mesh and coordinate frame.
K2
t � Dr2

n þ
4EDrn

1þ hc

Drn

2Hc

� �1=hc
 !

¼ Dr2 þ 4EDr
1þ hc

Dr
2Hc

� �1=hc

ð15Þ

Let’s emphasize two points about all these simplified proce-
dures: first, EP stress/strain concentration rules are just educated
estimates for EP notch effects based on unique LE Kt values. These
rules provide reasonable but certainly not very precise estimates
for Kr and Ke. Better values can be obtained by numerically calcu-
lating EP Dr and De ranges using (e.g.) advanced 3D FE techniques,
which require erudition and must be used with caution. Indeed,
such calculations are neither trivial nor robust. As Kr and Ke
depend not only on the geometry, but also on how and how much
the material strain-hardens, it is certainly better to calibrate them
experimentally.
5. Comparison among elastoplastic FE simulations and notch-
rule predictions

The presented formulations for Neuber’s and Glinka’s rules can
reasonably estimate the notch behavior under tension and plane
stress conditions, even for high nominal stresses that can cause
gross yielding of the net section. To verify this, EP Finite Element
simulations are performed on a 180 mm-long tensile specimen
with a double semi-circular U-notch of radius 24 mm. The
specimen height decreases from the nominal 72 mm to
72 � 2 � 24 = 24 mm at the net cross section. The material is a
304 stainless steel with Young modulus E = 195 GPa, Poisson ratio
m = 0.29, yield strength SY = 345 MPa, and Ramberg–Osgood
parameters 556 MPa and 0.08.

Two types of FE simulations are conducted using Abaqus v6.12
software: 2D analyses assuming plane stress conditions, applicable
for thin specimens; and 3D analyses for a 100 mm-thick tensile
specimen, to approximately simulate plane-strain conditions. The
2D plane stress models were built with 574 quadratic-reduced
integration elements (CPS8R from Abaqus library), totalizing
1841 nodes. The 100 mm-thick specimen was modeled with
26,936 quadratic-reduced integration elements (C3D20R from
Abaqus library), totalizing 117,481 nodes. In both cases, the
modeling took advantage of the symmetry: only one fourth and
one eighth of the geometry were modeled in the 2D and
100 mm-thick cases, respectively, and appropriate boundary con-
ditions were applied to the symmetry faces. Also, the respective
meshes were selected after cautious convergence studies. The load
was applied as a uniform stress in the far-end, and the problem
was solved considering small displacements. Fig. 6 shows the
expanded symmetric half of the modeled 100 mm-thick double
U-notch 3D tensile specimen, along with the adopted FE mesh
and coordinate frame. In its net section, the y coordinate varies
from �12 to 12 mm (24 mm height), while the thickness
coordinate z varies from �50 to 50 mm.

Purely LE FE simulations show that the geometric stress
concentration factor Kt for the 2D specimen is equal to 1.31 under
tension, with the nominal stress defined in the net section of
height 24 mm. On the other hand, for the 100 mm-thick 3D speci-
mens, the critical points are located at the lines y = ±12 mm, with
LE Kt values that vary along the thickness direction z from only
1.06 at the borders z = ± 50 mm up to 1.37 at the mid-thickness
z = 0, see Fig. 6. Such significant 3D effects had already been
studied in the literature [12–14], however they usually are
neglected in practical applications. It would not be unusual to
perform in practice a 2D FE analysis on the specimen to find its
Kt = 1.31, and then assume this would be the same value for the



Fig. 7. FE-calculated Kr as a function of rn/SY for the double U-notch tensile specimens, compared with Glinka’s and Neuber’s rule predictions.
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actual 3D component, instead of the almost 5% higher Kt = 1.37 at
the mid-thickness. Such 3D effects also suggest that a surface
fatigue crack would most likely initiate on the thick specimen at
the mid-thickness z = 0 instead of at the corners from the
z = ±50 mm borders.

Then, EP FE analyses are performed in both 2D and 3D specimens,
to find out the EP stress concentration factor Kr as a function of
the applied load level, measured from the ratio rn/SY, where rn is
the nominal stress defined at the net section. Fig. 7 shows the
FE-calculated Kr as a function of rn/SY for the 3D case at the border
and at the mid-thickness, as well as for the 2D case. Not surprisingly,
the Kr values for the 2D (thin) specimen are always in-between the
mid-thickness and border values from the thick 3D specimen.

Fig. 7 also shows that the Kr values decrease as the specimen
yields, as expected due to stress relief at the notch tip. Moreover,
the stresses at the borders of the thick specimen are always smaller
than the mid-thickness values. Gross yielding of the net section,
which is associated with ratios rn/SY > 1, causes the maximum
stress to be located below the surface of the specimen, usually at
the mid-height y = 0, a behavior represented in the graph by
bifurcations of the Kr curves. These bifurcations show the value
of Kr for y = 0 and for the surfaces y = ±12 mm, for each rn/SY ratio
and for each 2D or 3D specimen.

The EP modification of Glinka’s notch rule from Eq. (14) is then
applied using the Kt = 1.31 from the 2D case. As seen in the figure,
this rule results in reasonable estimates of the maximum Kr of the
2D specimen, even for gross yielding of the net section, after the
graph bifurcation (where the maximum stress would be located
at y = 0, instead of at y = ±12 mm). The EP version of Neuber’s rule
from Eq. (3), also represented in the figure, results in reasonable
but more conservative estimates, slightly overpredicting the Kr
obtained for the 2D case. On the other hand, the classic formulation
of Glinka’s rule assuming LE nominal stresses would highly under-
estimate Kr in the 2D case under large load levels, as shown in
Fig. 7. The classic Neuber’s rule with LE nominal stresses, not
represented in the figure, would also result in poor predictions
for high rn/SY ratios, similar to Glinka’s rule without the EP
modification. Similar conclusions can be drawn for EP strain
concentration factors Ke, which can be highly underestimated
using LE-nominal-stress formulations, while the presented EP
formulations better estimate the notch-root strains.
Finally, it is important to note that the presented EP corrections
of Neuber’s and Glinka’s rules are only reasonable under tension, or
under other loading conditions that do not cause significant
gradients in the nominal stress profile. If, on the other hand, nom-
inal bending or torsion causes a stress gradient at the notch root
that is not negligible with respect to the notch stress gradient, then
both gradients should be considered in the EP correction calcula-
tions. One possible approach has been proposed by Seeger and
Heuler [15], who corrected the notch equations using the shape
factor PPC/PY, defined as the ratio between the plastic collapse
and yielding loads under bending or torsion, calculated assuming
a material that does not strain harden. Such a shape factor is a
property of the specimen cross section and of the loading type,
and it can be used as a plastic notch factor to define modified
Neuber and Glinka rules for high nominal bending and torsion
loads. These modifications for bending and torsion are beyond
the scope of this work, but they could be implemented without
problems in Eqs. (2), (3), (14) and (15).

6. Conclusions

In this work, Neuber’s and Glinka’s notch rules were evaluated
based on Finite Element analyses. It was found that Glinka’s rule
better estimated the notch-tip stresses and strains under plane
stress for the studied double U-notch tensile specimen, when
compared to Neuber’s. Moreover, Neuber and Glinka formulations
considering elastoplastic nominal stresses were presented and
evaluated. It can be concluded that nominal stresses should never
be assumed as purely elastic in those rules, unless the nominal
levels are lower than the elastic limit of the material. Fatigue life
calculation errors of up to 2000% could result from the use of such
a linear elastic simplification even for nominal stress ranges below
the cyclic yield strength. 3D effects on the stress concentration
factor were also discussed from the analyses on 2D and thick 3D
specimens.

References

[1] R.I. Stephens, A. Fatemi, R.R. Stephens, H.O. Fuchs, Metal Fatigue in
Engineering, second ed., Interscience, 2000.

[2] Landgraf,RW. The resistance of metals to cyclic deformation. In: ASTM STP, vol.
467, 1970, pp. 3–36.

http://refhub.elsevier.com/S0167-8442(16)30031-3/h0005
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0005
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0005


92 M.A. Meggiolaro et al. / Theoretical and Applied Fracture Mechanics 84 (2016) 86–92
[3] H. Neuber, Theory of stress concentration for shear-strained prismatical bodies
with an arbitrary non-linear stress-strain law, J. Appl. Mech. 28 (1961) 544–
551.

[4] M.A. Meggiolaro, J.T.P, Castro, On the errors induced by the hookean modeling
of nominal stresses in the eN method. in: Fatigue, SAE P2001-01-4067, 2001,
pp. 257–266.

[5] M.A. Meggiolaro, J.T.P. Castro, Evaluation of the errors induced by high nominal
stresses in the classical eNmethod, in: A.F. Blom (Ed.), Fatigue, EMAS 2002, vol.
2, 2002, pp. 1451–1458.

[6] J.T.P. Castro, P.P. Kenedi, Previsão das taxas de propagação de trincas de fadiga
partindo dos conceitos de Coffin-Manson (in Portuguese), J. Braz. Soc. Mech.
Sci. Eng. 17 (1995) 292–303.

[7] J.T.P. Castro, M.A. Meggiolaro, A.C.O. Miranda, Singular and non-singular
approaches for predicting fatigue crack growth behavior, Int. J. Fatigue 27
(2005) 1366–1388.

[8] J.A.R. Durán, J.T.P. Castro, J.C. Payão Filho, Fatigue crack propagation prediction
by cyclic plasticity damage accumulation models, Fatigue Fract. Eng. Mater.
Struct. 26 (2003) 137–150.
[9] J.A.R. Durán, J.T.P. Castro, M.A. Meggiolaro, A damage accumulation model to
predict fatigue crack growth under variable amplitude loading using eN
parameters, in: A.F. Blom (Ed.), Fatigue, EMAS, 2002, vol. 4, 2002, pp. 2759–2776.

[10] J.A.R. Durán, J.T.P. Castro, M.A. Meggiolaro, Crack growth predictions under
variable amplitude loading based on low cycle fatigue data, in: P.D. Portella
(Ed.), V Low Cycle Fatigue, DVM 2004, pp. 353–358.

[11] K. Molski, G. Glinka, A method of elastoplastic and strain calculation at a notch
root, Mater. Sci. Eng. 50 (1981) 93–100.

[12] R.C.O. Góes, J.T.P. Castro, L.F. Martha, Three dimensional effects on elastic
notch tip stress/strain fields in finite-thickness plates under tension, in: 67th
ABM International Congress, 2012.

[13] Z. Yang, C.B. Kim, C. Cho, H.G. Beom, The concentration of stress and strain in
finite thickness elastic plate containing a circular hole, Int. J. Solids Struct. 45
(2008) 713–731.

[14] R.C.O. Góes, J.T.P. Castro, L.F. Martha, 3D effects around notch and crack tips,
Int. J. Fatigue 62 (2014) 159–170.

[15] T.H. Seeger, P. Heuler, Generalized application of Neuber’s rule, J. Test. Eval. 8
(1980) 199–204.

http://refhub.elsevier.com/S0167-8442(16)30031-3/h0015
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0015
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0015
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0030
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0030
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0030
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0035
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0035
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0035
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0040
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0040
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0040
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0055
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0055
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0060
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0060
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0060
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0060
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0065
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0065
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0065
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0070
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0070
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0075
http://refhub.elsevier.com/S0167-8442(16)30031-3/h0075

	Elastoplastic nominal stress effects in the estimation of the notch-tip�behavior in tension
	1 Introduction
	2 Neuber’s strain concentration rule with elastoplastic nominal stresses
	3 Errors Induced by the linear elastic modeling of the nominal stresses
	4 Glinka’s strain concentration rule with elastoplastic nominal stresses
	5 Comparison among elastoplastic FE simulations and notch-rule predictions
	6 Conclusions
	References


