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It has been experimentally proven that the shear stress level needed to cause fatigue failure
is lower than the axial one. This fact has led to consider a Stress Scale Factor (SSF) between
shear and axial stress to reduce different applied stresses to the same shear stress space or
principal stress space, consequently facilitating the yielding analysis or fatigue damage
evaluations. Most of multiaxial fatigue models use an SSF, and materials can be classified
as shear sensitive (low SSF values) or tensile sensitive (large SSF values), depending on
the main fatigue microcrack initiation process under multiaxial loadings. The use of SSF
is quite common in many multiaxial fatigue criteria based on the critical plane approach.
Such criteria adopt a SSF value assumed constant for a given material, sometimes varying
with the fatigue life (in cycles) but not with the SAR (Stress Amplitude Ratio), the stress
amplitude level, or the loading path shape. In this work, in-phase proportional tension-
torsion tests related to 42CrMo4 steel specimens for several values of SAR are presented.
The SSF approach is then compared with critical-plane models, based on their predicted
fatigue lives and the observed ones for the studied tension-torsion histories.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Experimentally, it has been proven that the shear stress level needed to cause fatigue failure is lower than the axial one
and several references can be found in the literature related to this material behavior [1,2]. This fact has led to consider a
Stress Scale Factor (SSF) between shear and axial stress in order to reduce different applied stresses to the same shear stress
space or principal stress space to facilitate the yielding analysis or fatigue damage evaluations. In this way, most of multi-
axial fatigue models use a stress scale factor to consider the fatigue damage contributions from the axial and shear stress
components regarding the material strength degradation.

Materials can be classified as shear or tensile sensitive, depending on the main fatigue microcrack initiation process under
multiaxial loadings [2]. Initiating microcracks under multiaxial loading are usually sub-divided into shear or tensile types.
The dominant fatigue mechanism in so-called shear-sensitive materials is Mode II and microcracks nucleate along a shear
plane where the range of the shear components is maximum, with the normal components only playing a secondary role.
However, other materials such as 304 stainless steel under certain load histories, and cast irons [1], may initiate fatigue
cracks in plane of maximum tensile strain or stress ranges, in this case, even if the microcrack nucleates in shear, its so-
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Nomenclature

ESWT elastic Smith Watson Topper
SAR stress amplitude ratio
SSF stress scale factor
A, b power law fitting parameters of SN curve
a, b, c, d, f, g, h, i material constants of SSF function
E Young’s modulus
N number of cycles
R stress ratio
SL axial or bending fatigue limit
SLp pulsated axial fatigue limit
aF Findley’s coefficent
aC Crossland’s coefficent
bF Findley’s damage parameter
bC Crossland’s damage parameter
e strain
c shear strain
k stress amplitude ratio
h angle of critical plane
ra axial stress amplitude
rc, ec, b, c Coffin-Manson’s material parameters
sa torsional stress amplitude
sL torsional fatigue limit
sc, bs torsional strength coefficient and exponent
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called initiation life (which always includes some microcrack propagation) is controlled by its growth in a direction perpen-
dicular to the maximum principal stress or strain. Moreover, a material can be shear-sensitive for short fatigue life, but
tensile-sensitive for long fatigue life, a behavior that can also depend on the loading type.

The shear or tensile nature of the initiating microcrack can be evaluated from a stress scale factor (SSF): low values of the
SSF indicate a shear-sensitive material, which usually requires shear-based damage models such as Findley’s [3] or Fatemi-
Socie’s [4], while a large SSF indicates that a tensile-based model should be used, like Smith-Watson-Topper’s [5].

The approach proposed by Anes et al. [6], for tension-torsion histories, combines the shear and normal stress amplitudes
applied on the specimen cross section, using a SSF polynomial function that depends on the Stress Amplitude Ratio (SAR)
between shear and normal components. Such an approach has been successfully applied to multiaxial fatigue life predictions
either under constant amplitude loading or under variable amplitude loading [7,8]. The present method is considered as an
alternative to multiaxial fatigue life prediction by means of critical plane-based criteria, employed for both constant [9–12]
and variable amplitude loadings [13–15]. The critical plane approach calculates the damage on the plane where damage is
maximized (not on the plane where the load is applied) while adopting a SSF value that is assumed constant for a given
material, sometimes varying with the fatigue life (in cycles), but not with the SAR, the stress amplitude level, or the loading
path shape.

In this work, in-phase proportional tension-torsion experiments that were carried out in previous studies [6–8] on
42CrMo4 steel round specimens for several values of the SAR are re-analyzed in terms of SSF and critical plane methods.
The SSF approach in [6] is then compared with two critical plane methods in [3,4], based on their predicted fatigue lives
and the observed values for the examined tension-torsion histories.

2. The SSF method

The SSF parameter presented for each criterion is obtained in tension–compression, bending or pure shear loading con-
ditions. This approach conducts to results where the tension–compression or bending S–N curves can be directly related to
the pure shear data or vice versa. The main statement is that the multiaxial model must also explain the uniaxial results;
however, the combined effect between axial and shear components is based on the uniaxial fatigue data, missing the com-
bined damage effect. The SSF method based on an equivalent shear stress approach, proposed in [6], considers that both the
SAR and the stress loading level significantly influence the material fatigue strength. Such effects are accounted for through
the SSF function, which transforms an axial damage into a shear one. With this equivalent stress, it is also possible to esti-
mate fatigue lives Nf using the uniaxial shear stress S-N curve represented as
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max
block

ðsþ ssf �rÞ ¼ AðNf Þb: ð1Þ
where A and b are respectively the coefficient and exponent of the S-N curve, and
ssfðra; kÞ ¼ aþ b �ra þ c �r2
a þ d �r3

a þ f � k2 þ g � k3 þ h � k4 þ i � k5: ð2Þ

where k � tan�1(sa/ra) is the SAR and ra and sa are respectively the amplitude of the axial and shear component of the
tension-torsion loading. The constants from ‘‘a” to ‘‘i‘‘ are determined through experimental tests and, therefore, the SSF
function is a material fatigue property.

3. Critical plane approach

The critical-plane approach assumes that fatigue life can be calculated from the damage on the critical plane at the critical
point [16,17]. It also assumes that damage on all other planes do not influence the initiation of the microcrack. Here, the
main calculation challenge is to compute the accumulated damage in many candidate planes at the critical point, to find
the direction of the critical one where the damage is maximized (and thus where the crack is expected to initiate). This
search is very much simplified for in-phase proportional constant amplitude load histories, such as the ones studied in this
work.

3.1. Candidate planes for crack initiation

For materials that tend to initiate a single dominant microcrack (a typical fatigue behavior observed in most metallic
alloys), Bannantine and Socie [18] narrowed down the search space for the critical plane. They classified the most common
initial cracks into three types, which depend on the fatigue damage mechanism: (1) Case A tensile or (2) Case A shear cracks,
which grow in planes perpendicular to the free surface, or (3) Case B shear cracks, which grow in planes that form an angle
equal to 45� with the surface.

The initiation of a Case A microcrack, which grow along a critical plane perpendicular to the free surface, is controlled by
the combination of its four projected stresses and strains:
sAðhÞ ¼ s0xyðhÞ ¼ sxy cos 2hþ 0:5 � ðry �rxÞ � sin 2h

r?ðhÞ ¼ r0
xðhÞ ¼ rx � cos2 hþry � sin2 hþ sxy sin 2h

cAðhÞ ¼ cxy cos 2hþ ðey � exÞ � sin 2h

e?ðhÞ ¼ ex � cos2 hþ ey � sin2 hþ 0:5 � cxy sin 2h

ð3Þ
where h is the angle of the plane as shown in Fig. 1, rx, ry, sxy, ex, ey and cxy are time-varying components defined by the
load history. Fig. 1 shows the stress states and Mohr circles associated with such Case A cracks.

For a proportional loading history (rx, sxy) (with amplitudes ra P 0 and sa P 0), the projected stresses during the peak
load (ra, sa) are given by:
sApeakðhÞ ¼ sa cos 2h� 0:5 �ra � sin 2h
r?peakðhÞ ¼ ra � cos2 hþ sa sin 2h

ð4Þ
and the projected stresses during the valley (�ra, �sa) are:

sAvalleyðhÞ ¼ �sa cos 2hþ 0:5 �ra � sin 2h
r?valleyðhÞ ¼ �ra � cos2 h� sa sin 2h

ð5Þ
From these stresses at each peak and valley of the loading history, the projected shear stress amplitude for each Case A
candidate plane with angle h can be computed:
DsAðhÞ
2

¼ jsApeakðhÞ � sAvalleyðhÞj
2

¼ jsa cos 2h� 0:5 �ra � sin 2hj ð6Þ
and the projected normal stress amplitude is:
Dr?ðhÞ
2

¼ jr?peakðhÞ �r?valleyðhÞj
2

¼ jra � cos2 hþ sa sin 2hj ð7Þ
Further, the maximum projected stress is given by:
r?maxðhÞ ¼ maxfr?peakðhÞ;r?valleyðhÞg ¼ jra � cos2 hþ sa sin 2hj ð8Þ

Note that the maximum projected stress could be r?valleyðhÞ for sin2h < 0 and large sa. Therefore the above absolute value

functions are required to guarantee tensile maximum stresses in this fully-alternate example. Moreover, due to symmetry,
the mean normal stress r?mðhÞ is equal to zero.



Fig. 1. Stress states and Mohr’s circles for the initiation of a Case A microcrack at (h, 90�) planes perpendicular to a free-surface, with an optional surface
pressure p.
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Case B shear cracks, which initiate at 45� from the free surface, is not examined in this work, since they are not likely to
initiate in tension-torsion experiments, which have negative biaxiality ratios r2/r1 < 0, where r1 and r2 are the principal
stresses on the free surface. Case B shear cracks are usually the case of positive biaxiality ratios r2/r1 > 0, where the micro-
crack initiation is on the maximum shear plane at 45� from the free surface, controlled by the maximum absolute r1 and the
free-surface principal stress r3.
3.2. Findley’s shear model

Findley explicitly introduced the critical plane idea in 1959 [3], proposing a stress-based fatigue damage model applicable
to non-proportional multiaxial loads. His seminal idea was further developed in 1991 by Bannantine and Socie [18], and it is
now used in most advanced models for predicting fatigue damage under multiaxial loads in materials that initiate a single
dominant crack under low loads, like most metallic alloys. Such models assume that the fatigue crack initiates at the com-
ponent’s critical point on its critical plane, where a suitable damage parameter is maximized. The critical plane approach is
physics-based and considers in a reasonable way how the fatigue cracking process works under multiaxial loads in those
materials.

Indeed, when the principal directions vary along time, the cracks certainly have a problem to ‘‘decide” in which direction
they should initiate. However, since all natural processes tend to choose the path of least effort, they probably would like to
do so in the direction where the accumulated fatigue damage is maximized. Models based on this idea are thus sensible, but
they have a large computational cost, since they need to identify the critical plane direction at the critical point (typically
requiring under free surface conditions a search among at least 18 Case A and 18 Case B candidate planes, for a 10� dis-
cretization in h), an additional non-negligible complication in fatigue damage calculations, only viable because of the low
cost of powerful computers nowadays.
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Findley assumed that the fatigue damage is caused by the parameter [Ds/2 + aF�r\max], which combines the shear stress
range Ds/2 acting on the critical plane with the peak of the normal stress perpendicular to that plane r\max, during the con-
sidered load event. In this way, fatigue cracking would take place at the critical point in directions where this reasonable
damage parameter is maximized.

Findley’s model is shear-based, since its main cyclic damage parameter is the shear range Ds and not Dr\. Therefore,
such model should be used only if nominally elastic amplitudes would initiate Case A or B shear cracks, not Case A tensile
cracks.

For a Case A candidate plane, which is perpendicular to the free surface and makes an angle h with the x axis, it follows
that Ds/2 � DsA(h)/2 and r\max � r\max(h). Therefore, Findley’s infinite life criterion (for multiaxial fatigue under any type
of loading) for Case A candidate planes is given by the maximization problem
max
h

½DsAðhÞ=2þ aF �r?maxðhÞ� ¼ bF ð9Þ
where Findley’s coefficient aF and fatigue limit bF must be calibrated from measurements in at least two types of fatigue
tests, e.g. under rotatory bending and cyclic torsion, or else under push-pull tests at R = rmin/rmax = 0 and R = �1.

Let’s now calibrate the constants aF and bF of Findley’s shear-based model from the fully-reversed uniaxial fatigue limit
SL(R = �1) and the torsional fatigue limit sL measured under pure cyclic torsion. The first step is to find whether fully-
reversed uniaxial stresses with amplitudes slightly higher than SL would induce Case A tensile, Case A shear, or Case B shear
cracks. If they induce Case A tensile cracks, then the material is probably tensile-sensitive, and torsional loads are also likely
to induce Case A tensile cracks. For tensile-sensitive materials, a different fatigue damage model that includes the effect of
Dr\ is discussed in the next section.

Case A and Case B shear cracks require different calibration procedures. Since only the former is considered in this work,
calibration is here performed only for the former case. For Case A shear cracks (which are always perpendicular to the free
surface) under uniaxial conditions (i.e. shear amplitude sa = 0), it follows from Eqs. (6) and (8) that
DsAðhÞ
2

¼ j � 0:5 �ra � sin 2hj ¼ 0:5 �raj sin 2hj and r?maxðhÞ ¼ jra � cos2 hj ¼ ra � cos2 h ð10Þ
Findley criterion is then obtained in this uniaxial case from the following maximization problem:
max
h

½DsAðhÞ=2þ aF �r?maxðhÞ� � max
h

½0:5ra � j sin 2hj þ aF �ra cos2 h� ð11Þ
In the search space 0� 6 h 6 90� where |sin2h| � sin2h, this maximization problem is solved for a Case A critical plane
whose hcr is obtained after equating to zero the derivative of the damage parameter with respect to h:
ra cos 2h� aF �ra 2 cos h sin h|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
sin 2h

¼ 0 ) h ¼ hcr ¼ 0:5 � tan�1 1
aF

� �
ðCase A;uniaxial caseÞ ð12Þ
Replacing this hcr solution into Findley’s Eq. (9), it becomes
0:5 �ra �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

F

q
þ aF

� �
¼ bF ðCase A;uniaxial caseÞ ð13Þ
The other h solution of Eq. (11) is within the remaining search space 90� < h < 180�, however the associated candidate
plane h = 180� � hcr results in a lower damage parameter than the one from the hcr plane, thus it can be ignored.

On the other hand, under pure torsion, i.e. with normal amplitude ra = 0, it follows from Eqs. (6) and (8) that
DsAðhÞ
2

¼ jsa cos 2hj and r?maxðhÞ ¼ jsa sin 2hj ð14Þ
The Case A shear crack is predicted in the direction with the highest Findley’s damage parameter, and therefore o(cos2h
+ aF�sin2h)/oh = 0 results in
� sin 2hþ aF � cos 2h ¼ 0 ) h ¼ hcr ¼ 0:5 � tan�1ðaFÞ ðCase A;pure torsionÞ ð15Þ

Hence, it is possible to write that under pure cyclic torsion
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

F

q þ aF
aFffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

F

q ¼ 1þ a2
Fffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
F

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

F

q
) sa �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

F

q
¼ bF ðCase A;pure torsionÞ ð16Þ
In the fatigue limit case, the fully-reversed uniaxial Eq. (13) should adopt ra = SL(R = �1), while the pure-torsion Eq. (16)
would use sa = sL, resulting in
SL �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

F

q
þ aF

� �
¼ 2 � bF

sL �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

F

q� �
¼ bF

8><
>: )

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

F

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

F

q
þ aF

¼ SL
2sL

) aFffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

F

q ¼ 2 � SL
sL

� 1 ð17Þ
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Solving these equations for aF and bF, it is found that
aF ¼ 1� 0:5 � SL=sLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SL=sL � 1

p ; bF ¼
0:5 � SLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SL=sL � 1

p ðFindley’s calibration for Case A shearÞ ð18Þ
The above Findley calibration is the most used in the literature, however it is not appropriate if Case B shear cracks ini-
tiate. In this case, a similar derivation could be performed for Case B shear cracks, resulting in different calibration
parameters
aF ¼ 1� SLp=SL
SLp=SL � 0:5

;bF ¼
0:5SLp

SLp=SL � 0:5
ðFindley’s calibration for Case B shearÞ ð19Þ
where SLp is the pulsating uniaxial fatigue limit measured for R = 0. Clearly, the calibration from Eq. (19) is only coherent if
pulsating stresses slightly above SLp would indeed initiate Case B (instead of Case A) shear cracks in the considered material.
The calibration values from Eqs. (18) and (19) can be significantly different, therefore they should not be interchangeably
used.

It is important to note that the original Findley model does not recognize that its parameters aF and bF should have dif-
ferent calibration procedures for calculations to predict the initiation of Case A or Case B shear cracks. Several applications of
the Findley model available in the literature implicitly assume initiation of Case A shear cracks in planes perpendicular to the
critical point free surface, for which the out-of-plane shear component sB is always null. The above proposal to separately
calibrate Findley’s parameter using Eqs. (18) or (19) has been inspired by McDiarmid’s model, which uses separate fatigue
limits to independently calibrate its parameters [19,20], recognizing that Case A and Case B shear microcracks should not
share the same parameters.

Matake’s model [21] is a variation of Findley’s criterion that uses the same fatigue damage parameter. However, it oddly
searches for the plane of the maximum shear range instead of the plane that maximizes its entire damage parameter to cal-
culate the critical plane direction. Although popular, Matake’s model can result in non-conservative predictions if the driving
force for fatigue crack initiation is indeed the assumed damage parameter, which is not necessarily maximized at the can-
didate plane where Ds � DsA(h) is maximum, especially under non-proportional variable amplitude loads. For instance, if
the largest shear range only happens for one cycle on a certain plane, while the second largest shear range is repeated over
several thousand cycles on a different plane, then it is expected that the plane associated with the second largest is the crit-
ical one, and not the maximum shear plane. Therefore, a maximum-damage critical-plane approach needs to be adopted, as
opposed to Matake’s approach.

For the proportional tension-torsion case with normal and shear amplitudes ra and sa, Findley’s infinite-life equation for
Case A candidate planes becomes
max
h

jsa cos 2h� 0:5 �ra � sin 2hj þ aF � jra � cos2 hþ sa sin 2hj� 	 ¼ bF ð20Þ
In the first quadrant 0� 6 h 6 90�, the right term ra � cos2 hþ sa sin 2h is never negative (since the amplitudes ra P 0 and
sa P 0), however the left term only is positive if tan2h < 2sa=ra ¼ tan2hp, where hp is the principal direction from the first
quadrant. Therefore, Findley’s equation becomes
max
h

½sa cos 2h� 0:5 �ra � sin 2hþ aF �ra � cos2 hþ aF � sa sin 2h� ¼ bF; for 0� 6 h 6 hp

max
h

½�sa cos 2hþ 0:5 �ra � sin 2hþ aF �ra � cos2 hþ aF � sa sin 2h� ¼ bF; for hp < h 6 90�

8<
: ð21Þ
Deriving these expressions and equating them to zero, it can be shown that the critical plane directions hF according to
Findley’s model satisfy
tan2hF ¼ 2aFsa �ra

aFra � 2sa
ð22Þ
For the entire Case A search space 0� 6 h < 180�, the above expression has four roots, however in general only two of them
maximize the damage parameter globally along h, not only locally. By replacing hF (from the global optimization) into Find-
ley’s equation, and after some algebraic manipulation involving the trigonometric relations between tan2hF, sin2hF and cos2-
hF, the infinite-life criterion becomes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
a þ 4s2a

q
þ aFffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
F

q �ra ¼ 2bFffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

F

q ð23Þ
This expression helps understand why simplistic invariant-based damage models such as the Crossland’s one [22] can
give reasonable predictions for metals under simple loadings: if Tresca’s factor 4 in Eq. (23) is replaced with von Mises’
to give

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

a þ 3s2a
p ¼ DrMises=2 ¼ DsMises

ffiffiffi
3

p
=2, then it becomes Crossland’s criterion
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DsMises

2
þ aC � ð3 �rhmaxÞ ¼ bC if aC � aFffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
F

q and bC � 2bFffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

F

q ð24Þ
because rhmax ¼ rmax=3 ¼ ra=3. Crossland’s invariant-based criterion might be appropriate for materials that fail due to a
distributed mechanism, such as multiple cracking in all directions or microvoid coalescence in cavitation.

However, the use of von Mises and hydrostatic stresses makes this criterion mix fatigue damage from multiple planes,
instead of searching for the critical plane where the single dominant crack should initiate, as in most metals. As a result, even
though Crossland’s model completely misses the physics of crack initiation in most metals, it can approximately reproduce
the critical-plane approach predictions for simple in-phase loading. This coincidence makes it evident that more complex
non-proportional variable amplitude multiaxial loadings need to be considered to properly evaluate and distinguish such
different damage models. In other words, most multiaxial fatigue damage models work well for simple loadings, however
this does not mean that they can be used for a more general history, much less for materials different from the ones used
in the experimental comparison.

Findley’s infinite-life model from Eq. (9) can be extended to finite-life calculations using a shear version of Wöhler’s curve,
equating Findley’s fatigue limit bF with the torsional fatigue limit sL, resulting in
max
h

DsAðhÞ
2

þ aF �r?maxðhÞ

 �

¼ bF

sL
� sc � ð2NÞbs ð25Þ
where sc and bs are the torsional strength coefficient and exponent, respectively, calibrated under pure torsion. Note that the
above bF is not equal to sL, because Findley’s maximum-damage critical-plane approach is adopted in the model calibration;
bF is equal to sL only for the case of Matake’s maximum shear range calibration. For the studied in-phase tension-torsion
history, Findley’s predicted fatigue life NF (in cycles) becomes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
a þ 4s2a

q
þ aFffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
F

q �ra ¼ 2bF

sL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

F

q � sc � ð2NFÞbs ð26Þ

) NF ¼ 0:5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

F

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

a þ 4s2a
q

þ aF �ra

� �
� sL
2bFsc


 �1=bs
ð27Þ
Therefore, NF can be obtained as a function of ra and sa, where aF and bF are obtained from the normal and shear fatigue
limits SL and sL calibrated using the presented Findley’s calibration for Case A shear from Eq. (18).

3.3. Smith-Watson-Topper’s tensile model

Findley’s [3] or Fatemi-Socie’s [4] model are not appropriate for tensile-sensitive materials, where Case A tensile cracks
initiate. In these materials, the fatigue initiation life N of such cracks must be correlated with a damage parameter based on a
normal range De\ (not on a shear range Dc), combined with the peak stress r\max parallel to e\ to account for mean/max-
imum stress effects.

The multiaxial version of Smith-Watson-Topper’s (SWT) model [5] is particularly useful for calculating fatigue damage of
such materials, especially if the propagation phase of the microcracks (still within the so-called crack initiation stage), which
is more sensitive to the normal stresses, is dominant over its shear-controlled initiation. The multiaxial version of SWT’s
equation for Case A tensile cracks can be written as
max
h

r?maxðhÞ � De?ðhÞ2

� �
¼ r2

c

E
ð2NÞ2b þrcecð2NÞbþc ð28Þ
where rc, ec, b and c are Coffin-Manson’s material parameters.
In high-cycle fatigue calculations, an elastic version of the SWT model, ESWT, can be adopted. Under linear-elastic uni-

axial conditions, the plastic term rcecð2NÞbþc in Eq. (28) can be neglected, while Hooke’s law gives Dr\(h)/2 = E�De\(h)/2,
resulting in
ESWT ¼ max
h

r?maxðhÞ � Dr?ðhÞ
2

� �
¼ r2

c ð2NÞ2b ð29Þ
This equation can be simplified in the studied proportional history (which has zero mean stresses), because in this fully-
alternate case the peak normal stress r\max(h) perpendicular to a Case A plane along h is equal to the normal amplitude
Dr\(h)/2. Therefore, the ESWT equation becomes the Wöhler’s curve using Basquin’s formulation:
max
h

r?maxðhÞ � Dr?ðhÞ
2

� �
¼ max

h

Dr?ðhÞ
2

� �2
" #

¼ r2
c ð2NÞ2b ) max

h

Dr?ðhÞ
2

� �
¼ rcð2NÞb ð30Þ
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Thus, the damage parameter to be maximized in the ESWT model simply becomes Dr?ðhÞ=2 for a fully-alternate loading.
Deriving Eq. (7) and equating it to zero, the critical plane orientation hESWT in the first quadrant 0� 6 h 6 90� is obtained from
Table 1
42CrMo

Elem

Weig
�ra � 2 cos h sin hþ 2sa cos 2h ¼ 0 ) tan2hESWT ¼ 2sa
ra

¼ tan2hp ¼ 2 tank ð31Þ
where k is the stress amplitude ratio from the SSF model [6], and hp is the principal direction from the first quadrant. Not
surprisingly, hESWT is one of the fixed principal directions hp of such proportional tension-torsion loadings. On this principal
plane, the damage parameter is maximized, resulting in the principal stress equation for the normal and shear amplitudesra

and sa:
Dr?ðhESWTÞ
2

¼ ra
1þ cos 2hESWT

2
þ sa sin 2hESWT ¼ ra þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

a þ 4s2a
p

2
ð32Þ
For such an in-phase tension-torsion loading (where both ra P 0 and sa P 0), the other principal direction hESWT + 90�
always results in a lower Dr?ðhÞ=2, therefore it does not need to be considered. Notice that the maximized damage param-
eter on the hESWT plane can be expressed as a function of ra and k, using the relation sa = ra tan k, thus:
Dr?ðhESWTÞ
2

¼
ra þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

a þ 4r2
a tan

2 k
q

2
¼ ra � 0:5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25þ tan2 k

ph i
ð33Þ
Assuming that the ESWT model is able to predict crack initiation, the above expression would explain why the SSF can be
represented as a function of ra and k, however requiring a fifth-order polynomial function to approximately reproduce such
a non-linear expression.

Finally, from the ESWT equation it follows that the predicted fatigue life NESWT (in cycles) is
NESWT ¼ 0:5 � Dr?ðhESWTÞ
2rc


 �1=b
¼ 0:5 � ra þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

a þ 4s2a
p
2rc

" #1=b

¼ 0:5 � ra

rc
� 0:5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25þ tan2 k

p� �
 �1=b
ð34Þ
4. Materials and methods

4.1. Material

The material used in this work is the DIN 42CrMo4 (AISI 4140) low alloy steel. These metal alloys are heat treated by
austenitizing, quenching, and tempering to improve their mechanical properties. This treatment is improved due to the chro-
mium and molybdenum addition, which gives a variety of strength and ductility combinations. This material has been
widely used in automotive components such as crankshafts, front vehicle axles, steering components and hot forging com-
ponents. The chemical composition is given in Table 1.

Specimens used in the fatigue tests series were produced from rods with 25 mm of diameter and its geometry and dimen-
sions reported in [23]. The specimens were inspected and manually polishing through sandpapers of decreasing grit since
from 200 to 1200. The monotonic and cyclical properties of 42CrMo4 steel are shown in Table 2.
4.2. Loading paths

Fatigue tests were carried out through a tension/torsion servo-hydraulic fatigue testing machine under stress control at
room temperature; the testing frequency was 5 Hz. The six loading paths performed in this study where: alternate tension-
compression, alternate torsion, proportional and non-proportional tension/torsion loading. In order to perform the SSF map-
ping, three different proportional loading paths with three different stress amplitude ratios were selected. One additional
case was considered, a non-proportional 90� out of phase loading path, in order to correlate and evaluate the achieved
SSF with experimental data. A full description of these study can be found in [6]. For the 42CrMo4 steel used in this study
the fatigue material constants for the SSF function described in Equation (1) and (2) determined from the previous described
experimental tests, are presented in Table 3.
4 chemical composition [23].

ent C Si Mn P S Cr NI MO Cu

ht (%) 0.39 0.17 0.77 0.025 0.02 1.1 0.3 0.16 0.21



Table 2
42CrMo4 monotonic and cyclic mechanical properties.
[23]

Tensile strength ru (MPa) 1100
Cyclic strength coefficient K (MPa) 1420
Yield strength ry (MPa) 980
Cyclic strength exponent n0 (MPa) 0.12
Elongation e (%) 16
Fatigue strength coefficient rc (MPa) 1154
Young’s modulus E (GPa) 206
Fatigue strength exponent b (MPa) 0.061
Hardness (HV) 362
Fatigue ductility coefficient ec (MPa) 0.18
Cyclic yield strength (MPa) 640
Fatigue ductility exponent c (MPa) 0.53

Table 3
Coefficients for the SSF function [23].

a b c d f g h i

2.69 �9.9E�03 1.69E�05 �9.52E�09 �5.99 11.72 �8.04 1.63
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5. Results and discussion

The tested 42CrMo4 steel has the monotonic and cyclic elastic and plastic properties presented in Table 2. The ESWT
model adopts an elastic version of Coffin-Manson’s equation, which neglects its plastic term (thus ignoring ec and c). There-
fore, the resulting purely-elastic calibration requires a larger rc and lower b (in-between the original exponents b and c) to
better fit experimental data for lower fatigue lives, see Fig. 2. This figure shows that rc = 1654 MPa and b = �0.0934 provide
a good fit, assuming as well a normal fatigue limit SL = 450 MPa to account for one run-out experiment beyond 2�106 cycles.
Fig. 2 also shows the fitting sc = 911 MPa and bs = �0.0623 of the shear stress-life curve from pure torsion experiments,
where the shear fatigue limit sL is estimated as 350 MPa. From the normal and shear fittings, it is possible to write:
ra ¼ rc � ð2NÞb ¼ 1654 � ð2NÞ�0:0934 and sa ¼ sc � ð2NÞbs ¼ 911 � ð2NÞ�0:0623 ð35Þ

Then, from Findley’s calibration for Case A cracks from Eq. (18), the constants are aF = 0.668 and bF = 420.9 MPa.
Fig. 3 shows ESWT’s damage parameter normalized by the normal fatigue limit SL, Dr?ðhÞ=2SL, as a function of the Case A

candidate plane angle h, for the particular in-phase case with amplitudes ra = sa = 290 MPa. From Eqs. (31) and (33), ESWT’s
Fig. 2. Fitting of the stress-life curves from the uniaxial and pure torsion experiments.



Fig. 3. Normalized damage parameters Dr?ðhÞ=2SL and ½DsAðhÞ=2þ aF �r?maxðhÞ�=bF as a function of the Case A candidate plane angle h, for an in-phase
tension-torsion history with amplitudes ra = sa = 290 MPa.
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normalized damage parameter is maximized for hESWT ¼ 0:5 � tan�1ð2sa=raÞ ffi 31:7�, reaching Dr?ðhÞ=2SL ffi 1:04, see Fig. 3.
Since this normalized parameter is larger than 1.0, a Case A tensile crack would initiate along this plane characterized by the
above value of hESWT, according to ESWT’s model.

However, Findley’s normalized damage parameter, ½DsAðhÞ=2þ aF �r?maxðhÞ�=bF, reaches a slightly higher maximum,
approximately 1.16, calculated from Eqs. (22) and (23) for a critical-plane angle
hF ¼ 0:5 � tan�1½ð2aFsa �raÞ=ðaFra þ 2saÞ� ffi 3:6�, as well as for another root of Eq. (22), namely
hF ¼ 0:5 � tan�1½ð2aFsa þraÞ=ðaFra � 2saÞ� þ 90� ffi 59:8�, see Fig. 3. Since Findley’s model predicts a higher maximum dam-
age than ESWT, the Case A crack should initiate in shear (not tension) in one of the hF planes 3.6� or 59.8�. Notice that such
planes are associated with Forsyth’s stage 1 microcracks [24], during early stages of initiation, not to be mistaken by the
direction of Forsyth’s stage 2 macroscopic cracks. Such stage 1 plane directions can be difficult to measure in practice, since
they involve a very small portion of the resulting macroscopic crack.

For constant amplitude histories, such as the ones in this work, the maximization process can be directly carried out for
the damage parameter from the adopted model, as exemplified in Fig. 3. However, under variable amplitude loading, Miner’s
rule should be applied to rainflow-counted load events from each candidate plane to find its accumulated damage, which
would then be maximized for the critical plane.

Figs. 4–6 present a comparison between the observed fatigue lives Nobsv and the NSSF, NESWT and NF predicted fatigue lives
by the SSF, ESWT and Findley’s methods, respectively, for stress amplitude ratios k = 0� (uniaxial), 30�, 45�, 60� and 90� (pure
torsion). As observed in Fig. 4, the polynomial fitting of the SSF expression is well performed, allowing a good correlation
between Nobsv and NSSF for all cases.

As shown in Fig. 5, ESWT’s critical-plane method results in reasonable fatigue life predictions, except for the pure torsion
(k = 90�) case. This result suggests that the pure torsion history involved significant shear damage, as expected, however
ESWT’s model only accounts for tensile damage.

Findley’s critical-plane method also results in reasonable fatigue life predictions, except for the k = 30� and k = 45� cases,
see Fig. 6. This result suggests that these histories involved significant tensile damage, however Findley’s model only
accounts for shear damage. The maximum normal stress r\max influences Findley’s shear damage parameter, however no
measure of the normal range Dr\ perpendicular to the critical plane is considered. Nevertheless, Findley’s predictions for
the uniaxial case are surprisingly good, indicating that the r\max term was able to capture the damaging Dr\ effects.

Fig. 7 shows critical-plane predictions based on ESWT’s tensile model applied to the predominantly tensile cases k = 0�
(uniaxial), 30�, and 45�, and on Findley’s shear model to the shear-dominated cases k = 60� and 90� (pure torsion). Notice
that the prediction scatter is not too different from the one obtained by means of the SSF method shown in Fig. 4. However,
such critical-plane method calculations have a greater prediction potential, because they are only based on curve fittings of
the uniaxial and pure torsion experiments from Fig. 2, while the polynomial from the SSF method requires data from all five
tests to be properly calibrated. Alternatively, a more conservative version of Fig. 7 can have been generated from the min-
imum life between the predicted NESWT and NF for each experiment, as usually assumed for the critical-plane approach by
using separate tensile and shear-based damage models.



Fig. 4. Comparison between the observed fatigue lives Nobsv and the NSSF predicted by the SSF method.

Fig. 5. Comparison between the observed fatigue lives Nobsv and the NESWT predicted by the ESWT critical-plane method.
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6. Conclusions

In this work, it has been shown that both critical-plane and stress scale factors (SSF) approaches have the potential to
predict multiaxial fatigue lives, at least for in-phase proportional loadings. SSF approach reveals a much better prediction
lives than the critical plane approaches used. In particular Findley’s model neglects tensile damage, while the Elastic Smith,
Watson and Topper (ESWT) model neglects shear damage, which explains why their performance was not very good for all
considered load histories. Perhaps, other critical-plane models that mix shear and tensile damage, such as Susmel’s [25–27]
and Papuga’s [28], might provide better overall fatigue life estimates for a wider range of load history types. It has been also
shown that Findley’s model for in-phase tension-torsion histories results in a Tresca version of the von-Mises-invariant-



Fig. 6. Comparison between the observed fatigue lives Nobsv and the NF predicted by Findley’s critical-plane method.

Fig. 7. Comparison between the observed fatigue lives Nobsv and the NESWT or NF predicted by ESWT’s or Findley’s critical-plane methods, depending on the
dominance of normal or shear applied loads.
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based model from Crossland, which helps to explain why several multiaxial damage models can provide good predictions for
simple loadings, even though they might completely miss the physics of the problem. In its current form, the SSF method
does not include mean/maximum stress effects, therefore experiments with zero mean loads were chosen to evaluate its per-
formance. The SSF method resulted in a better fit of the experimental data than the critical plane approach, however it
requires more calibration tests (to fit its fifth-degree polynomial).
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